
SimBiology®

Reference

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SimBiology® Reference
© COPYRIGHT 2005–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Updated for Version 1.0.1 (Release 2006a)
May 2006 Online only Updated for Version 2.0 (Release 2006a+)
September 2006 Online only Updated for Version 2.0.1 (Release 2006b)
March 2007 Online only Rereleased for Version 2.1.1 (Release 2007a)
September 2007 Online only Rereleased for Version 2.1.2 (Release 2007b)
October 2007 Online only Updated for Version 2.2 (Release 2007b+)
March 2008 Online only Updated for Version 2.3 (Release 2008a)
October 2008 Online only Updated for Version 2.4 (Release 2008b)
March 2009 Online only Updated for Version 3.0 (Release 2009a)
September 2009 Online only Updated for Version 3.1 (Release 2009b)
March 2010 Online only Updated for Version 3.2 (Release 2010a)
September 2010 Online only Updated for Version 3.3 (Release 2010b)
April 2011 Online only Updated for Version 3.4 (Release 2011a)
September 2011 Online only Updated for Version 4.0 (Release 2011b)
March 2012 Online only Updated for Version 4.1 (Release 2012a)
September 2012 Online only Updated for Version 4.2 (Release 2012b)
March 2013 Online only Updated for Version 4.3 (Release 2013a)
September 2013 Online only Updated for Version 4.3.1 (Release 2013b)
March 2014 Online only Updated for Version 5.0 (Release 2014a)
October 2014 Online only Updated for Version 5.1 (Release 2014b)
March 2015 Online only Updated for Version 5.2 (Release 2015a)
September 2015 Online only Updated for Version 5.3 (Release 2015b)
March 2016 Online only Updated for Version 5.4 (Release 2016a)
September 2016 Online only Updated for Version 5.5 (Release 2016b)
March 2017 Online only Updated for Version 5.6 (Release 2017a)
September 2017 Online only Updated for Version 5.7 (Release 2017b)
March 2018 Online only Updated for Version 5.8 (Release 2018a)
September 2018 Online only Updated for Version 5.8.1 (Release 2018b)
March 2019 Online only Updated for Version 5.8.2 (Release 2019a)
September 2019 Online only Updated for Version 5.9 (Release 2019b)
March 2020 Online only Updated for Version 5.10 (Release 2020a)
September 2020 Online only Updated for Version 6.0 (Release 2020b)
March 2021 Online only Updated for Version 6.1 (Release 2021a)
September 2021 Online only Updated for Version 6.2 (Release 2021b)
March 2022 Online only Updated for Version 6.3 (Release 2022a)

Functions
1

Methods
2

Properties
3

v

Contents

Functions

1

sbioabstractkineticlaw
Create kinetic law definition

Syntax
abstkineticlawObj = sbioabstractkineticlaw('Name')
abstkineticlawObj = sbioabstractkineticlaw('Name','Expression')

abstkineticlawObj = sbioabstractkineticlaw(...'PropertyName',
PropertyValue...)

Arguments
Name Enter a name for the kinetic law definition. Name can be a

character vector or string. It must be unique in the user-defined
kinetic law library. Name is referenced by kineticlawObj.

Expression The mathematical expression that defines the kinetic law.

Description
abstkineticlawObj = sbioabstractkineticlaw('Name') creates an abstract kinetic law
object, with the name Name and returns it to abstkineticlawObj. Use the abstract kinetic law
object to specify a kinetic law definition.

The kinetic law definition provides a mechanism for applying a specific rate law to multiple reactions.
It acts as a mapping template for the reaction rate. The kinetic law definition defines a reaction rate
expression, which is shown in the property Expression, and the species and parameter variables
used in the expression. The species variables are defined in the SpeciesVariables on page 3-168
property, and the parameter variables are defined in the ParameterVariables on page 3-126
property of the abstract kinetic law object.

To use the kinetic law definition, you must add it to the user-defined library with the
sbioaddtolibrary function. To retrieve the kinetic law definitions from the user-defined library,
first create a root object using sbioroot, then use the command
get(rootObj.UserDefinedLibrary, 'KineticLaws').

abstkineticlawObj = sbioabstractkineticlaw('Name','Expression') constructs a
SimBiology abstract kinetic law object, abstkineticlawObj with the name 'Name' and with the
expression 'Expression' and returns it to abstkineticlawObj.

abstkineticlawObj = sbioabstractkineticlaw(...'PropertyName',
PropertyValue...) defines optional properties. The name-value pairs can be in any format
supported by the function set.

Additional abstkineticlawObj properties can be viewed with the get command.
abstkineticlawObj properties can be modified with the set command.

1 Functions

1-2

Note If you use the sbioabstractkineticlaw constructor function to create an object containing
a reaction rate expression that is not continuous and differentiable, see “Using Events to Address
Discontinuities in Rule and Reaction Rate Expressions” before simulating your model.

Method Summary
delete Delete SimBiology object
display Display summary of SimBiology object
findUsages Find out how an AbstractKineticLaw object is used
get Get SimBiology object properties
rename Rename object and update expressions
set Set SimBiology object properties

Property Summary
Expression Expression to determine reaction rate equation or expression of observable

object
Name Specify name of object
Notes HTML text describing SimBiology object
ParameterVariables Parameters in kinetic law definition
Parent Indicate parent object
SpeciesVariables Species in abstract kinetic law
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

Examples
1 Create a kinetic law definition.

abstkineticlawObj = sbioabstractkineticlaw('ex_mylaw1', '(k1*s)/(k2+k1+s)');

2 Assign the parameter and species variables in the expression.

 set (abstkineticlawObj, 'SpeciesVariables', {'s'});
 set (abstkineticlawObj, 'ParameterVariables', {'k1', 'k2'});

3 Add the new kinetic law definition to the user-defined library.

 sbioaddtolibrary(abstkineticlawObj);

sbioaddtolibrary adds the kinetic law definition to the user-defined library. You can verify
this using sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array

 Index: Library: Name: Expression:
 1 UserDefined ex_mylaw1 (k1*s)/(k2+k1+s)

 sbioabstractkineticlaw

1-3

4 Use the new kinetic law definition when defining a reaction's kinetic law.

 modelObj = sbiomodel('cell');
 reactionObj = addreaction(modelObj, 'A + B <-> B + C');
 kineticlawObj = addkineticlaw(reactionObj, 'ex_mylaw1');

Note Remember to specify the SpeciesVariableNames and the ParameterVariableNames
in kineticlawObj to fully define the ReactionRate of the reaction.

See Also
addkineticlaw | addparameter | addreaction | sbiomodel

Introduced in R2006a

1 Functions

1-4

sbioaccelerate
Prepare model object for accelerated simulations

Syntax
sbioaccelerate(modelObj)
sbioaccelerate(modelObj,csObj)
sbioaccelerate(modelObj,dvObj)

sbioaccelerate(modelObj,csObj,dvObj)

sbioaccelerate(modelObj,csObj,variantObj,doseObj)

Description
sbioaccelerate(modelObj) prepares a model object for an accelerated simulation using its active
configuration set (configset), any active variants and active doses. A SimBiology model can contain
multiple configsets with only one being active at any given time. The active configset contains the
settings to use in model preparation for acceleration.

For accelerated simulations, use sbioaccelerate before running sbiosimulate. You must use the
same model and configset for both functions.

Rerun sbioaccelerate, before calling sbiosimulate, if you modify this model, such as changing
reactions or adding events. However, there are exceptions. For details, see “When to Rerun
Acceleration”.

Note If you are using a SimFunction object for simulations, it automatically accelerates the
model on its first function evaluation. Hence it is not necessary to run sbioaccelerate beforehand.

Prerequisites To prepare your models for accelerated simulations, install and set up a supported
compiler. For details, see “Prerequisites for Accelerating Simulations and Analyses”.

sbioaccelerate(modelObj,csObj) uses the specified configset object csObj and any active
variants and active doses. Any other configsets are ignored. If you set csObj to empty [], the
function uses the active configset.

sbioaccelerate(modelObj,dvObj) uses doses or variants specified by dvObj and the active
configset. dvObj can be one of the following:

• Variant object
• ScheduleDose object
• RepeatDose object
• array of doses or variants

If you set dvObj to empty [], the function uses the active configset, active variants, and active doses.

 sbioaccelerate

1-5

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html

If you specify dvObj as variants, the function uses the specified variants and active doses. Any other
variants are ignored.

If you specify dvObj as doses, the function uses the specified doses and active variants. Any other
doses are ignored.

Currently, a particular dose object can only be accelerated with a single model. You cannot use the
same dose object for multiple models to be accelerated. You must create a new copy of the dose for
each model.

sbioaccelerate(modelObj,csObj,dvObj) uses a configset object csObj and doses or variants
specified by dvObj.

If you set csObj to [], then the function uses the active configset object.

If you set dvObj to [], then the function uses no variants, but uses active doses.

If you set dvObj to variants, the function uses the specified variants and active doses. Any other
variants are ignored.

If you set dvObj to doses, the function uses the specified doses and active variants. Any other doses
are ignored.

sbioaccelerate(modelObj,csObj,variantObj,doseObj) uses a configset object csObj,
variant object or variant array specified by variantObj and dose object or dose array specified by
doseObj. Any other configset, doses, and variants are ignored.

If you set csObj to [], then the function uses the active configset object.

If you set variantObj to [], then the function uses no variants.

If you set doseObj to [], then the function uses no doses.

Examples

Prepare a Model for Accelerated Simulation

Load a SimBiology project, named lotka, that contains a model m1.

sbioloadproject('lotka','m1')

Prepare the model for accelerated simulation.

sbioaccelerate(m1);

Simulate the model using different initial amounts of species x.

x = sbioselect(m1,'type','species','name','x');
for i=1:5
 x.initialAmount = i;
 sd(i) = sbiosimulate(m1);
end

Plot the results.

1 Functions

1-6

sbioplot(sd);

Accelerate Simulation Using a User-Defined Configset Object

Load a sample SimBiology project.

sbioloadproject radiodecay.sbproj

Add a new configuration set using a different stop time of 15 seconds.

csObj = addconfigset(m1,'newStopTimeConfigSet');
csObj.StopTime = 15;

Prepare the model for accelerated simulation using the new configset object.

sbioaccelerate(m1,csObj);

Simulate the model using the same configset object.

sim = sbiosimulate(m1,csObj);
sbioplot(sim);

 sbioaccelerate

1-7

Accelerate Simulation With Array of Doses

Load a sample SimBiology project.

sbioloadproject radiodecay.sbproj

Increase the amount of species x by 100 molecules at 2 and 4 seconds by adding a schedule dose.

dObj1 = adddose(m1,'d1','schedule');
dObj1.Amount = 100;
dObj1.AmountUnits = 'molecule';
dObj1.TimeUnits = 'second';
dObj1.Time = 2;
dObj1.TargetName = 'unnamed.x';

dObj2 = adddose(m1,'d2','schedule');
dObj2.Amount = 100;
dObj2.AmountUnits = 'molecule';
dObj2.TimeUnits = 'second';
dObj2.Time = 4;
dObj2.TargetName = 'unnamed.x';

Prepare the model for accelerated simulation using the array of both doses.

sbioaccelerate(m1,[dObj1,dObj2]);

1 Functions

1-8

Simulate the model using no dose or any subset of the dose array without having to rerun
sbioaccelerate.

sim1 = sbiosimulate(m1);
sim2 = sbiosimulate(m1,dObj1);
sim3 = sbiosimulate(m1,dObj2);
sim4 = sbiosimulate(m1,[dObj1,dObj2]);

Plot the results.

sbioplot(sim1);

sbioplot(sim2);

 sbioaccelerate

1-9

sbioplot(sim3);

1 Functions

1-10

sbioplot(sim4);

 sbioaccelerate

1-11

Accelerate Simulation Using Configset and Dose Objects

Load a sample SimBiology project.

sbioloadproject radiodecay.sbproj

Get the default configuration set from the model.

defaultConfigSet = getconfigset(m1,'default');

Increase the amount of species x by 100 molecules at 2 seconds by adding a schedule dose.

dObj = adddose(m1,'d1','schedule');
dObj.Amount = 100;
dObj.AmountUnits = 'molecule';
dObj.TimeUnits = 'second';
dObj.Time = 2;
dObj.TargetName = 'unnamed.x';

Prepare the model for accelerated simulation using the default configset object and added dose
object.

sbioaccelerate(m1,defaultConfigSet,dObj);

Simulate the model using the same configset and dose objects.

1 Functions

1-12

sim = sbiosimulate(m1,defaultConfigSet,dObj);

Plot the result.

sbioplot(sim);

Accelerate Simulation Using Configset, Dose, and Variant Objects

Load a sample SimBiology project.

sbioloadproject radiodecay.sbproj

Add a new configuration set using a different stop time of 15 seconds.

csObj = m1.addconfigset('newStopTimeConfigSet');
csObj.StopTime = 15;

Increase the amount of species x by 100 molecules at 2 seconds by adding a schedule dose.

dObj = adddose(m1,'d1','schedule');
dObj.Amount = 100;
dObj.AmountUnits = 'molecule';
dObj.TimeUnits = 'second';
dObj.Time = 2;
dObj.TargetName = 'unnamed.x';

 sbioaccelerate

1-13

Add a variant of species x using a different initial amount of 500 molecules.

vObj = addvariant(m1,'v1');
addcontent(vObj,{'species','x','InitialAmount',500});

Prepare the model for accelerated simulation using the configset, dose, and variant objects. In this
case, the third argument of sbioaccelerate must be the variant object.

sbioaccelerate(m1,csObj,vObj,dObj);

Simulate the model using the same configset, variant, and dose objects.

sim = sbiosimulate(m1,csObj,vObj,dObj);

Plot the result.

sbioplot(sim);

Input Arguments
modelObj — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object. The model minimally needs one reaction
or rate rule to be accelerated for simulations.

1 Functions

1-14

csObj — Configuration set object
configset object | []

Configuration set object, specified as a configset object that stores simulation-specific
information. When you specify csObj as[], sbioaccelerate uses the currently active configset.

dvObj — Dose or variant object
dose object or array of dose objects | variant object or array of variant objects | []

Dose or variant object, specified as one of the following: ScheduleDose object, RepeatDose
object, array of dose objects, Variant object, or array of variant objects.

• Use [] when you want to explicitly exclude any variant objects from the sbioaccelerate
function.

• When dvObj is a dose object, sbioaccelerate uses the specified dose object as well as any
active variant objects if available. When you accelerate the model using an array of dose objects,
you can simulate the model using any subset of the dose objects from the array.

• When dvObj is a variant object, sbioaccelerate uses the specified variant object as well as any
active dose objects if available. You can use any or no variant input arguments when running
sbioaccelerate.

variantObj — Variant object
variant object or array of variant objects | []

Variant object, specified as a Variant object or array of variant objects. Use [] when you want to
explicitly exclude any variant object from sbioaccelerate.

doseObj — Dose object
dose object or array of dose objects | []

Dose object, specified as a ScheduleDose object, RepeatDose object, or array of dose objects.
A dose object defines additions that are made to species amounts or parameter values. Use [] when
you want to explicitly exclude any dose objects from sbioaccelerate.

Note If you pass in an array of doses to sbioaccelerate, you can simulate the model using any
subset of doses and do not need to run acceleration again.

See Also
sbiosimulate | SimFunction object

Topics
“Accelerating Model Simulations and Analyses”

Introduced in R2010a

 sbioaccelerate

1-15

sbioaddtolibrary
Add to user-defined library

Syntax
sbioaddtolibrary (abstkineticlawObj)
sbioaddtolibrary (unitObj)
sbioaddtolibrary (unitprefixObj)

Arguments

abstkineticlawObj Specify the abstract kinetic law object that holds the kinetic law
definition. The Name of the kinetic law must be unique in the user-
defined kinetic law library. Name is referenced by
kineticlawObj. For more information about creating
kineticlawObj, see sbioabstractkineticlaw.

unitObj Specify the user-defined unit to add to the library. For more
information about creating unitObj, see sbiounit.

unitprefixObj Specify the user-defined unit prefix to add to the library. For more
information about creating unitprefixObj, see
sbiounitprefix.

Description
The function sbioaddtolibrary adds kinetic law definitions, units, and unit prefixes to the user-
defined library.

sbioaddtolibrary (abstkineticlawObj) adds the abstract kinetic law object
(abstkineticlawObj) to the user-defined library.

sbioaddtolibrary (unitObj) adds the user-defined unit (unitObj) to the user-defined library.

sbioaddtolibrary (unitprefixObj) adds the user-defined unit prefix (unitprefixObj) to the
user-defined library.

The sbioaddtolibrary function adds any kinetic law definition, unit, or unit prefix to the root
object's UserDefinedLibrary property. These library components become available automatically
in future MATLAB® sessions.

Use the kinetic law definitions in the built-in and user-defined library to construct a kinetic law object
with the method addkineticlaw.

To get a component of the built-in and user-defined libraries, use the commands get(sbioroot,
'BuiltInLibrary') and (get(sbioroot, 'UserDefinedLibrary')).

To remove the library component from the user-defined library, use the function
sbioremovefromlibrary. You cannot remove a kinetic law definition being used by a reaction.

1 Functions

1-16

Examples
This example shows how to create a kinetic law definition and add it to the user-defined library.

1 Create a kinetic law definition.
abstkineticlawObj = sbioabstractkineticlaw('ex_mylaw1', '(k1*s)/(k2+k1+s)');

2 Assign the parameter and species variables in the expression.

set (abstkineticlawObj, 'SpeciesVariables', {'s'});
set (abstkineticlawObj, 'ParameterVariables', {'k1', 'k2'});

3 Add the new kinetic law definition to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

The function adds the kinetic law definition to the user-defined library. You can verify this using
sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array

Index: Library: Name: Expression:
1 UserDefined mylaw1 (k1*s)/(k2+k1+s)

4 Use the new kinetic law definition when defining a reaction's kinetic law.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'A + B <-> B + C');
kineticlawObj = addkineticlaw(reactionObj, 'ex_mylaw1');

Note Remember to specify the SpeciesVariableNames and the ParameterVariableNames
in kineticlawObj to fully define the ReactionRate of the reaction.

See Also
addkineticlaw | sbioabstractkineticlaw | sbioremovefromlibrary | sbioroot |
sbiounit | sbiounitprefix

Introduced in R2006a

 sbioaddtolibrary

1-17

sbioconsmoiety
Find conserved moieties in SimBiology model

Syntax
[G, Sp] = sbioconsmoiety(modelObj)
[G, Sp] = sbioconsmoiety(modelObj, alg)
H = sbioconsmoiety(modelObj, alg,'p')
H = sbioconsmoiety(modelObj, alg,'p', FormatArg)
[SI, SD, L0, NR, ND] = sbioconsmoiety(modelObj,'link')

Arguments
G An m-by-n matrix, where m is the number of conserved quantities found

and n is the number of species in the model. Each row of G specifies a
linear combination of species whose rate of change over time is zero.

Sp Cell array of species names that labels the columns of G.

If the species are in multiple compartments, species names are qualified
with the compartment name in the form
compartmentName.speciesName. For example, nucleus.DNA,
cytoplasm.mRNA.

modelObj Model object to be evaluated for conserved moieties.
alg Specify algorithm to use during evaluation of conserved moieties. Valid

values are 'qr', 'rreduce', or 'semipos'.
H Cell array of character vectors containing the conserved moieties.
p Prints the output according to the format defined by FormatArg.
FormatArg Specifies formatting for the output H. FormatArg must either be a

character vector or string specifying a C-style format, or a positive
integer specifying the maximum number of digits of precision used.

SI Cell array containing the names of independent species in the model.
SD Cell array containing the names of dependent species in the model.
L0 Link matrix relating SI and SD. The link matrix L0 satisfies ND = L0*NR.

For the 'link' functionality, species with their BoundaryCondition or
ConstantAmount properties set to true are treated as having stoichiometry
of zero in all reactions.

L0 is a sparse matrix. To convert it to a full matrix, use the full function.
NR Reduced stoichiometry matrices containing one row for each independent

species. The concatenated matrix [NR;ND] is a row-permuted version of
the full stoichiometry matrix of modelObj.

NR is a sparse matrix. To convert it to a full matrix, use the full function.

1 Functions

1-18

ND Reduced stoichiometry matrices containing one row for each dependent
species. The concatenated matrix [NR;ND] is a row-permuted version of
the full stoichiometry matrix of modelObj.

ND is a sparse matrix. To convert it to a full matrix, use the full function.

Description
[G, Sp] = sbioconsmoiety(modelObj) calculates a complete set of linear conservation
relations for the species in the SimBiology model object modelObj.

sbioconsmoiety computes conservation relations by analyzing the structure of the model object's
stoichiometry matrix. Thus, sbioconsmoiety does not include species that are governed by
algebraic or rate rules.

[G, Sp] = sbioconsmoiety(modelObj, alg) provides an algorithm specification. For alg,
specify 'qr' , 'rreduce' , or 'semipos'.

• When you specify 'qr', sbioconsmoiety uses an algorithm based on QR factorization. From a
numerical standpoint, this is the most efficient and reliable approach.

• When you specify 'rreduce', sbioconsmoiety uses an algorithm based on row reduction,
which yields better numbers for smaller models. This is the default.

• When you specify 'semipos', sbioconsmoiety returns conservation relations in which all the
coefficients are greater than or equal to 0, permitting a more transparent interpretation in terms
of physical quantities.

For larger models, the QR-based method is recommended. For smaller models, row reduction or the
semipositive algorithm may be preferable. For row reduction and QR factorization, the number of
conservation relations returned equals the row rank degeneracy of the model object's stoichiometry
matrix. The semipositive algorithm may return a different number of relations. Mathematically
speaking, this algorithm returns a generating set of vectors for the space of semipositive
conservation relations.

H = sbioconsmoiety(modelObj, alg,'p') returns a cell array of character vectors H
containing the conserved quantities in modelObj.

H = sbioconsmoiety(modelObj, alg,'p', FormatArg) specifies formatting for the output H.
FormatArg should either be a C-style format string, or a positive integer specifying the maximum
number of digits of precision used.

[SI, SD, L0, NR, ND] = sbioconsmoiety(modelObj,'link') uses a QR-based algorithm to
compute information relevant to the dimensional reduction, via conservation relations, of the reaction
network in modelObj.

Examples
Example 1

This example shows conserved moieties in a cycle.

1 Create a model with a cycle. For convenience use arbitrary reaction rates, as this will not affect
the result.

 sbioconsmoiety

1-19

modelObj = sbiomodel('cycle');
modelObj.addreaction('a -> b','ReactionRate','1');
modelObj.addreaction('b -> c','ReactionRate','b');
modelObj.addreaction('c -> a','ReactionRate','2*c');

2 Look for conserved moieties.

 [g sp] = sbioconsmoiety(modelObj)

g =

 1 1 1

sp =

 'a'
 'b'
 'c'

Example 2

Explore semipositive conservation relations in the oscillator model.

modelObj = sbmlimport('oscillator');
 sbioconsmoiety(modelObj,'semipos','p')

 ans =

 'pol + pol_OpA + pol_OpB + pol_OpC'
 'OpB + pol_OpB + pA_OpB1 + pA_OpB_pA + pA_OpB2'
 'OpA + pol_OpA + pC_OpA1 + pC_OpA2 + pC_OpA_pC'
 'OpC + pol_OpC + pB_OpC1 + pB_OpC2 + pB_OpC_pB'

See Also
getstoichmatrix

Topics
“Conserved Moiety Determination”

Introduced in R2006a

1 Functions

1-20

sbioconvertunits
Convert unit and unit value to new unit

Syntax
sbioconvertunits(Obj, 'unit')

Description
sbioconvertunits(Obj, 'unit') converts the current *Units property on SimBiology object,
Obj to the unit, unit. This function configures the *Units property to unit and updates the
corresponding value property. For example, sbioconverunits on a speciesObj updates the
InitialAmount property value and the InitialAmountUnits property value.

Obj can be an array of SimBiology objects. Obj must be a SimBiology object that contains a unit
property. The SimBiology objects that contain a unit property are compartment, parameter, and
species objects. For example, if Obj is a species object with InitialAmount configured to 1 and
InitialAmountUnits configured to mole, after the call to sbioconvertunits with unit specified
as molecule, speciesObj InitialAmount is 6.0221e23 and InitialAmountUnits is
molecule.

Examples
Convert the units of the initial amount of glucose from molecule to mole.

1 Create the species 'glucose' and assign an initial amount of 23 molecule.

At the command prompt, type:
modelObj = sbiomodel('cell');
compObj = addcompartment(modelObj, 'C');
speciesObj = addspecies (compObj, 'glucose', 23, 'InitialAmountUnits', 'molecule')

SimBiology Species Array

 Index: Compartment: Name: InitialAmount: InitialAmountUnits:
 1 C glucose 23 molecule

2 Convert the InitialAmountUnits of glucose from molecule to mole.

sbioconvertunits (speciesObj, 'mole')
3 Verify the conversion of units and InitialAmount value.

Units are converted from molecule to mole.

get (speciesObj, 'InitialAmountUnits')

ans =

mole

The InitialAmount value is changed.

 sbioconvertunits

1-21

get (speciesObj, 'InitialAmount')

ans =

 3.8192e-023

See Also
sbioshowunits

Topics
sbioshowunits

Introduced in R2006a

1 Functions

1-22

sbiocopylibrary
Copy library to disk

Syntax
sbiocopylibrary ('kineticlaw','LibraryFileName')
sbiocopylibrary ('unit','LibraryFileName')

Description
sbiocopylibrary ('kineticlaw','LibraryFileName') copies all user-defined kinetic law
definitions to the file LibraryFileName.sbklib and places the copied file in the current directory.

sbiocopylibrary ('unit','LibraryFileName') copies all user-defined units and unit prefixes
to the file LibraryFileName.sbulib.

To get the kinetic law definitions that are in the built-in or user-defined libraries, first create a root
object using sbioroot, then use the commands get(rootObj.BuiltInLibrary,
'KineticLaws') or get(rootObj.UserDefinedLibrary, 'KineticLaws').

To add a kinetic law definition to the user-defined library, use sbioaddtolibrary.

To add a unit to the user-defined library, use sbiounit followed by sbioaddtolibrary. To add a
unit prefix to the user-defined library, use sbiounitprefix followed by sbioaddtolibrary.

Examples
Create a kinetic law definition, add it to the user-defined library, and then copy the user-defined
kinetic law library to a .sbklib file.

1 Create a kinetic law definition.
abstkineticlawObj = sbioabstractkineticlaw('mylaw1', '(k1*s)/(k2+k1+s)');

2 Add the new a kinetic law definition to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

sbioaddtolibrary adds the kinetic law definition to the user-defined library. You can verify
this using sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array

Index: Library: Name: Expression:
 1 UserDefined mylaw1 (k1*s)/(k2+k1+s)

3 Copy the user-defined kinetic law library.

sbiocopylibrary ('kineticlaw','myLibFile')
4 Verify with sbiowhos.

 sbiocopylibrary

1-23

sbiowhos -kineticlaw myLibFile

See Also
sbioaddtolibrary | sbioabstractkineticlaw | sbioremovefromlibrary | sbiounit |
sbiounitprefix

Introduced in R2006a

1 Functions

1-24

sbiodesktop
(Removed) Open SimBiology desktop for modeling and simulation

Note sbiodesktop has been removed. Use simBiologyModelBuilder instead.

Syntax
sbiodesktop
sbiodesktop(modelObj)
sbiodesktop(File)

Input Arguments
modelObj SimBiology model object or an array of model objects.
File String specifying a file name or path and file name of an sbproj file. If you specify

only a file name, that file must be on the MATLAB search path or in the MATLAB
Current Folder.

Description
sbiodesktop opens the SimBiology desktop, which lets you:

• Build a SimBiology model by representing reaction pathways and entering kinetic data for the
reactions.

• Import or export SimBiology models to and from the MATLAB workspace or from a Systems
Biology Markup Language (SBML) file.

• Modify an existing SimBiology model.
• Simulate a SimBiology model through individual or ensemble runs.
• View results from the simulation.
• Perform analysis tasks such as sensitivity analysis, parameter and species scans, and calculation

of conserved moieties.
• Create and/or modify user-defined units and unit prefixes.
• Create and/or modify user-defined kinetic laws.

sbiodesktop(modelObj) opens the SimBiology desktop with modelObj, a SimBiology model
object. If there is a project open in the SimBiology desktop, this command adds modelObj to the
project.

sbiodesktop(File) opens the project specified by File in the SimBiology desktop. File is a
string specifying a file name or path and file name of an sbproj file. If you specify only a file name,
that file must be on the MATLAB search path or in the MATLAB Current Folder. If a project is open in
the desktop, the software replaces it with the new project, after prompting you to save any changes.

The Parent property of a SimBiology model object is set to the SimBiology root object. The root
object contains a list of model objects that are accessible from the MATLAB command line and from

 sbiodesktop

1-25

the SimBiology desktop. Because both the command line and the desktop point to the same model
object in the Root object, changes you make to the model at the command line are reflected in the
desktop, and vice versa.

Note The sbioreset command removes all models from the root object. Therefore, this command
also removes all models from the SimBiology desktop.

Compatibility Considerations
sbiodesktop has been removed
Errors starting in R2022a

sbiodesktop has been removed. Use simBiologyModelBuilder instead.

See Also
SimBiology Model Builder

Introduced before R2006a

1 Functions

1-26

sbiodose
Construct dose object

Syntax
dose = sbiodose(DoseName)
dose = sbiodose(DoseName,DoseType)
dose = sbiodose(DoseName,Name,Value)

Description
dose = sbiodose(DoseName) creates a RepeatDose object and sets its Name property to
DoseName.

dose = sbiodose(DoseName,DoseType) creates either a RepeatDose object or
ScheduleDose object based on DoseType.

dose = sbiodose(DoseName,Name,Value) uses name-value pair arguments to define the
properties of the dose object. You can enter the name-value pairs in the same format supported by the
function set. Use the get function to view all the properties of the object.

Examples

Increase Drug Concentration in a One-Compartment Model via First-Order Dosing

This example shows how to set up a dosing regimen that follows the first-order absorption kinetics.

Background

Suppose you have a one-compartment model with a species named drug that represents the total
amount of drug in the body. The drug is added to the body via the first-order dosing represented by
the reaction dose -> drug, with the absorption rate constant ka. It is removed from the body via
the first-order elimination represented by the reaction drug -> null, with the elimination rate
constant ke. This example shows how to set up such a one-compartment model, the first-order
absorption and elimination.

Create a One-Compartment Model

Create a SimBiology model named onecomp.

m1 = sbiomodel('onecomp');

Define the drug elimination by adding a reaction drug -> null to the model. The drug species
represents the total amount of drug in the compartment.

r1 = addreaction(m1,'drug -> null');

Note that a compartment and the species drug are automatically created, and drug is added to the
compartment. The null species is a reserved species that acts as a sink in this reaction.

 sbiodose

1-27

Add a mass action kinetic law to the reaction. This kinetic law defines the drug elimination to follow
the first-order kinetics.

k1 = addkineticlaw(r1,'MassAction');

Define the elimination rate parameter ke and add it to the kinetic law.

p1 = addparameter(k1,'ke','Value',1.0,'ValueUnits','1/hour');

Specify the rate parameter ke as the forward rate parameter of the reaction by setting the
ParameterVariableNames property of kinetic law object k2. This allows SimBiology to determine
the reaction rate for drug -> null reaction.

k1.ParameterVariableNames = 'ke';

Set Up the First-Order Dosing

Add a reaction that represents the drug absorption using the second species dose. It represents an
intermediate species that will be dosed directly and is required to set up the first-order absorption
kinetics.

r2 = addreaction(m1,'dose -> drug');

Add a mass action kinetic law to the reaction. This kinetic law defines the drug absorption to follow
the first-order kinetics.

k2 = addkineticlaw(r2,'MassAction');

Define the absorption rate parameter ka and add it to the kinetic law.

p2 = addparameter(k2,'ka','Value',0.1,'ValueUnits','1/hour');

Specify the rate parameter ka as the forward rate parameter of the reaction by setting the
ParameterVariableNames property of kinetic law object k1. This allows SimBiology to determine
the reaction rate for dose -> drug reaction.

k2.ParameterVariableNames = 'ka';

Suppose you want to increase the drug concentration in the system by administering a series of
doses: 250 mg three times a day (t.i.d) for two days. Specify the amount of the dose (Amount), the
time interval between each dose (Interval), and the total number of doses (RepeatCount). You
also need to set the Active property of the dose object to true so that the dose will be applied to
the model during simulation. RepeatCount was set to 5, instead of 6 since it represents the number
of doses after the first dose at the default dose start time (d1.StartTime = 0).

d1 = sbiodose('d1','repeat');
d1.Amount = 250;
d1.AmountUnits = 'milligram';
d1.Interval = 8;
d1.TimeUnits = 'hour';
d1.RepeatCount = 5;
d1.Active = true;

Specify the target species of the dose object. The target must be the dose species, not the drug
species, so that the drug absorption follows the first-order kinetics.

d1.TargetName = 'dose';

1 Functions

1-28

Simulate the Model

Change the simulation stop time to 48 hours to match the dosing schedule.

cs = getconfigset(m1);
cs.StopTime = 48;
cs.TimeUnits = 'hour';

In addition, do not log the dose species data as you are mainly interested in monitoring the drug
species which is the drug concentration in the system. This makes visualizing the species in a plot
more convenient. To accomplish this, set the StatesToLog property to include the species drug only.

cs.RuntimeOptions.StatesToLog = {'drug'};

Simulate the model using the dosing schedule defined by the |d1 |dose object.

[t,sd,species] = sbiosimulate(m1,d1);

Plot Results

Plot the concentration versus the time profile of the drug in the compartment.

plot(t,sd);
legend(species,'Location','NorthWest');
xlabel('Hours');
ylabel('Drug Concentration');

 sbiodose

1-29

Add a Series of Bolus Doses to a One-Compartment Model

This example shows how to add a series of bolus doses to one-compartment model.

Background

Suppose you have a one-compartment model with a species named drug that represents the total
amount of drug in the body. The drug is removed from the body via the first-order elimination
represented by the reaction drug -> null, with the elimination rate constant ke. In other words,
the drug concentration versus the time profile follows the monoexponential decline Ct = C0e−ket,
where Ct is the drug concentration at time t, C0 is the initial concentration, and ke is the elimination
rate constant. This example shows how to set up such a one-compartment model and administer a
series of bolus doses, namely 250 mg three times a day (tid) for two days.

Create a One-Compartment Model

First create a SimBiology model named onecomp.

m1 = sbiomodel('onecomp');

Define the elimination of the drug from the system by adding a reaction drug -> null to the model.

r1 = addreaction(m1,'drug -> null');

The species drug is automatically created and the reaction is added to the compartment. The null
species is a reserved species that acts as a sink in this reaction.

Add a mass action kinetic law to the reaction. This kinetic law defines the drug elimination to follow
the first-order kinetics.

k1 = addkineticlaw(r1,'MassAction');

Define the elimination rate parameter ke and add it to the kinetic law.

p1 = addparameter(k1,'ke','Value',1.0,'ValueUnits','1/hour');

Specify the rate parameter ke as the forward rate parameter of the reaction by setting the
ParameterVariableNames property of kinetic law object k1. This allows SimBiology to determine
the reaction rate for drug -> null reaction.

k1.ParameterVariableNames = 'ke';

Set Up a Series of Bolus Doses

Suppose you want to increase the drug concentration in the system by administering a series of bolus
doses: 250 mg three times a day (tid) for two days. Create a repeat dose object. Specify the amount of
the dose (Amount), the dose target, the time interval between each dose (Interval), and the total
number of doses (RepeatCount). You also need to set the Active property of the dose object to
true so that the dose is applied to the model during simulation.

d1 = sbiodose('d1','repeat');
d1.Amount = 250;
d1.AmountUnits = 'milligram';
d1.TargetName = 'drug';
d1.Interval = 8;
d1.TimeUnits = 'hour';

1 Functions

1-30

d1.RepeatCount = 5;
d1.Active = true;

RepeatCount was set to 5, instead of 6 since it represents the number of doses after the first dose at
the default dose start time (d1.StartTime = 0).

Simulate the Model

Change the simulation stop time to 48 hours to match the dosing schedule defined by the d1 dose
object.

cs = getconfigset(m1);
cs.StopTime = 48;
cs.TimeUnits = 'hour';
[t,sd,species] = sbiosimulate(m1,d1);

Plot Results

Plot the concentration versus the time profile of the drug in the system.

plot(t,sd);
legend(species);
xlabel('Hours');
ylabel('Drug Concentration');

 sbiodose

1-31

Increase Drug Concentration in a One-Compartment Model via Zero-Order Dosing

This example shows how to set up a dosing regimen that follows the zero-order absorption kinetics.

Background

Suppose you have a one-compartment model with a species named drug that represents the total
amount of drug in the body. The drug is removed from the body via the first-order elimination
represented by the reaction drug -> null, with the elimination rate constant ke. In other words,
the drug concentration versus the time profile follows the monoexponential decline Ct = C0e−ket,
where Ct is the drug concentration at time t, C0 is the initial concentration, and ke is the elimination
rate constant. This example shows how to set up such a one-compartment model and increase the
drug concentration in the compartment via the zero-order absorption that takes 25 hours to
administer the total dose amount of 250 mg.

Create a One-Compartment Model

Create a SimBiology model named onecomp.

m1 = sbiomodel('onecomp');

Define the elimination of the drug from the system by adding a reaction drug -> null to the model.

r1 = addreaction(m1,'drug -> null');

The species drug is automatically created and added to the compartment. The null species is a
reserved species that acts as a sink in this reaction.

Add a mass action kinetic law to the reaction. This kinetic law defines the drug elimination to follow
the first-order kinetics.

k1 = addkineticlaw(r1,'MassAction');

Define the elimination rate parameter ke and add it to the kinetic law.

p1 = addparameter(k1,'ke','Value',1.0,'ValueUnits','1/hour');

Specify the rate parameter ke as the forward rate parameter of the reaction by setting the
ParameterVariableNames property of kinetic law object k1. This allows SimBiology to determine
the reaction rate for drug -> null reaction.

k1.ParameterVariableNames = 'ke';

Set Up Zero-Order Dosing

To set up zero-order dosing, first create a zero-order duration parameter p2 that represents the time
it takes to administer a dose. Next, specify the amount of the dose (Amount), the dose target
(TargetName), and the name of the zero-order duration parameter (DurationParameterName). You
also need to set the Active property of the dose object to true so that the dose is applied to the
model during simulation.

p2 = addparameter(m1,'duration','Value',25,'ValueUnits','hour');
d1 = sbiodose('d1');
d1.Amount = 250;
d1.AmountUnits = 'milligram';
d1.TargetName = 'drug';

1 Functions

1-32

d1.DurationParameterName = 'duration'; %Name of the duration parameter |p2|
d1.Active = true;

Simulate the Model

Change the simulation stop time to 48 hours to see the complete time profile. Apply the dosing
schedule defined by d1 to the model during simulation.

cs = getconfigset(m1);
cs.StopTime = 48;
cs.TimeUnits = 'hour';
[t,sd,species] = sbiosimulate(m1,d1);

Plot Results

Plot the concentration versus the time profile of the drug in the compartment.

plot(t,sd);
legend(species);
xlabel('Hours');
ylabel('Drug Concentration');

Add an Infusion Dose to a One-Compartment Model

This example shows how to add a constant-rate infusion dose to one-compartment model.

 sbiodose

1-33

Background

Suppose you have a one-compartment model with a species named drug that represents the total
amount of drug in the body. The drug is removed from the body via the first-order elimination
represented by the reaction drug -> null, with the elimination rate constant ke. In other words,
the drug concentration versus the time profile follows the monoexponential decline Ct = C0e−ket,
where Ct is the drug concentration at time t, C0 is the initial concentration, and ke is the elimination
rate constant. This example shows how to set up such a one-compartment model and add an infusion
dose at a constant rate of 10 mg/hour for the total dose amount of 250 mg.

Create a One-Compartment Model

Create a SimBiology model named onecomp.

m1 = sbiomodel('onecomp');

Define the elimination of the drug from the system by adding a reaction drug -> null to the model.

r1 = addreaction(m1,'drug -> null');

The species drug is automatically created and added to the compartment. The null species is a
reserved species that acts as a sink in this reaction.

Add a mass action kinetic law to the reaction. This kinetic law defines the drug elimination to follow
the first-order kinetics.

k1 = addkineticlaw(r1,'MassAction');

Define the elimination rate parameter ke and add it to the kinetic law.

p1 = addparameter(k1,'ke','Value',1.0,'ValueUnits','1/hour');

Specify the rate parameter ke as the forward rate parameter of the reaction by setting the
ParameterVariableNames property of kinetic law object k1. This allows SimBiology to determine
the reaction rate for drug -> null reaction.

k1.ParameterVariableNames = 'ke';

Set Up an Infusion Dose

Specify the amount of the dose (Amount), the dose target (TargetName), and the infusion rate
(Rate). You also need to set the Active property of the dose object to true so that the dose is
applied to the model during simulation.

d1 = sbiodose('d1');
d1.Amount = 250;
d1.TargetName = 'drug';
d1.Rate = 10;
d1.RateUnits = 'milligram/hour';
d1.Active = true;

Simulate the Model

Change the simulation stop time to 48 hours to see the complete time course. Apply the dosing
schedule defined by d1 to the model during simulation.

cs = getconfigset(m1);
cs.StopTime = 48;

1 Functions

1-34

cs.TimeUnits = 'hour';
[t,sd,species] = sbiosimulate(m1,d1);

Plot Results

Plot the concentration versus the time profile of the drug in the system.

plot(t,sd);
legend(species);
xlabel('Hours');
ylabel('Drug Concentration');

Input Arguments
DoseName — Name of the dose object
character vector | string

Name of the dose object, specified as a character vector or string.
Example: '250mg_tid'
Data Types: char

DoseType — Type of the dose object
'schedule' | 'repeat'

Type of the dose object, specified as 'schedule' for a ScheduleDose object and 'repeat' for a
RepeatDose object.

 sbiodose

1-35

Example: 'schedule'
Data Types: char

Output Arguments
dose — Dose object
RepeatDose object | ScheduleDose object

Dose object, returned as a RepeatDose object or ScheduleDose object.

See Also
adddose | getdose | removedose | copyobj | get | set | ScheduleDose object | RepeatDose
object

Topics
Model
“Doses in SimBiology Models”

Introduced in R2010a

1 Functions

1-36

sbiodiff
Compare SimBiology models and diagram information

Syntax
diffResults = sbiodiff(source,target)
diffResults = sbiodiff(projectFile)
diffResults = sbiodiff(___ ,Name=Value)

Description
diffResults = sbiodiff(source,target) compares two SimBiology models or SBPROJ files
source and target and returns the comparison results as the SimBiology.DiffResults object
diffResults. If source and target are SBPROJ files that contain more than one model, specify
which model to compare using the name-value arguments SourceModelName and
TargetModelName. For details on how SimBiology compares and matches model components, see
“SimBiology Model Matching Policy”.

diffResults = sbiodiff(projectFile) compares two SimBiology models contained in the
SBPROJ file projectFile. If the project file contains more than two models, specify which models to
compare using the name-value arguments SourceModelName and TargetModelName.

diffResults = sbiodiff(___ ,Name=Value) specifies additional options using one or more
name-value arguments in addition to any of the input argument combinations in the previous
syntaxes.

Examples

Compare SimBiology Models

Load a source model.

model1 = sbmlimport("lotka");
y1 = sbioselect(model1, "Type", "species", "Name", "y1");
y1.Value = 880;

Load a target model to compare against the source model.

model2 = sbmlimport("lotka");
y1 = sbioselect(model2, "Type", "species", "Name", "y1");
y1.Value = 920;

Compare the models using sbiodiff and display the comparison table.

diffResults = sbiodiff(model1,model2);
diffTable = diffResults.Comparisons

diffTable=1×6 table
 Class Source Target Property SourceValue TargetValue
 _________ ______ ______ ________ ___________ ___________

 sbiodiff

1-37

 1 "Species" "y1" "y1" "Value" {[880]} {[920]}

You can also view the comparison results graphically in the Comparison tool.

visdiff(diffResults);

Get a table of model components associated with the changes reported in the comparison table.

tbl = getComponents(diffResults)

tbl=1×2 table
 Source Target
 ________________________ ________________________

 1 {1x1 SimBiology.Species} {1x1 SimBiology.Species}

Input Arguments
source — Source model or SBPROJ file name
model object | character vector | string scalar

Source model to compare against the target model, specified as a SimBiology Model object or
SBPROJ file name. Specify the file name as a character vector or string scalar.

If the SBPROJ file contains more than one model, specify which model to compare using the name-
value argument SourceModelName.

target — Target model or SBPROJ file name
model object | character vector | string scalar

Target model to compare against the source model, specified as a SimBiology Model object or
SBPROJ file name. Specify the file name as a character vector or string scalar.

The SBPROJ file contains more than one model, specify which model to compare using the name-
value argument TargetModelName.

projectFile — SBPROJ file name
character vector | string scalar

SBPROJ file name, specified as a character vector or string scalar. The SBPROJ file must contain at
least 2 models. If the file contains more than two models, specify which two models to compare using
the name-value arguments SourceModelName and TargetModelName.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

1 Functions

1-38

Example: diffResults =
sbiodiff("myproj.sbproj",SourceModelName="m1",TargetModelName="m2") compares
two SimBiology models m1 and m2 from myproj.sbproj.

SourceModelName — Name of source model
character vector | string scalar

Name of the source model from the input SBPROJ file to compare, specified as a character vector or
string scalar.
Data Types: char | string

TargetModelName — Name of target model
character vector | string scalar

Name of the target model from the input SBPROJ file to compare, specified as a character vector or
string scalar.
Data Types: char | string

Output Arguments
diffResults — Results of comparison between two models
SimBiology.DiffResults

Results of comparison between two models, returned as a SimBiology.DiffResults object. The
comparison results are the snapshot of the model state when you ran sbiodiff.

The results include differences of the diagrams if the input SBPROJ file contains diagram information
or if the specified models are open in the SimBiology Model Builder app when you run the
function.

See Also
Model | sbioloadproject | SimBiology Model Builder | SimBiology.DiffResults | visdiff

Topics
“Compare SimBiology Models”
“SimBiology Model Matching Policy”
“What is a SimBiology Model?”

Introduced in R2022a

 sbiodiff

1-39

sbioelementaryeffects
Perform global sensitivity analysis (GSA) by computing elementary effects (requires Statistics and
Machine Learning Toolbox)

Syntax
elementaryEffectsResults = sbioelementaryeffects(modelObj,params,observables)
elementaryEffectsResults = sbioelementaryeffects(modelObj,params,observables,
Name=Value)

Description
elementaryEffectsResults = sbioelementaryeffects(modelObj,params,observables)
performs a global sensitivity analysis of a SimBiology model modelObj by computing elementary
effects of observables with respect to individual model quantities or parameters specified in
params.

elementaryEffectsResults = sbioelementaryeffects(modelObj,params,observables,
Name=Value) uses additional options specified by one or more name-value arguments.

Examples

Perform GSA by Computing Elementary Effects

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

1 Functions

1-40

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, define model parameters of interest, which are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1'};
outputName = 'tumor_weight';

Then perform GSA by computing the elementary effects using sbioelementaryeffects. Use 100
as the number of samples and set ShowWaitBar to true to show the simulation progress.

rng('default');
eeResults = sbioelementaryeffects(m1,modelParamNames,outputName,Variants=v,Doses=d,NumberSamples=100,ShowWaitbar=true);

Show the median model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(eeResults,ShowMedian=true,ShowMean=false);

 sbioelementaryeffects

1-41

You can adjust the quantile region to a different percentage by specifying Alphas for the lower and
upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100*alpha and 100*(1-alpha) quantiles of all simulated model responses.

plotData(eeResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

1 Functions

1-42

Plot the time course of the means and standard deviations of the elementary effects.

h = plot(eeResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 sbioelementaryeffects

1-43

The mean of effects explains whether variations in input parameter values have any effect on the
tumor weight response. The standard deviation of effects explains whether the sensitivity change is
dependent on the location in the parameter domain.

From the mean of effects plots, parameters L1 and w0 seem to be the most sensitive parameters to
the tumor weight before the dose is applied at t = 7. But, after the dose is applied, k1 and L0 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
plots of standard deviation of effects show more deviations for the larger parameter values in the
later stage (t > 35) than for the before-dose stage of the tumor growth.

You can also display the magnitudes of the sensitivities in a bar plot. Each color shading represents a
histogram representing values at different times. Darker colors mean that those values occur more
often over the whole time course.

bar(eeResults);

1 Functions

1-44

You can also plot the parameter grids and samples used to compute the elementary effects.

plotGrid(eeResults)

 sbioelementaryeffects

1-45

You can specify more samples to increase the accuracy of the elementary effects, but the simulation
can take longer to finish. Use addsamples to add more samples.

eeResults2 = addsamples(eeResults,200);

The SimulationInfo property of the result object contains various information for computing the
elementary effects. For instance, the model simulation data (SimData) for each simulation using a set
of parameter samples is stored in the SimData field of the property. This field is an array of SimData
objects.

eeResults2.SimulationInfo.SimData

 SimBiology SimData Array : 1500-by-1

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 1500 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(eeResults2.SimulationInfo.ValidSample)

1 Functions

1-46

ans = logical
 1

You can add custom expressions as observables and compute the elementary effects of the added
observables. For example, you can compute the effects for the maximum tumor weight by defining a
custom expression as follows.

% Suppress an information warning that is issued.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
eeObs = addobservable(eeResults2,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(eeObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1500 800];

You can also remove the observable by specifying its name.

eeNoObs = removeobservable(eeObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Input Arguments
modelObj — SimBiology model
SimBiology model object

 sbioelementaryeffects

1-47

SimBiology model, specified as a SimBiology model object.

params — Names of model parameters, species, or compartments
character vector | string | string vector | cell array of character vectors

Names of model parameters, species, or compartments, specified as a character vector, string, string
vector, or cell array of character vectors.
Example: ["k1","k2"]
Data Types: char | string | cell

observables — Model responses
character vector | string | string vector | cell array of character vectors

Model responses, specified as a character vector, string, string vector, or cell array of character
vectors. Specify the names of species, parameters, compartments, or observables.
Example: "tumor_growth"
Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: eeResults =
sbioelementaryeffects(modelObj,params,observables,StopTime=10) specifies to use a
stop time of 10.

Bounds — Parameter bounds
numeric matrix

Parameter bounds, specified as a numeric matrix with two columns. The first column contains the
lower bounds and the second column contains the upper bounds. The number of rows must be equal
to the number of parameters in params.

If a parameter has a nonzero value, the default bounds are ±10% of the value. If the parameter value
is zero, the default bounds are [0 1].
Example: [0.5 5]
Data Types: double

Doses — Doses to use during simulations
ScheduleDose object | RepeatDose object | vector of dose objects

Doses to use during model simulations, specified as a ScheduleDose or RepeatDose object or a
vector of dose objects.

Variants — Variants to apply before simulations
variant object | vector of variant objects

Variants to apply before model simulations, specified as a variant object or vector of variant objects.

When you specify multiple variants with duplicate specifications for a property's value, the last
occurrence for the property value in the array of variants is used during simulation.

1 Functions

1-48

NumberSamples — Number of samples to compute elementary effects
1000 (default) | positive integer

Number of samples to compute elementary effects, specified as a positive integer. The function
requires (number of input params + 1) * NumberSamples model simulations to compute the
elementary effects.
Data Types: double

PointSelection — Method to select sample points to compute elementary effects
"chain" (default) | "radial"

Method to select sample points to compute elementary effects, specified as "chain" or "radial".
The "chain" point selection uses the Morris method [1]. The "radial" point selection uses the
Sohier method [2]. For details, see “Elementary Effects for Global Sensitivity Analysis” on page 1-53.
Data Types: char | string

GridLevel — Discretization level of parameter domain
10 (default) | positive even integer

Discretization level of the parameter domain, specified as a positive even integer. This parameter
defines a grid of equidistant points in the parameter domain, where each dimension is discretized
using Gridlevel+1 points. The following figure shows an example of a grid for parameters p1 and
p2 within given parameter bounds.

 sbioelementaryeffects

1-49

For details, see “Elementary Effects for Global Sensitivity Analysis” on page 1-53.
Data Types: double

GridDelta — Step size to compute elementary effects
GridLevel/2 (default) | positive integer

Step size for computing elementary effects, specified as a positive integer between 1 and GridLevel.
The step size is measured in terms of grid points between neighboring points. The following figure
shows examples of different grid delta values.

1 Functions

1-50

For details, see “Elementary Effects for Global Sensitivity Analysis” on page 1-53.
Data Types: double

AbsoluteEffects — Flag to use absolute values of elementary effects
true (default) | false

Flag to use the absolute values of elementary effects, specified as true or false. By default, the
function uses the absolute values of elementary effects. Using nonabsolute values can average out
when calculating the mean. For details, see “Elementary Effects for Global Sensitivity Analysis” on
page 1-53.
Data Types: logical

SamplingMethod — Method to generate parameter samples
"lhs" (default) | "random"

Method to generate parameter samples, specified as one of the following:

• "lhs" — Use low-discrepancy Latin hypercube samples.
• "random" — Use uniformly distributed random samples.

The function selects generated parameter samples by sampling the grid points.

 sbioelementaryeffects

1-51

StopTime — Simulation stop time
nonnegative scalar

Simulation stop time, specified as a nonnegative scalar. If you specify neither StopTime nor
OutputTimes, the function uses the stop time from the active configuration set of the model. You
cannot specify both StopTime and OutputTimes.
Data Types: double

OutputTimes — Simulation output times
numeric vector

Simulation output times, specified as a numeric vector. The function computes the elementary effects
at these output time points. You cannot specify both StopTime and OutputTimes. By default, the
function uses the reported time points of the first model simulation.
Example: [0 1 2 3.5 4 5 5.5]
Data Types: double

UseParallel — Flag to run model simulations in parallel
false (default) | true

Flag to run model simulations in parallel, specified as true or false. When the value is true and
Parallel Computing Toolbox™ is available, the function runs simulations in parallel.
Data Types: logical

Accelerate — Flag to turn on model acceleration
true (default) | false

Flag to turn on model acceleration, specified as true or false.
Data Types: logical

InterpolationMethod — Method for interpolation of model simulations
"interp1q" (default) | character vector | string

Method for interpolation of model responses to a common set of output times, specified as a
character vector or string. The valid options follow.

• "interp1q" — Use the interp1q function.
• Use the interp1 function by specifying one of the following methods:

• "nearest"
• "linear"
• "spline"
• "pchip"
• "v5cubic"

• "zoh" — Specify zero-order hold.

Data Types: char | string

ShowWaitbar — Flag to show progress of model simulations
false (default) | true

1 Functions

1-52

Flag to show the progress of model simulations by displaying a wait bar, specified as true or false.
By default, no wait bar is displayed.
Data Types: logical

Output Arguments
elementaryEffectsResults — Results containing means and standard deviations of
elementary effects
SimBiology.gsa.ElementaryEffects object

Results containing means and standard deviations of elementary effects, returned as a
SimBiology.gsa.ElementaryEffects object. The object includes information such as the mean
and standard deviation of elementary effects as well as parameter samples and model simulations
used to compute the elementary effects.

More About
Elementary Effects for Global Sensitivity Analysis

sbioelementaryeffects lets you assess global sensitivity of a model response with respect to
variations in model parameters.

Consider a simple case with one sensitivity input parameter P. The elementary effect EE of P with
respect to a model response R is defined as follows.

EEP x = R x − R x + delta

Here, EEP(x) is the elementary effect of P . R(x) and R(x+delta) are model responses at a specific time
or the values of observables, evaluated for parameter values x and x+delta.

In the general case of k sensitivity input parameters, x is a vector of different parameter values, x =
[v1,v2,v3,…,vk]. The elementary effect of the ith parameter is computed as follows.

EEPi x = R v1, v2, v3, ..., vi, ..., vk − R v1, v2, v3, ..., vi + deltai, ..., vk
= R x − R x + ei × deltai

Here, ei is the ith canonical unit vector. Thus, calculating the elementary effects of all parameters
P1,P2,P3,…,Pk requires k+1 model simulations.

The function provides two methods ('PointSelection') to select a set of k+1 points required to
compute these elementary effects.

• radial — This method [2] uses k points, x ± e1 × delta1, x ± e2 × delta2, ..., x ± ek × deltak, that are
arranged around one center point x to compute elementary effects for each of k parameters.

 sbioelementaryeffects

1-53

• chain — This method [1] uses chains of points, instead of radially-arranged points around a
center points:

x + ∑
i = 1

n
ei × deltai, where n = 0, 1, ..., k

To get the mean and standard deviation of elementary effects, the function computes N
('NumberSamples') elementary effects per parameter, which requires N*(k+1) simulations. By
default, the function reports the mean and standard deviation of absolute elementary effects of each
parameter P1,P2,P3,…,Pk.

Mean of EEPi = mean EEPi
Standard deviation of EEPi = std EEPi

• The mean of elementary effects explains whether variations in parameter P have any effect on
response R on average.

• The standard deviation explains whether the sensitivity change is dependent on the location in the
parameter domain.

The function uses the absolute elementary effects by default because the elementary effects can
average out when calculating the mean otherwise. Optionally, you can set the 'AbsoluteEffects'
name-value argument to false to get the means and standard deviations of nonabsolute elementary
effects.

The function reports the points used to compute elementary effects in the ParameterSamples
property of the returned results object. Each block of k+1 rows in the table of ParameterSamples
corresponds to the k+1 radial or chained points used to compute the elementary effects. The
SimulationInfo.SimData property of the results object contains the corresponding model
simulations. The function samples the points from the parameter grid defined by 'GridLevel' and
'GridDelta'. The following figure illustrates a simple case with two sensitivity inputs (y1 and y2)
with 'NumberSamples' = 2 using the chain 'PointSelection' method.

1 Functions

1-54

References
[1] Morris, Max D. “Factorial Sampling Plans for Preliminary Computational Experiments.”

Technometrics 33, no. 2 (May 1991): 161–74.

[2] Sohier, Henri, Jean-Loup Farges, and Helene Piet-Lahanier. “Improvement of the Representativity
of the Morris Method for Air-Launch-to-Orbit Separation.” IFAC Proceedings Volumes 47, no.
3 (2014): 7954–59.

See Also
SimBiology.gsa.ElementaryEffects | sbiosobol | sbiompgsa | Observable

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2021b

 sbioelementaryeffects

1-55

sbioensembleplot
Show results of ensemble run using 2-D or 3-D plots

Syntax
sbioensembleplot(simdataObj)
sbioensembleplot(simdataObj, Names)
sbioensembleplot(simdataObj, Names, Time)

FH = sbioensembleplot(simdataObj, Names)
FH = sbioensembleplot(simdataObj, Names, Time)

Arguments

simdataObj An object that contains simulation data. You can generate a simdataObj
object using the function sbioensemblerun. All elements of simdataObj
must contain data for the same states in the same model.

Names Character vector, string, string vector, string array, or cell array of
character vectors. Names may include qualified names such as
'CompartmentName.SpeciesName' or
'ReactionName.ParameterName' to resolve ambiguities. Specifying {}
or empty string array (string.empty) for Names plots data for all states
contained in simdataObj.

Time A numeric scalar value. If the specified Time is not an element of the time
vectors in simdataObj, then the function resamples simdataObj as
necessary using linear interpolation.

FH Array of handles to figure windows.

Description
sbioensembleplot(simdataObj) shows a 3-D shaded plot of time-varying distribution of all
logged states in the SimData array simdataObj. The sbioensemblerun function plots an
approximate distribution created by fitting a normal distribution to the data at every time step.

sbioensembleplot(simdataObj, Names) plots the distribution for the data specified by Names.

sbioensembleplot(simdataObj, Names, Time) plots a 2-D histogram of the actual data of the
ensemble distribution of the states specified by Names at the particular time point Time.

FH = sbioensembleplot(simdataObj, Names) returns an array of handles FH, to the figure
window for the 3-D distribution plot.

FH = sbioensembleplot(simdataObj, Names, Time) returns an array of handles FH, to the
figure window for the 2-D histograms.

1 Functions

1-56

Examples
This example shows how to plot data from an ensemble run without interpolation.

1 The project file, radiodecay.sbproj, contains a model stored in a variable called m1. Load m1
into the MATLAB workspace.

sbioloadproject('radiodecay.sbproj','m1');
2 Change the solver of the active configuration set to be ssa. Also, adjust the LogDecimation

property on the SolverOptions property of the configuration set to reduce the size of the data
generated.

cs = getconfigset(m1, 'active');
set(cs, 'SolverType', 'ssa');
so = get(cs, 'SolverOptions');
set(so, 'LogDecimation', 10);

3 Perform an ensemble of 20 runs with no interpolation.

simdataObj = sbioensemblerun(m1, 20);
4 Create a 2-D distribution plot of the species 'z' at time = 1.0.

FH1 = sbioensembleplot(simdataObj, 'z', 1.0);
5 Create a 3-D shaded plot of both species.

FH2 = sbioensembleplot(simdataObj, {'x','z'});

See Also
sbioensemblerun | sbioensemblestats | sbiomodel

Introduced in R2006a

 sbioensembleplot

1-57

sbioensemblerun
Multiple stochastic ensemble runs of SimBiology model

Syntax
simdataObj = sbioensemblerun(modelObj, Numruns)
simdataObj = sbioensemblerun(modelObj, Numruns, Interpolation)
simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj)
simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj, Interpolation)
simdataObj = sbioensemblerun(modelObj, Numruns, variantObj)
simdataObj = sbioensemblerun(modelObj, Numruns, variantObj, Interpolation)
simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj, variantObj)
simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj, variantObj,
Interpolation)

Arguments

simdataObj An array of SimData objects containing simulation data generated by
sbioensemblerun. All elements of simdataObj contain data for the
same states in the same model.

modelObj Model object to be simulated.
Numruns Integer scalar representing the number of stochastic runs to make.
Interpolation Character vector or string denoting the interpolation scheme to be used if

data should be interpolated to get a consistent time vector. Valid values are
'linear' (linear interpolation), 'zoh' (zero-order hold), or 'off' (no
interpolation). Default is 'off'. If interpolation is on, the data is
interpolated to match the time vector with the smallest simulation stop
time.

configsetObj Specify the configuration set object to use in the ensemble simulation. For
more information about configuration sets, see Configset object.

variantObj Specify the variant object to apply to the model during the ensemble
simulation. For more information about variant objects, see Variant
object.

Description
simdataObj = sbioensemblerun(modelObj, Numruns) performs a stochastic ensemble run of
the SimBiology model object (modelObj), and returns the results in simdataObj, an array of
SimData objects. The active configset and the active variants are used during simulation and are
saved in the output, SimData object (simdataObj).

sbioensemblerun uses the settings in the active configset on the model object (modelObj) to
perform the repeated simulation runs. The SolverType property of the active configset must be set
to one of the stochastic solvers: 'ssa', 'expltau', or 'impltau'. sbioensemblerun generates
an error if the SolverType property is set to any of the deterministic (ODE) solvers.

1 Functions

1-58

simdataObj = sbioensemblerun(modelObj, Numruns, Interpolation) performs a
stochastic ensemble run of a model object (modelObj), and interpolates the results of the ensemble
run onto a common time vector using the interpolation scheme (Interpolation).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj) performs an
ensemble run of a model object (modelObj), using the specified configuration set (configsetObj).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj, Interpolation)
performs an ensemble run of a model object (modelObj), using the specified configuration set
(configsetObj), and interpolates the results of the ensemble run onto a common time vector using
the interpolation scheme (Interpolation).

simdataObj = sbioensemblerun(modelObj, Numruns, variantObj) performs an ensemble
run of a model object (modelObj), using the variant object or array of variant objects (variantObj).

simdataObj = sbioensemblerun(modelObj, Numruns, variantObj, Interpolation)
performs an ensemble run of a model object (modelObj), using the variant object or array of variant
objects (variantObj), and interpolates the results of the ensemble run onto a common time vector
using the interpolation scheme (Interpolation).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj, variantObj)
performs an ensemble run of a model object (modelObj), using the configuration set
(configsetObj), and the variant object or array of variant objects (variantObj). If the
configuration set object (configsetObj) is empty, the active configset on the model is used for
simulation. If the variant object (variantObj) is empty, then no variant (not even the active variants
in the model) is used for the simulation.

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj, variantObj,
Interpolation) performs an ensemble run of a model object (modelObj), using the configuration
set (configsetObj), and the variant object or array of variant objects (variantObj), and
interpolates the results of the ensemble run onto a common time vector using the interpolation
scheme (Interpolation).

Examples
This example shows how to perform an ensemble run and generate a 2-D distribution plot.

1 The project file, radiodecay.sbproj, contains a model stored in a variable called m1. Load m1
into the MATLAB workspace.

sbioloadproject('radiodecay.sbproj','m1');
2 Change the solver of the active configset to be ssa. Also, adjust the LogDecimation property on

the SolverOptions property of the configuration set.

cs = getconfigset(m1, 'active');
set(cs, 'SolverType', 'ssa');
so = get(cs, 'SolverOptions');
set(so, 'LogDecimation', 10);

Tip The LogDecimation property lets you define how often the simulation data is recorded as
output. If your model has high concentrations or amounts of species, or a long simulation time
(for example, 600s), you can record simulation data less often to manage the amount of data

 sbioensemblerun

1-59

generated. Be aware that by doing so you might miss some transitions if your model is very
dynamic. Try setting LogDecimation to 10 or more.

3 Perform an ensemble of 20 runs with linear interpolation to get a consistent time vector.

simdata = sbioensemblerun(m1, 20, 'linear');
4 Create a 2-D distribution plot of the species 'z' at a time = 1.0.

FH = sbioensembleplot(simdata, 'z', 1.0);

See Also
addconfigset | getconfigset | sbioensemblestats | sbioensembleplot |
setactiveconfigset | SimData object

Introduced in R2006a

1 Functions

1-60

sbioensemblestats
Get statistics from ensemble run data

Syntax
[t,m] = sbioensemblestats(simDataObj)
[t,m,v] = sbioensemblestats(simDataObj)
[t,m,v,n] = sbioensemblestats(simDataObj)
[t,m,v,n] = sbioensemblestats(simDataObj,names)
[t,m,v,n] = sbioensemblestats(simDataObj,names,interpolation)

Arguments
t Column vector of time points
m Matrix of mean values from the ensemble data. The number of rows in m is

the length of the time vector t and the number of columns is equal to the
number of species.

simDataObj A cell array of SimData objects, where each SimData object holds data for
a separate simulation run. All elements of simDataObj must contain data
for the same states in the same model. When the time vectors of the
elements of simDataObj are not identical, simDataObj is first resampled
onto a common time vector (see interpolation below).

v Matrix of variance obtained from the ensemble data. v has the same
dimensions as m.

n Cell array of character vectors for the quantity names whose mean and
variance are returned in m and v, respectively. The number of elements in n
is the same as the number of columns of m and v. The order of names in n
corresponds to the order of columns of m and v.

names Character vector, string, string vector, string array, or cell array of
character vectors. names may include qualified names such as
'CompartmentName.SpeciesName' or
'ReactionName.ParameterName' to resolve ambiguities. If you specify
empty {} or empty string array (string.empty) for names,
sbioensemblestats returns statistics on all time courses contained in
simDataObj.

interpolation Character vector or string denoting the interpolation method to use for
resampling of the data onto a common time vector with the smallest
simulation stop time. See resample for a list of interpolation methods.
Default is 'linear'.

Description
[t,m] = sbioensemblestats(simDataObj) computes the time-dependent ensemble mean m of
the ensemble data simDataObj. If the time vectors of the ensemble data are not identical, by default,
the function uses the 'linear' interpolation method to resample the data onto the common time
vector. See resample for a list of interpolation methods.

 sbioensemblestats

1-61

[t,m,v] = sbioensemblestats(simDataObj) also returns the variance v for the ensemble run
data simDataObj.

[t,m,v,n] = sbioensemblestats(simDataObj) also returns the names of quantities n
corresponding to the mean m and variance v columns. Each column of m or v describes the ensemble
mean or variance of a quantity (or state) as a function of time.

[t,m,v,n] = sbioensemblestats(simDataObj,names) computes statistics only for the
quantities specified by names.

[t,m,v,n] = sbioensemblestats(simDataObj,names,interpolation) uses the
interpolation method interpolation to resample the simulation data to have a consistent time
vector. If the time vectors of the ensemble data are not identical and if you do not specify any
interpolation method, the function uses the 'linear' interpolation method by default.

Examples
The project file, radiodecay.sbproj, contains a model stored in a variable called m1. Load m1 into
the MATLAB workspace.

1 Load a SimBiology model m1 from a SimBiology project file.

sbioloadproject('radiodecay.sbproj','m1');
2 Change the solver of the active configuration set to be ssa. Also, adjust the LogDecimation

property on the SolverOptions property of the configuration set.

cs = getconfigset(m1, 'active');
set(cs, 'SolverType', 'ssa');
so = get(cs, 'SolverOptions');
set(so, 'LogDecimation', 10);

3 Perform an ensemble of 20 runs with no interpolation.

simDataObj = sbioensemblerun(m1, 20);
4 Get ensemble statistics for all species using the default interpolation method.

[T,M,V] = sbioensemblestats(simDataObj);
5 Get ensemble statistics for a specific species using the default interpolation scheme.

[T2,M2,V2] = sbioensemblestats(simDataObj, {'z'});

See Also
sbioensemblerun | sbioensembleplot | sbiomodel

Introduced in R2006a

1 Functions

1-62

sbiofit
Perform nonlinear least-squares regression

Note Statistics and Machine Learning Toolbox™, Optimization Toolbox™, and Global Optimization
Toolbox are recommended for this function.

Syntax
fitResults = sbiofit(sm,grpData,ResponseMap,estiminfo)
fitResults = sbiofit(sm,grpData,ResponseMap,estiminfo,dosing)
fitResults = sbiofit(sm,grpData,ResponseMap,estiminfo,dosing,functionName)
fitResults = sbiofit(sm,grpData,ResponseMap,estiminfo,dosing,functionName,
options)
fitResults = sbiofit(sm,grpData,ResponseMap,estiminfo,dosing,functionName,
options,variants)
fitResults = sbiofit(_,Name,Value)

[fitResults,simdata] = sbiofit(_)

Description
fitResults = sbiofit(sm,grpData,ResponseMap,estiminfo) estimates parameters of a
SimBiology model sm using nonlinear least-squares regression.

grpData is a groupedData object specifying the data to fit. ResponseMap defines the mapping
between the model components and response data in grpData. estimatedInfo is an
EstimatedInfo object that defines the estimated parameters in the model sm. fitResults is a
OptimResults object or NLINResults object or a vector of these objects.

sbiofit uses the first available estimation function among the following: lsqnonlin, nlinfit, or
fminsearch.

By default, each group in grpData is fit separately, resulting in group-specific parameter estimates.
If the model contains active doses and variants, they are applied before the simulation.

fitResults = sbiofit(sm,grpData,ResponseMap,estiminfo,dosing) uses the dosing
information specified by a matrix of SimBiology dose objects dosing instead of using the active doses
of the model sm if there is any.

fitResults = sbiofit(sm,grpData,ResponseMap,estiminfo,dosing,functionName)
uses the estimation function specified by functionName. If the specified function is unavailable, a
warning is issued and the first available default function is used.

fitResults = sbiofit(sm,grpData,ResponseMap,estiminfo,dosing,functionName,
options) uses the additional options specified by options for the function functionName.

fitResults = sbiofit(sm,grpData,ResponseMap,estiminfo,dosing,functionName,
options,variants) applies variant objects specified as variants instead of using any active
variants of the model.

 sbiofit

1-63

fitResults = sbiofit(_,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

[fitResults,simdata] = sbiofit(_) also returns a vector of SimData objects simdata using
any of the input arguments in the previous syntaxes.

Note

• sbiofit unifies sbionlinfit and sbioparamestim estimation functions. Use sbiofit to
perform nonlinear least-squares regression.

• sbiofit simulates the model using a SimFunction object, which automatically accelerates
simulations by default. Hence it is not necessary to run sbioaccelerate before you call
sbiofit.

Examples

Fit One-Compartment Model to Individual PK Profile

Background

This example shows how to fit an individual's PK profile data to one-compartment model and estimate
pharmacokinetic parameters.

Suppose you have drug plasma concentration data from an individual and want to estimate the
volume of the central compartment and the clearance. Assume the drug concentration versus the
time profile follows the monoexponential decline Ct = C0e−ket, where Ct is the drug concentration at
time t, C0 is the initial concentration, and ke is the elimination rate constant that depends on the
clearance and volume of the central compartment ke = Cl/V.

The synthetic data in this example was generated using the following model, parameters, and dose:

• One-compartment model with bolus dosing and first-order elimination
• Volume of the central compartment (Central) = 1.70 liter
• Clearance parameter (Cl_Central) = 0.55 liter/hour
• Constant error model
• Bolus dose of 10 mg

Load Data and Visualize

The data is stored as a table with variables Time and Conc that represent the time course of the
plasma concentration of an individual after an intravenous bolus administration measured at 13
different time points. The variable units for Time and Conc are hour and milligram/liter, respectively.

load('data15.mat')
plot(data.Time,data.Conc,'b+')
xlabel('Time (hour)');
ylabel('Drug Concentration (milligram/liter)');

1 Functions

1-64

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for the fitting
function sbiofit for later use. A groupedData object also lets you set independent variable and
group variable names (if they exist). Set the units of the Time and Conc variables. The units are
optional and only required for the UnitConversion feature, which automatically converts matching
physical quantities to one consistent unit system.

gData = groupedData(data);
gData.Properties.VariableUnits = {'hour','milligram/liter'};
gData.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'Time' 'Conc'}
 VariableDescriptions: {}
 VariableUnits: {'hour' 'milligram/liter'}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: ''
 IndependentVariableName: 'Time'

 sbiofit

1-65

groupedData automatically set the name of the IndependentVariableName property to the Time
variable of the data.

Construct a One-Compartment Model

Use the built-in PK library to construct a one-compartment model with bolus dosing and first-order
elimination where the elimination rate depends on the clearance and volume of the central
compartment. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

For details on creating compartmental PK models using the SimBiology® built-in library, see “Create
Pharmacokinetic Models”.

Define Dosing

Define a single bolus dose of 10 milligram given at time = 0. For details on setting up different dosing
schedules, see “Doses in SimBiology Models”.

dose = sbiodose('dose');
dose.TargetName = 'Drug_Central';
dose.StartTime = 0;
dose.Amount = 10;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';

Map Response Data to the Corresponding Model Component

The data contains drug concentration data stored in the Conc variable. This data corresponds to the
Drug_Central species in the model. Therefore, map the data to Drug_Central as follows.

responseMap = {'Drug_Central = Conc'};

Specify Parameters to Estimate

The parameters to fit in this model are the volume of the central compartment (Central) and the
clearance rate (Cl_Central). In this case, specify log-transformation for these biological parameters
since they are constrained to be positive. The estimatedInfo object lets you specify parameter
transforms, initial values, and parameter bounds if needed.

paramsToEstimate = {'log(Central)','log(Cl_Central)'};
estimatedParams = estimatedInfo(paramsToEstimate,'InitialValue',[1 1],'Bounds',[1 5;0.5 2]);

Estimate Parameters

Now that you have defined one-compartment model, data to fit, mapped response data, parameters to
estimate, and dosing, use sbiofit to estimate parameters. The default estimation function that
sbiofit uses will change depending on which toolboxes are available. To see which function was
used during fitting, check the EstimationFunction property of the corresponding results object.

fitConst = sbiofit(model,gData,responseMap,estimatedParams,dose);

1 Functions

1-66

Display Estimated Parameters and Plot Results

Notice the parameter estimates were not far off from the true values (1.70 and 0.55) that were used
to generate the data. You may also try different error models to see if they could further improve the
parameter estimates.

fitConst.ParameterEstimates

ans=2×4 table
 Name Estimate StandardError Bounds
 ______________ ________ _____________ __________

 {'Central' } 1.6993 0.034821 1 5
 {'Cl_Central'} 0.53358 0.01968 0.5 2

s.Labels.XLabel = 'Time (hour)';
s.Labels.YLabel = 'Concentration (milligram/liter)';
plot(fitConst,'AxesStyle',s);

Use Different Error Models

Try three other supported error models (proportional, combination of constant and proportional error
models, and exponential).

 sbiofit

1-67

fitProp = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','proportional');
fitExp = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','exponential');
fitComb = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','combined');

Use Weights Instead of an Error Model

You can specify weights as a numeric matrix, where the number of columns corresponds to the
number of responses. Setting all weights to 1 is equivalent to the constant error model.

weightsNumeric = ones(size(gData.Conc));
fitWeightsNumeric = sbiofit(model,gData,responseMap,estimatedParams,dose,'Weights',weightsNumeric);

Alternatively, you can use a function handle that accepts a vector of predicted response values and
returns a vector of weights. In this example, use a function handle that is equivalent to the
proportional error model.

weightsFunction = @(y) 1./y.^2;
fitWeightsFunction = sbiofit(model,gData,responseMap,estimatedParams,dose,'Weights',weightsFunction);

Compare Information Criteria for Model Selection

Compare the loglikelihood, AIC, and BIC values of each model to see which error model best fits the
data. A larger likelihood value indicates the corresponding model fits the model better. For AIC and
BIC, the smaller values are better.

allResults = [fitConst,fitWeightsNumeric,fitWeightsFunction,fitProp,fitExp,fitComb];
errorModelNames = {'constant error model','equal weights','proportional weights', ...
 'proportional error model','exponential error model',...
 'combined error model'};
LogLikelihood = [allResults.LogLikelihood]';
AIC = [allResults.AIC]';
BIC = [allResults.BIC]';
t = table(LogLikelihood,AIC,BIC);
t.Properties.RowNames = errorModelNames;
t

t=6×3 table
 LogLikelihood AIC BIC
 _____________ _______ _______

 constant error model 3.9866 -3.9732 -2.8433
 equal weights 3.9866 -3.9732 -2.8433
 proportional weights -3.8472 11.694 12.824
 proportional error model -3.8257 11.651 12.781
 exponential error model 1.1984 1.6032 2.7331
 combined error model 3.9163 -3.8326 -2.7027

Based on the information criteria, the constant error model (or equal weights) fits the data best since
it has the largest loglikelihood value and the smallest AIC and BIC.

Display Estimated Parameter Values

Show the estimated parameter values of each model.

1 Functions

1-68

Estimated_Central = zeros(6,1);
Estimated_Cl_Central = zeros(6,1);
t2 = table(Estimated_Central,Estimated_Cl_Central);
t2.Properties.RowNames = errorModelNames;
for i = 1:height(t2)
 t2{i,1} = allResults(i).ParameterEstimates.Estimate(1);
 t2{i,2} = allResults(i).ParameterEstimates.Estimate(2);
end
t2

t2=6×2 table
 Estimated_Central Estimated_Cl_Central
 _________________ ____________________

 constant error model 1.6993 0.53358
 equal weights 1.6993 0.53358
 proportional weights 1.9045 0.51734
 proportional error model 1.8777 0.51147
 exponential error model 1.7872 0.51701
 combined error model 1.7008 0.53271

Conclusion

This example showed how to estimate PK parameters, namely the volume of the central compartment
and clearance parameter of an individual, by fitting the PK profile data to one-compartment model.
You compared the information criteria of each model and estimated parameter values of different
error models to see which model best explained the data. Final fitted results suggested both the
constant and combined error models provided the closest estimates to the parameter values used to
generate the data. However, the constant error model is a better model as indicated by the
loglikelihood, AIC, and BIC information criteria.

Fit Two-Compartment Model to PK Profiles of Multiple Individuals

Suppose you have drug plasma concentration data from three individuals that you want to use to
estimate corresponding pharmacokinetic parameters, namely the volume of central and peripheral
compartment (Central, Peripheral), the clearance rate (Cl_Central), and intercompartmental
clearance (Q12). Assume the drug concentration versus the time profile follows the biexponential
decline Ct = Ae−at + Be−bt, where Ct is the drug concentration at time t, and a and b are slopes for
corresponding exponential declines.

The synthetic data set contains drug plasma concentration data measured in both central and
peripheral compartments. The data was generated using a two-compartment model with an infusion
dose and first-order elimination. These parameters were used for each individual.

 Central Peripheral Q12 Cl_Central
Individual 1 1.90 0.68 0.24 0.57
Individual 2 2.10 6.05 0.36 0.95
Individual 3 1.70 4.21 0.46 0.95

The data is stored as a table with variables ID, Time, CentralConc, and PeripheralConc. It
represents the time course of plasma concentrations measured at eight different time points for both
central and peripheral compartments after an infusion dose.

 sbiofit

1-69

load('data10_32R.mat')

Convert the data set to a groupedData object which is the required data format for the fitting
function sbiofit for later use. A groupedData object also lets you set independent variable and
group variable names (if they exist). Set the units of the ID, Time, CentralConc, and
PeripheralConc variables. The units are optional and only required for the UnitConversion
feature, which automatically converts matching physical quantities to one consistent unit system.

gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
gData.Properties

ans =

 struct with fields:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'ID' 'Time' 'CentralConc' 'PeripheralConc'}
 VariableDescriptions: {}
 VariableUnits: {1x4 cell}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'Time'

Create a trellis plot that shows the PK profiles of three individuals.

sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},...
 'Marker','+','LineStyle','none');

1 Functions

1-70

Use the built-in PK library to construct a two-compartment model with infusion dosing and first-order
elimination where the elimination rate depends on the clearance and volume of the central
compartment. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg
at a rate of 50 mg/hour. For details on setting up different dosing strategies, see “Doses in SimBiology
Models”.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';

 sbiofit

1-71

The data contains measured plasma concentrations in the central and peripheral compartments. Map
these variables to the appropriate model species, which are Drug_Central and Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

The parameters to estimate in this model are the volumes of central and peripheral compartments
(Central and Peripheral), intercompartmental clearance Q12, and clearance rate Cl_Central. In
this case, specify log-transform for Central and Peripheral since they are constrained to be
positive. The estimatedInfo object lets you specify parameter transforms, initial values, and
parameter bounds (optional).

paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Fit the model to all of the data pooled together, that is, estimate one set of parameters for all
individuals. The default estimation method that sbiofit uses will change depending on which
toolboxes are available. To see which estimation function sbiofit used for the fitting, check the
EstimationFunction property of the corresponding results object.

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true)

pooledFit =

 OptimResults with properties:

 ExitFlag: 3
 Output: [1x1 struct]
 GroupName: []
 Beta: [4x3 table]
 ParameterEstimates: [4x3 table]
 J: [24x4x2 double]
 COVB: [4x4 double]
 CovarianceMatrix: [4x4 double]
 R: [24x2 double]
 MSE: 6.6220
 SSE: 291.3688
 Weights: []
 LogLikelihood: -111.3904
 AIC: 230.7808
 BIC: 238.2656
 DFE: 44
 DependentFiles: {1x3 cell}
 EstimatedParameterNames: {'Central' 'Peripheral' 'Q12' 'Cl_Central'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'lsqnonlin'

Plot the fitted results versus the original data. Although three separate plots were generated, the
data was fitted using the same set of parameters (that is, all three individuals had the same fitted
line).

plot(pooledFit);

1 Functions

1-72

Estimate one set of parameters for each individual and see if there is any improvement in the
parameter estimates. In this example, since there are three individuals, three sets of parameters are
estimated.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Plot the fitted results versus the original data. Each individual was fitted differently (that is, each
fitted line is unique to each individual) and each line appeared to fit well to individual data.

plot(unpooledFit);

 sbiofit

1-73

Display the fitted results of the first individual. The MSE was lower than that of the pooled fit. This is
also true for the other two individuals.

unpooledFit(1)

ans =

 OptimResults with properties:

 ExitFlag: 3
 Output: [1x1 struct]
 GroupName: 1
 Beta: [4x3 table]
 ParameterEstimates: [4x3 table]
 J: [8x4x2 double]
 COVB: [4x4 double]
 CovarianceMatrix: [4x4 double]
 R: [8x2 double]
 MSE: 2.1380
 SSE: 25.6559
 Weights: []
 LogLikelihood: -26.4805
 AIC: 60.9610
 BIC: 64.0514

1 Functions

1-74

 DFE: 12
 DependentFiles: {1x3 cell}
 EstimatedParameterNames: {'Central' 'Peripheral' 'Q12' 'Cl_Central'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'lsqnonlin'

Generate a plot of the residuals over time to compare the pooled and unpooled fit results. The figure
indicates unpooled fit residuals are smaller than those of pooled fit as expected. In addition to
comparing residuals, other rigorous criteria can be used to compare the fitted results.

t = [gData.Time;gData.Time];
res_pooled = vertcat(pooledFit.R);
res_pooled = res_pooled(:);
res_unpooled = vertcat(unpooledFit.R);
res_unpooled = res_unpooled(:);
plot(t,res_pooled,'o','MarkerFaceColor','w','markerEdgeColor','b')
hold on
plot(t,res_unpooled,'o','MarkerFaceColor','b','markerEdgeColor','b')
refl = refline(0,0); % A reference line representing a zero residual
title('Residuals versus Time');
xlabel('Time');
ylabel('Residuals');
legend({'Pooled','Unpooled'});

 sbiofit

1-75

This example showed how to perform pooled and unpooled estimations using sbiofit. As illustrated,
the unpooled fit accounts for variations due to the specific subjects in the study, and, in this case, the
model fits better to the data. However, the pooled fit returns population-wide parameters. If you want
to estimate population-wide parameters while considering individual variations, use sbiofitmixed.

Estimate Category-Specific PK Parameters for Multiple Individuals

This example shows how to estimate category-specific (such as young versus old, male versus
female), individual-specific, and population-wide parameters using PK profile data from multiple
individuals.

Background

Suppose you have drug plasma concentration data from 30 individuals and want to estimate
pharmacokinetic parameters, namely the volumes of central and peripheral compartment, the
clearance, and intercompartmental clearance. Assume the drug concentration versus the time profile
follows the biexponential decline Ct = Ae−at + Be−bt, where Ct is the drug concentration at time t,
and a and b are slopes for corresponding exponential declines.

Load Data

This synthetic data contains the time course of plasma concentrations of 30 individuals after a bolus
dose (100 mg) measured at different times for both central and peripheral compartments. It also
contains categorical variables, namely Sex and Age.

clear
load('sd5_302RAgeSex.mat')

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for the fitting
function sbiofit. A groupedData object also allows you set independent variable and group
variable names (if they exist). Set the units of the ID, Time, CentralConc, PeripheralConc, Age,
and Sex variables. The units are optional and only required for the UnitConversion feature, which
automatically converts matching physical quantities to one consistent unit system.

gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter','',''};
gData.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x6 cell}
 VariableDescriptions: {}
 VariableUnits: {1x6 cell}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'Time'

1 Functions

1-76

The IndependentVariableName and GroupVariableName properties have been automatically set
to the Time and ID variables of the data.

Visualize Data

Display the response data for each individual.

t = sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},...
 'Marker','+','LineStyle','none');
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

Set Up a Two-Compartment Model

Use the built-in PK library to construct a two-compartment model with infusion dosing and first-order
elimination where the elimination rate depends on the clearance and volume of the central
compartment. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

 sbiofit

1-77

For details on creating compartmental PK models using the SimBiology® built-in library, see “Create
Pharmacokinetic Models”.

Define Dosing

Assume every individual receives a bolus dose of 100 mg at time = 0. For details on setting up
different dosing strategies, see “Doses in SimBiology Models”.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';

Map the Response Data to Corresponding Model Components

The data contains measured plasma concentration in the central and peripheral compartments. Map
these variables to the appropriate model components, which are Drug_Central and
Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

Specify Parameters to Estimate

Specify the volumes of central and peripheral compartments Central and Peripheral,
intercompartmental clearance Q12, and clearance Cl_Central as parameters to estimate. The
estimatedInfo object lets you optionally specify parameter transforms, initial values, and
parameter bounds. Since both Central and Peripheral are constrained to be positive, specify a
log-transform for each parameter.

paramsToEstimate = {'log(Central)', 'log(Peripheral)', 'Q12', 'Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Estimate Individual-Specific Parameters

Estimate one set of parameters for each individual by setting the 'Pooled' name-value pair
argument to false.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Display Results

Plot the fitted results versus the original data for each individual (group).

plot(unpooledFit);

1 Functions

1-78

For an unpooled fit, sbiofit always returns one results object for each individual.

Examine Parameter Estimates for Category Dependencies

Explore the unpooled estimates to see if there is any category-specific parameters, that is, if some
parameters are related to one or more categories. If there are any category dependencies, it might be
possible to reduce the number of degrees of freedom by estimating just category-specific values for
those parameters.

First extract the ID and category values for each ID

catParamValues = unique(gData(:,{'ID','Sex','Age'}));

Add variables to the table containing each parameter's estimate.

allParamValues = vertcat(unpooledFit.ParameterEstimates);
catParamValues.Central = allParamValues.Estimate(strcmp(allParamValues.Name, 'Central'));
catParamValues.Peripheral = allParamValues.Estimate(strcmp(allParamValues.Name, 'Peripheral'));
catParamValues.Q12 = allParamValues.Estimate(strcmp(allParamValues.Name, 'Q12'));
catParamValues.Cl_Central = allParamValues.Estimate(strcmp(allParamValues.Name, 'Cl_Central'));

Plot estimates of each parameter for each category. gscatter requires Statistics and Machine
Learning Toolbox™. If you do not have it, use other alternative plotting functions such as plot.

h = figure;
ylabels = {'Central','Peripheral','Cl_Central','Q12'};

 sbiofit

1-79

plotNumber = 1;
for i = 1:4
 thisParam = estimatedParam(i).Name;

 % Plot for Sex category
 subplot(4,2,plotNumber);
 plotNumber = plotNumber + 1;
 gscatter(double(catParamValues.Sex), catParamValues.(thisParam), catParamValues.Sex);
 ax = gca;
 ax.XTick = [];
 ylabel(ylabels(i));
 legend('Location','bestoutside')
 % Plot for Age category
 subplot(4,2,plotNumber);
 plotNumber = plotNumber + 1;
 gscatter(double(catParamValues.Age), catParamValues.(thisParam), catParamValues.Age);
 ax = gca;
 ax.XTick = [];
 ylabel(ylabels(i));
 legend('Location','bestoutside')
end
% Resize the figure.
h.Position(:) = [100 100 1280 800];

Based on the plot, it seems that young individuals tend to have higher volumes of central and
peripheral compartments (Central, Peripheral) than old individuals (that is, the volumes seem to

1 Functions

1-80

be age-specific). In addition, males tend to have higher clearance rates (Cl_Central) than females
but the opposite for the Q12 parameter (that is, the clearance and Q12 seem to be sex-specific).

Estimate Category-Specific Parameters

Use the 'CategoryVariableName' property of the estimatedInfo object to specify which
category to use during fitting. Use 'Sex' as the group to fit for the clearance Cl_Central and Q12
parameters. Use 'Age' as the group to fit for the Central and Peripheral parameters.

estimatedParam(1).CategoryVariableName = 'Age';
estimatedParam(2).CategoryVariableName = 'Age';
estimatedParam(3).CategoryVariableName = 'Sex';
estimatedParam(4).CategoryVariableName = 'Sex';
categoryFit = sbiofit(model,gData,responseMap,estimatedParam,dose)

categoryFit =
 OptimResults with properties:

 ExitFlag: 3
 Output: [1x1 struct]
 GroupName: []
 Beta: [8x5 table]
 ParameterEstimates: [120x6 table]
 J: [240x8x2 double]
 COVB: [8x8 double]
 CovarianceMatrix: [8x8 double]
 R: [240x2 double]
 MSE: 0.4362
 SSE: 205.8690
 Weights: []
 LogLikelihood: -477.9195
 AIC: 971.8390
 BIC: 1.0052e+03
 DFE: 472
 DependentFiles: {1x3 cell}
 EstimatedParameterNames: {'Central' 'Peripheral' 'Q12' 'Cl_Central'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'lsqnonlin'

When fitting by category (or group), sbiofit always returns one results object, not one for each
category level. This is because both male and female individuals are considered to be part of the
same optimization using the same error model and error parameters, similarly for the young and old
individuals.

Plot Results

Plot the category-specific estimated results.

plot(categoryFit);

 sbiofit

1-81

For the Cl_Central and Q12 parameters, all males had the same estimates, and similarly for the
females. For the Central and Peripheral parameters, all young individuals had the same
estimates, and similarly for the old individuals.

Estimate Population-Wide Parameters

To better compare the results, fit the model to all of the data pooled together, that is, estimate one set
of parameters for all individuals by setting the 'Pooled' name-value pair argument to true. The
warning message tells you that this option will ignore any category-specific information (if they exist).

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Warning: CategoryVariableName property of the estimatedInfo object is ignored when using the 'Pooled' option.

Plot Results

Plot the fitted results versus the original data. Although a separate plot was generated for each
individual, the data was fitted using the same set of parameters (that is, all individuals had the same
fitted line).

plot(pooledFit);

1 Functions

1-82

Compare Residuals

Compare residuals of CentralConc and PeripheralConc responses for each fit.

t = gData.Time;
allResid(:,:,1) = pooledFit.R;
allResid(:,:,2) = categoryFit.R;
allResid(:,:,3) = vertcat(unpooledFit.R);

h = figure;
responseList = {'CentralConc', 'PeripheralConc'};
for i = 1:2
 subplot(2,1,i);
 oneResid = squeeze(allResid(:,i,:));
 plot(t,oneResid,'o');
 refline(0,0); % A reference line representing a zero residual
 title(sprintf('Residuals (%s)', responseList{i}));
 xlabel('Time');
 ylabel('Residuals');
 legend({'Pooled','Category-Specific','Unpooled'});
end
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 sbiofit

1-83

As shown in the plot, the unpooled fit produced the best fit to the data as it fit the data to each
individual. This was expected since it used the most number of degrees of freedom. The category-fit
reduced the number of degrees of freedom by fitting the data to two categories (sex and age). As a
result, the residuals were larger than the unpooled fit, but still smaller than the population-fit, which
estimated just one set of parameters for all individuals. The category-fit might be a good compromise
between the unpooled and pooled fitting provided that any hierarchical model exists within your data.

Estimate Yeast G Protein Model Parameter

This example uses the yeast heterotrimeric G protein model and experimental data reported by [1].
For details about the model, see the Background section in “Parameter Scanning, Parameter
Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle”.

Load the G protein model.

sbioloadproject gprotein

Store the experimental data containing the time course for the fraction of active G protein.

time = [0 10 30 60 110 210 300 450 600]';
GaFracExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';

Create a groupedData object based on the experimental data.

1 Functions

1-84

tbl = table(time,GaFracExpt);
grpData = groupedData(tbl);

Map the appropriate model component to the experimental data. In other words, indicate which
species in the model corresponds to which response variable in the data. In this example, map the
model parameter GaFrac to the experimental data variable GaFracExpt from grpData.

responseMap = 'GaFrac = GaFracExpt';

Use an estimatedInfo object to define the model parameter kGd as a parameter to be estimated.

estimatedParam = estimatedInfo('kGd');

Perform the parameter estimation.

fitResult = sbiofit(m1,grpData,responseMap,estimatedParam);

View the estimated parameter value of kGd.

fitResult.ParameterEstimates

ans=1×3 table
 Name Estimate StandardError
 _______ ________ _____________

 {'kGd'} 0.11307 3.4439e-05

Suppose you want to plot the model simulation results using the estimated parameter value. You can
either rerun the sbiofit function and specify to return the optional second output argument, which
contains simulation results, or use the fitted method to retrieve the results without rerunning
sbiofit.

[yfit,paramEstim] = fitted(fitResult);

Plot the simulation results.

sbioplot(yfit);

 sbiofit

1-85

Estimate Time Lag and Duration of a Dose

This example shows how to estimate the time lag before a bolus dose was administered and the
duration of the dose using a one-compartment model.

Load a sample data set.

load lagDurationData.mat

Plot the data.

plot(data.Time,data.Conc,'x')
xlabel('Time (hour)')
ylabel('Conc (milligram/liter)')

1 Functions

1-86

Convert to groupedData.

gData = groupedData(data);
gData.Properties.VariableUnits = {'hour','milligram/liter'};

Create a one-compartment model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Add two parameters that represent the time lag and duration of a dose. The lag parameter specifies
the time lag before the dose is administered. The duration parameter specifies the length of time it
takes to administer a dose.

lagP = addparameter(model,'lagP');
lagP.ValueUnits = 'hour';
durP = addparameter(model,'durP');
durP.ValueUnits = 'hour';

Create a dose object. Set the LagParameterName and DurationParameterName properties of the
dose to the names of the lag and duration parameters, respectively. Set the dose amount to 10
milligram which was the amount used to generate the data.

 sbiofit

1-87

dose = sbiodose('dose');
dose.TargetName = 'Drug_Central';
dose.StartTime = 0;
dose.Amount = 10;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.LagParameterName = 'lagP';
dose.DurationParameterName = 'durP';

Map the model species to the corresponding data.

responseMap = {'Drug_Central = Conc'};

Specify the lag and duration parameters as parameters to estimate. Log-transform the parameters.
Initialize them to 2 and set the upper bound and lower bound.

paramsToEstimate = {'log(lagP)','log(durP)'};
estimatedParams = estimatedInfo(paramsToEstimate,'InitialValue',2,'Bounds',[1 5]);

Perform parameter estimation.

fitResults = sbiofit(model,gData,responseMap,estimatedParams,dose,'fminsearch')

fitResults =
 OptimResults with properties:

 ExitFlag: 1
 Output: [1x1 struct]
 GroupName: One group
 Beta: [2x4 table]
 ParameterEstimates: [2x4 table]
 J: [11x2 double]
 COVB: [2x2 double]
 CovarianceMatrix: [2x2 double]
 R: [11x1 double]
 MSE: 0.0024
 SSE: 0.0213
 Weights: []
 LogLikelihood: 18.7511
 AIC: -33.5023
 BIC: -32.7065
 DFE: 9
 DependentFiles: {1x2 cell}
 EstimatedParameterNames: {'lagP' 'durP'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'fminsearch'

Display the result.

fitResults.ParameterEstimates

ans=2×4 table
 Name Estimate StandardError Bounds
 ________ ________ _____________ ______

 {'lagP'} 1.986 0.0051568 1 5
 {'durP'} 1.527 0.012956 1 5

1 Functions

1-88

plot(fitResults)

Input Arguments
sm — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object. The active configset object of the
model contains solver settings for simulation. Any active doses and variants are applied to the model
during simulation unless specified otherwise using the dosing and variants input arguments,
respectively.

grpData — Data to fit
groupedData object

Data to fit, specified as a groupedData object.

The name of the time variable must be defined in the IndependentVariableName property of
grpData. For instance, if the time variable name is 'TIME', then specify it as follows.

grpData.Properties.IndependentVariableName = 'TIME';

 sbiofit

1-89

If the data contains more than one group of measurements, the grouping variable name must be
defined in the GroupVariableName property of grpData. For example, if the grouping variable
name is 'GROUP', then specify it as follows.

grpData.Properties.GroupVariableName = 'GROUP';

A group usually refers to a set of measurements that represent a single time course, often
corresponding to a particular individual, or experimental condition.

Note sbiofit uses the categorical function to identify groups. If any group values are converted
to the same value by categorical, then those observations are treated as belonging to the same
group. For instance, if some observations have no group information (that is, an empty character
vector ''), then categorical converts empty character vectors to <undefined>, and these
observations are treated as one group.

ResponseMap — Mapping information of model components to grpData
character vector | string | string vector | cell array of character vectors

Mapping information of model components to grpData, specified as a character vector, string, string
vector, or cell array of character vectors.

Each character vector or string is an equation-like expression, similar to assignment rules in
SimBiology. It contains the name (or qualified name) of a quantity (species, compartment, or
parameter) or an observable object in the model sm, followed by the character '=' and the name of
a variable in grpData. For clarity, white spaces are allowed between names and '='.

For example, if you have the concentration data 'CONC' in grpData for a species 'Drug_Central',
you can specify it as follows.

ResponseMap = 'Drug_Central = CONC';

To name a species unambiguously, use the qualified name, which includes the name of the
compartment. To name a reaction-scoped parameter, use the reaction name to qualify the parameter.

If the model component name or grpData variable name is not a valid MATLAB variable name,
surround it by square brackets, such as:

ResponseMap = '[Central 1].Drug = [Central 1 Conc]';

If a variable name itself contains square brackets, you cannot use it in the expression to define the
mapping information.

An error is issued if any (qualified) name matches two components of the same type. However, you
can use a (qualified) name that matches two components of different types, and the function first
finds the species with the given name, followed by compartments and then parameters.

estiminfo — Estimated parameters
estimatedInfo object | vector of estimatedInfo objects

Estimated parameters, specified as an EstimatedInfo object or vector of estimatedInfo
objects that defines the estimated parameters in the model sm, and other optional information such
as their initial estimates, transformations, bound constraints, and categories. Supported transforms
are log, logit, and probit. For details, see “Parameter Transformations”.

1 Functions

1-90

You can specify bounds for all estimation methods. The lower bound must be less than the upper
bound. For details, see “boundValues” on page 2-0 .

When using scattersearch, you must specify finite transformed bounds for each estimated
parameter.

When using fminsearch, nlinfit, or fminunc with bounds, the objective function returns Inf if
bounds are exceeded. When you turn on options such as FunValCheck, the optimization might error
if bounds are exceeded during estimation. If using nlinfit, it might report warnings about the
Jacobian being ill-conditioned or not being able to estimate if the final result is too close to the
bounds.

If you do not specify Pooled name-value pair argument, sbiofit uses CategoryVariableName
property of estiminfo to decide if parameters must be estimated for each individual, group,
category, or all individuals as a whole. Use the Pooled option to override any
CategoryVariableName values. For details about CategoryVariableName property, see
EstimatedInfo object.

Note sbiofit uses the categorical function to identify groups or categories. If any group values
are converted to the same value by categorical, then those observations are treated as belonging
to the same group. For instance, if some observations have no group information (that is, an empty
character vector '' as a group value), then categorical converts empty character vectors to
<undefined>, and these observations are treated as one group.

dosing — Dosing information
[] | {} | 2-D matrix of dose objects | cell vector of dose objects

Dosing information, specified as an empty array ([] or {}), 2-D matrix or cell vector of dose objects
(ScheduleDose object or RepeatDose object).

If you omit the dosing input, the function applies the active doses of the model if there are any.

If you specify the input as empty [] or {}, no doses are applied during simulation, even if the model
has active doses.

For a matrix of dose objects, it must have a single row or one row per group in the input data. If it has
a single row, the same doses are applied to all groups during simulation. If it has multiple rows, each
row is applied to a separate group, in the same order as the groups appear in the input data. Multiple
columns are allowed so that you can apply multiple dose objects to each group.

Note As of R2021b, doses in the columns are no longer required to have the same configuration. If
you previously created default (dummy) doses to fill in the columns, these default doses have no
effect and indicate no dosing.

For a cell vector of doses, it must have one element or one element per group in the input data. Each
element must be [] or a vector of doses. Each element of the cell is applied to a separate group, in
the same order as the groups appear in the input data.

In addition to manually constructing dose objects using sbiodose, if the input groupedData object
has dosing information, you can use the createDoses method to construct doses.

 sbiofit

1-91

functionName — Estimation function name
character vector | string

Estimation function name, specified as a character vector or string. Choices are as follows.

• "fminsearch"
• "nlinfit" (Statistics and Machine Learning Toolbox is required.)
• "fminunc" (Optimization Toolbox is required.)
• "fmincon" (Optimization Toolbox is required.)
• "lsqcurvefit" (Optimization Toolbox is required.)
• "lsqnonlin" (Optimization Toolbox is required.)
• "patternsearch" (Global Optimization Toolbox is required.)
• "ga" (Global Optimization Toolbox is required.)
• "particleswarm" (Global Optimization Toolbox is required.)
• "scattersearch" on page 1-100

By default, sbiofit uses the first available estimation function among the following: lsqnonlin,
nlinfit, or fminsearch. The same priority applies to the default local solver choice for
scattersearch.

For the summary of supported methods and fitting options, see “Supported Methods for Parameter
Estimation in SimBiology”.

options — Options specific to estimation function
struct | optimoptions object

Options specific to the estimation function, specified as a struct or optimoptions object.

• statset struct for nlinfit
• optimset struct for fminsearch
• optimoptions object for lsqcurvefit, lsqnonlin, fmincon, fminunc, particleswarm, ga,

and patternsearch
• struct for scattersearch

See “Default Options for Estimation Algorithms” on page 1-98 for more details and default options
associated with each estimation function.

variants — Variants
[] | {} | vector of variant objects

Variants, specified as an empty array ([] or {}) or vector of variant objects.

If you

• Omit this input argument, the function applies the active variants of the model if there are any.
• Specify this input as empty, no variants are used even if the model has active variants.
• Specify this input as a vector of variants, the function applies the specified variants to all

simulations, and the model active variants are not used.

1 Functions

1-92

• Specify this input as a vector of variants and also specify the Variants name-value argument, the
function applies the variants specified in this input argument before applying the ones specified in
the name-value argument.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ErrorModel','constant','UseParallel',true specifies a constant error model and
to run simulations in parallel during parameter estimation.

ErrorModel — Error model
'constant' (default) | character vector | string | string vector | cell array of character vector |
categorical vector | table

Error models used for estimation, specified as a character vector, string, string vector, cell array of
character vectors, categorical vector, or table.

If it is a table, it must contain a single variable that is a column vector of error model names. The
names can be a cell array of character vectors, string vector, or a vector of categorical variables. If
the table has more than one row, then the RowNames property must match the response variable
names specified in the right hand side of ResponseMap. If the table does not use the RowNames
property, the nth error is associated with the nth response.

If you specify only one error model, then sbiofit estimates one set of error parameters for all
responses.

If you specify multiple error models using a categorical vector, string vector, or cell array of character
vectors, the length of the vector or cell array must match the number of responses in ResponseMap.

You can specify multiple error models only if you are using these methods: lsqnonlin,
lsqcurvefit, fmincon, fminunc, fminsearch, patternsearch, ga, and particleswarm.

Four built-in error models are available. Each model defines the error using a standard mean-zero
and unit-variance (Gaussian) variable e, simulation results f, and one or two parameters a and b.

• "constant": y = f + ae
• "proportional": y = f + b f e
• "combined": y = f + (a + b f)e
• "exponential": y = f ∗ exp(ae)

Note

• If you specify an error model, you cannot specify weights except for the constant error model.
• If you use a proportional or combined error model during data fitting, avoid specifying data points

at times where the solution (simulation result) is zero or the steady state is zero. Otherwise, you
can run into division-by-zero problems. It is recommended that you remove those data points from
the data set. For details on the error parameter estimation functions, see “Maximum Likelihood
Estimation” on page 1-96.

 sbiofit

1-93

Weights — Weights used for fitting
[] (default) | matrix | function handle

Weights used for fitting, specified as an empty array [], matrix of real positive weights where the
number of columns corresponds to the number of responses, or a function handle that accepts a
vector of predicted response values and returns a vector of real positive weights.

If you specify an error model, you cannot use weights except for the constant error model. If neither
the ErrorModel or Weights is specified, by default, the software uses the constant error model with
equal weights.

Variants — Group-specific variants
[] | {} | 2-D matrix of variants | cell vector of variants

Group-specific variants, specified as an empty array ([] or {}), 2-D matrix or cell vector of variant
objects. These variants let you specify parameter values for specific groups during fitting. The
software applies these group-specific variants after active variants or the variants input argument.
If the value is empty ([] or {}), no group-specific variants are applied.

For a matrix of variant objects, the number of rows must be one or must match the number of groups
in the input data. The ith row of variant objects is applied to the simulation of the ith group. The
variants are applied in order from the first column to the last. If this matrix has only one row of
variants, they are applied to all simulations.

For a cell vector of variant objects, the number of cells must be one or must match the number of
groups in the input data. Each element must be [] or a vector of variants. If this cell vector has a
single cell containing a vector of variants, they are applied to all simulations. If the cell vector has
multiple cells, the variants in the ith cell are applied to the simulation of the ith group.

In addition to manually constructing variant objects using sbiovariant, if the input groupedData
object has variant information, you can use createVariants to construct variants.

Pooled — Fit option flag
false or 0 (default) | true or 1

Fit option flag to fit each individual or pool all individual data, specified as a numeric or logical 1
(true) or 0 (false).

When true, the software performs fitting for all individuals or groups simultaneously using the same
parameter estimates, and fitResults is a scalar results object.

When false, the software fits each group or individual separately using group- or individual-specific
parameters, and fitResults is a vector of results objects with one result for each group.

Note Use this option to override any CategoryVariableName values of estiminfo.

UseParallel — Flag for parallel simulations
false or 0 (default) | true or 1

Flag to enable parallelization, specified as a numeric or logical 1 (true) or 0 (false). If true and
Parallel Computing Toolbox is available, sbiofit supports several levels of parallelization, but only
one level is used at a time.

1 Functions

1-94

For an unpooled fit (Pooled = false) for multiple groups, each fit is run in parallel.

For a pooled fit (Pooled = true), parallelization happens at the solver level. In other words, solver
computations, such as objective function evaluations, are run in parallel.

For details, see “Multiple Parameter Estimations in Parallel” on page 1-104.

SensitivityAnalysis — Flag to use parameter sensitivities to determine gradients of the
objective function
false or 0 (default) | true or 1

Flag to use parameter sensitivities to determine gradients of the objective function, specified as a
numeric or logical 1 (true) or 0 (false). By default, it is true for fmincon, fminunc, lsqnonlin,
lsqcurvefit, and scattersearch methods. Otherwise, it is false.

If it is true, the software always uses the sundials solver, regardless of what you have selected as
the SolverType property in the Configset object.

The software uses the complex-step approximation method to calculate parameter sensitivities. Such
calculated sensitivities can be used to determine gradients of the objective function during parameter
estimation to improve fitting. The default behavior of sbiofit is to use such sensitivities to
determine gradients whenever the algorithm is gradient-based and if the SimBiology model supports
sensitivity analysis. For details about the model requirements and sensitivity analysis, see “Sensitivity
Analysis in SimBiology”.

ProgressPlot — Flag to show the progress of parameter estimation
false or 0 (default) | true or 1

Flag to show the progress of parameter estimation, specified as a numeric or logical 1 (true) or 0
(false). If true, a new figure opens containing plots.

Plots show the log-likelihood, termination criteria, and estimated parameters for each iteration. This
option is not supported for nlinfit.

If you are using the Optimization Toolbox functions (fminunc, fmincon, lsqcurvefit,
lsqnonlin), the figure also shows the First Order Optimality (Optimization Toolbox) plot.

For an unpooled fit, each line on the plots represents an individual. For a pooled fit, a single line
represents all individuals. The line becomes faded when the fit is complete. The plots also keep track
of the progress when you run sbiofit (for both pooled and unpooled fits) in parallel using remote
clusters. For details, see “Progress Plot”.

Output Arguments
fitResults — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, returned as a OptimResults object or NLINResults object or a vector of
these objects. Both results objects are subclasses of the LeastSquaresResults object.

If the function uses nlinfit, then fitResults is a NLINResults object. Otherwise,
fitResults is an OptimResults object.

For an unpooled fit, the function fits each group separately using group-specific parameters, and
fitResults is a vector of results objects with one results object for each group.

 sbiofit

1-95

For a pooled fit, the function performs fitting for all individuals or groups simultaneously using the
same parameter estimates, and fitResults is a scalar results object.

When the pooled option is not specified, and CategoryVariableName values of estimatedInfo
objects are all <none>, fitResults is a single results object. This is the same behavior as a pooled
fit.

When the pooled option is not specified, and CategoryVariableName values of estimatedInfo
objects are all <GroupVariableName>, fitResults is a vector of results objects. This is the same
behavior as an unpooled fit.

In all other cases, fitResults is a scalar object containing estimated parameter values for different
groups or categories specified by CategoryVariableName.

simdata — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects representing simulation results for each
group or individual.

If the 'Pooled' option is false, then each simulation uses group-specific parameter values. If true,
then all simulations use the same (population-wide) parameter values.

The states reported in simdata are the states that were included in the ResponseMap input
argument and any other states listed in the StatesToLog property of the runtime options
(RuntimeOptions) of the SimBiology model sm.

More About
Maximum Likelihood Estimation

SimBiology estimates parameters by the method of maximum likelihood. Rather than directly
maximizing the likelihood function, SimBiology constructs an equivalent minimization problem.
Whenever possible, the estimation is formulated as a weighted least squares (WLS) optimization that
minimizes the sum of the squares of weighted residuals. Otherwise, the estimation is formulated as
the minimization of the negative of the logarithm of the likelihood (NLL). The WLS formulation often
converges better than the NLL formulation, and SimBiology can take advantage of specialized WLS
algorithms, such as the Levenberg-Marquardt algorithm implemented in lsqnonlin and
lsqcurvefit. SimBiology uses WLS when there is a single error model that is constant,
proportional, or exponential. SimBiology uses NLL if you have a combined error model or a multiple-
error model, that is, a model having an error model for each response.

sbiofit supports different optimization methods, and passes in the formulated WLS or NLL
expression to the optimization method that minimizes it. For simplicity, each expression shown below
assumes only one error model and one response. If there are multiple responses, SimBiology takes
the sum of the expressions that correspond to error models of given responses.

 Expression that is being minimized
Weighted
Least
Squares
(WLS)

For the constant error model, ∑
i

N
yi− f i

2

1 Functions

1-96

 Expression that is being minimized

For the proportional error model, ∑
i

N yi− f i
2

f i
2/ fgm

2

For the exponential error model, ∑
i

N
lnyi− lnf i

2

For numeric weights, ∑
i

N yi− f i
2

wgm/wi

Negative
Log-
likelihood
(NLL)

For the combined error model and multiple-error model, ∑
i

N
yi− f i

2

2σi
2 +∑

i

N

ln 2πσi
2

The variables are defined as follows.

N Number of experimental observations
yi The ith experimental observation
f i Predicted value of the ith observation
σi Standard deviation of the ith observation.

• For the constant error model, σi = a
• For the proportional error model, σi = b f i

• For the combined error model, σi = a + b f i

fgm
fgm = ∏

i

N
f i

1 N

wi The weight of the ith predicted value
wgm

wgm = ∏
i

N
wi

1 N

When you use numeric weights or the weight function, the weights are assumed to be inversely

proportional to the variance of the error, that is, σi
2 = a2

wi
 where a is the constant error parameter. If

you use weights, you cannot specify an error model except the constant error model.

Various optimization methods have different requirements on the function that is being minimized.
For some methods, the estimation of model parameters is performed independently of the estimation
of the error model parameters. The following table summarizes the error models and any separate
formulas used for the estimation of error model parameters, where a and b are error model
parameters and e is the standard mean-zero and unit-variance (Gaussian) variable.

 sbiofit

1-97

Error
Model

Error Parameter Estimation Function

'constant
':
yi = f i + ae

a2 = 1
N∑i

N
yi− f i

2

'exponent
ial':
yi = f iexp
(ae)

a2 = 1
N∑i

N
lnyi− lnf i

2

'proporti
onal':
yi = f i
+ b f i e

b2 = 1
N∑i

N yi− f i
f i

2

'combined
':
yi = f i
+ a + b f i
e

Error parameters are included in the minimization.

Weights
a2 = 1

N∑i
N

yi− f i
2wi

Note nlinfit only support single error models, not multiple-error models, that is, response-specific
error models. For a combined error model, it uses an iterative WLS algorithm. For other error
models, it uses the WLS algorithm as described previously. For details, see nlinfit.

Default Options for Estimation Algorithms

The following table summarizes the default options for various estimation functions.

Function Default Options
nlinfit sbiofit uses the default options structure associated with nlinfit, except

for:
FunValCheck = 'off'
DerivStep = max(eps^(1/3),
min(1e-4,SolverOptions.RelativeTolerance)), where the
SolverOptions property corresponds to the model’s active configset
object.

1 Functions

1-98

Function Default Options
fmincon sbiofit uses the default options structure associated with fmincon, except

for:
Display = 'off'
FunctionTolerance = 1e-6*abs(f0), where f0 is the initial value of the
objective function.
OptimalityTolerance = 1e-6*abs(f0), where f0 is the initial value of
the objective function.
Algorithm = 'trust-region-reflective' when
'SensitivityAnalysis' is true, or 'interior-point' when
'SensitivityAnalysis' is false.
FiniteDifferenceStepSize =
max(eps^(1/3),min(1e-4,SolverOptions.RelativeTolerance)),
where the SolverOptions property corresponds to the model active
configset object.
TypicalX = 1e-6*x0, where x0 is an array of transformed initial
estimates.

fminunc sbiofit uses the default options structure associated with fminunc, except
for:
Display = 'off'
FunctionTolerance = 1e-6*abs(f0), where f0 is the initial value of the
objective function.
OptimalityTolerance = 1e-6*abs(f0), where f0 is the initial value of
the objective function.
Algorithm = 'trust-region' when 'SensitivityAnalysis' is true,
or 'quasi-newton' when 'SensitivityAnalysis' is false.
FiniteDifferenceStepSize =
max(eps^(1/3),min(1e-4,SolverOptions.RelativeTolerance)),
where the SolverOptions property corresponds to the model active
configset object.
TypicalX = 1e-6*x0, where x0 is an array of transformed initial
estimates.

fminsearch sbiofit uses the default options structure associated with fminsearch,
except for:
Display = 'off'
TolFun = 1e-6*abs(f0), where f0 is the initial value of the objective
function.

 sbiofit

1-99

Function Default Options
lsqcurvefit,
lsqnonlin

Requires Optimization Toolbox.

sbiofit uses the default options structure associated with lsqcurvefit
and lsqnonlin, except for:
Display = 'off'
FunctionTolerance = 1e-6*norm(f0), where f0 is the initial value of
the objective function.
OptimalityTolerance = 1e-6*norm(f0), where f0 is the initial value of
the objective function.
FiniteDifferenceStepSize =
max(eps^(1/3),min(1e-4,SolverOptions.RelativeTolerance)) ,
where the SolverOptions property corresponds to the model active
configset object.
TypicalX = 1e-6*x0, where x0 is an array of transformed initial
estimates.

patternsearch Requires Global Optimization Toolbox.

sbiofit uses the default options object (optimoptions) associated with
patternsearch, except for:
Display = 'off'
FunctionTolerance = 1e-6*abs(f0), where f0 is the initial value of the
objective function.
MeshTolerance = 1.0e-3
AccelerateMesh = true

ga Requires Global Optimization Toolbox.

sbiofit uses the default options object (optimoptions) associated with
ga, except for:
Display = 'off'
FunctionTolerance = 1e-6*abs(f0), where f0 is the initial value of the
objective function.
MutationFcn = @mutationadaptfeasible

particleswarm Requires Global Optimization Toolbox.

sbiofit uses the following default options for the particleswarm
algorithm, except for:
Display = 'off'
FunctionTolerance = 1e-6*abs(f0), where f0 is the initial value of the
objective function.
InitialSwarmSpan = 2000 or 8; 2000 for estimated parameters with no
transform; 8 for estimated parameters with log, logit, or probit
transforms.

scattersearch See “Scatter Search Algorithm” on page 1-100.

Scatter Search Algorithm

The scattersearch method implements a global optimization algorithm [2] that addresses some
challenges of parameter estimation in dynamic models, such as convergence to local minima.

1 Functions

1-100

Algorithm Overview

The algorithm selects a subset of points from an initial pool of points. In that subset, some points are
the best in quality (that is, lowest function value) and some are randomly selected. The algorithm
iteratively evaluates the points and explores different directions around various solutions to find
better solutions. During this iteration step, the algorithm replaces any old solution with a new one of
better quality. Iterations proceed until any stopping criteria are met. It then runs a local solver on the
best point.

Initialization

To start the scatter search, the algorithm first decides the total number of points needed
(NumInitialPoints). By default, the total is 10*N, where N is the number of estimated parameters.
It selects NumInitialPoints points (rows) from InitialPointMatrix. If InitialPointMatrix
does not have enough points, the algorithm calls the function defined in CreationFcn to generate
the additional points needed. By default, Latin hypercube sampling is used to generate these
additional points. The algorithm then selects a subset of NumTrialPoints points from
NumInitialPoints points. A fraction (FractionInitialBest) of the subset contains the best
points in terms of quality. The remaining points in the subset are randomly selected.

Iteration Steps

The algorithm iterates on the points in the subset as follows:

1 Define hyper-rectangles around each pair of points by using the relative qualities (that is,
function values) of these points as a measure of bias to create these rectangles.

2 Evaluate a new solution inside each rectangle. If the new solution outperforms the original
solution, replace the original with the new one.

3 Apply the go-beyond strategy to the improved solutions and exploit promising directions to find
better solutions.

4 Run a local search at every LocalSearchInterval iteration. Use the
LocalSelectBestProbability probability to select the best point as the starting point for a
local search. By default, the decision is random, giving an equal chance to select the best point or
a random point from the trial points. If the new solution outperforms the old solution, replace the
old one with the new one.

5 Replace any stalled point that does not produce any new outperforming solution after
MaxStallTime seconds with another point from the initial set.

6 Evaluate stopping criteria. Stop iterating if any criteria are met.

The algorithm then runs a local solver on the best point seen.

Stopping Criteria

The algorithm iterates until it reaches a stopping criterion.

Stopping Option Stopping Test
FunctionTolerance and
MaxStallIterations

Relative change in best objective function value over the last
MaxStallIterations is less than FunctionTolerance.

MaxIterations Number of iterations reaches MaxIterations.
OutputFcn OutputFcn can halt the iterations.

 sbiofit

1-101

Stopping Option Stopping Test
ObjectiveLimit Best objective function value at an iteration is less than or equal

to ObjectiveLimit.
MaxStallTime Best objective function value did not change in the

last MaxStallTime seconds.
MaxTime Function run time exceeds MaxTime seconds.

Algorithm Options

You create the options for the algorithm using a struct.

Option Description
CreationFc
n

Handle to the function that creates additional points needed for the algorithm. Default
is the character vector 'auto', which uses Latin hypercube sampling.

The function signature is: points = CreationFcn(s,N,lb,ub), where s is the
total number of sampled points, N is the number of estimated parameters, lb is the
lower bound, and ub is the upper bound. If any output from the function exceeds
bounds, these results are truncated to the bounds.

Display Level of display returned to the command line.

• 'off' or 'none' (default) displays no output.
• 'iter' gives iterative display.
• 'final' displays just the final output.

FractionIn
itialBest

Numeric scalar from 0 through 1. Default is 0.5. This number is the fraction of the
NumTrialPoints that are selected as the best points from the NumInitialPoints
points.

FunctionTo
lerance

Numeric scalar from 0 through 1. Default is 1e-6. The solver stops if the relative
change in best objective function value over the last MaxStallIterations is less
than FunctionTolerance. This option is also used to remove duplicate local
solutions. See XTolerance for details.

InitialPoi
ntMatrix

Initial (or partial) set of points. M-by-N real finite matrix, where M is the number of
points and N is the number of estimated parameters.

If M < NumInitialPoints, then scattersearch creates more points so that the
total number of rows is NumInitialPoints.

If M > NumInitialPoints, then scattersearch uses the first
NumInitialPoints rows.

Default is the initial transformed values of estimated parameters stored in the
InitialTransformedValue property of the EstimatedInfo object, that is,
[estiminfo.InitialTransformedValue].

1 Functions

1-102

Option Description
LocalOptio
ns

Options for the local solver. It can be a struct (created with optimset or statset)
or an optimoptions object, depending on the local solver. Default is the character
vector 'auto', which uses the default options of the selected solver with some
exceptions on page 1-98. In addition to these exceptions, the following options limit
the time spent in the local solver because it is called repeatedly:

• MaxFunEvals (maximum number of function evaluations allowed) = 300
• MaxIter (maximum number of iterations allowed) = 200

LocalSearc
hInterval

Positive integer. Default is 10. The scattersearch algorithm applies the local solver
to one of the trial points after the first iteration and again every
LocalSearchInterval iteration.

LocalSelec
tBestProba
bility

Numeric scalar from 0 through 1. Default is 0.5. It is the probability of selecting the
best point as the starting point for a local search. In other cases, one of the trial points
is selected at random.

LocalSolve
r

Character vector or string specifying the name of a local solver. Supported methods
are 'fminsearch', 'lsqnonlin', 'lsqcurvefit', 'fmincon', 'fminunc',
'nlinfit'.

Default local solver is selected with the following priority:

• If Optimization Toolbox is available, the solver is lsqnonlin.
• If Statistics and Machine Learning Toolbox is available, the solver is nlinfit.
• Otherwise, the solver is fminsearch.

MaxIterati
ons

Positive integer. Default is the character vector 'auto' representing 20*N, where N
is the number of estimated parameters.

MaxStallIt
erations

Positive integer. Default is 50. The solver stops if the relative change in the best
objective function value over the last MaxStallIterations iterations is less than
FunctionTolerance.

MaxStallTi
me

Positive scalar. Default is Inf. The solver stops if MaxStallTime seconds have passed
since the last improvement in the best-seen objective function value. Here, the time is
the wall clock time as opposed to processor cycles.

MaxTime Positive scalar. Default is Inf. The solver stops if MaxTime seconds have passed since
the beginning of the search. The time here means the wall clock time as opposed to
processor cycles.

NumInitial
Points

Positive integer that is >= NumTrialPoints. The solver generates
NumInitialPoints points before selecting a subset of trial points
(NumTrialPoints) for subsequent steps. Default is the character vector 'auto',
which represents 10*N, where N is the number of estimated parameters.

NumTrialPo
ints

Positive integer that is >= 2 and <= NumInitialPoints. The solver generates
NumInitialPoints initial points before selecting a subset of trial points
(NumTrialPoints) for subsequent steps. Default is the character vector 'auto',
which represents the first even number n for which n2− n ≥ 10 * N, where N is the
number of estimated parameters.

ObjectiveL
imit

Scalar. Default is -Inf. The solver stops if the best objective function value at an
iteration is less than or equal to ObjectiveLimit.

 sbiofit

1-103

Option Description
OutputFcn Function handle or cell array of function handles. Output functions can read iterative

data and stop the solver. Default is [].

Output function signature is stop = myfun(optimValues,state), where:

• stop is a logical scalar. Set to true to stop the solver.
• optimValues is a structure containing information about the trial points with
fields.

• bestx is the best solution point found, corresponding to the function value
bestfval.

• bestfval is the best (lowest) objective function value found.
• iteration is the iteration number.
• medianfval is the mean objective function value among all the current trial

points.
• stalliterations is the number of iterations since the last change in

bestfval.
• trialx is a matrix of the current trial points. Each row represents one point,

and the number of rows is equal to NumTrialPoints.
• trialfvals is a vector of objective function values for trial points. It is a

matrix for lsqcurvefit and lsqnonlin methods.
• state is a character vector giving the status of the current iteration.

• 'init' – The solver has not begun to iterate. Your output function can use this
state to open files, or set up data structures or plots for subsequent iterations.

• 'iter' – The solver is proceeding with its iterations. Typically, this state is
where your output function performs its work.

• 'done' – The solver reaches a stopping criterion. Your output function can use
this state to clean up, such as closing any files it opened.

TrialStall
Limit

Positive integer, with default value of 22. If a particular trial point does not improve
after TrialStallLimit iterations, it is replaced with another point.

UseParalle
l

Logical flag to compute objective function in parallel. Default is false.

XTolerance Numeric scalar from 0 through 1. Default is 1e-6. This option defines how close two
points must be to consider them identical for creating the vector of local solutions.
The solver calculates the distance between a pair of points with norm, the Euclidean
distance. If two solutions are within XTolerance distance of each other and have
objective function values within FunctionTolerance of each other, the solver
considers them identical. If both conditions are not met, the solver reports the
solutions as distinct.

To get a report of every potential local minimum, set XTolerance to 0. To get a
report of fewer results, set XTolerance to a larger value.

Multiple Parameter Estimations in Parallel

There are two ways to use parallel computing for parameter estimation.

1 Functions

1-104

Set 'UseParallel' to true

To enable parallelization for sbiofit, set the name-value pair 'UseParallel' to true. The
function supports several levels of parallelization, but only one level is used at a time. For an
unpooled fit for multiple groups (or individuals), each fit runs in parallel. For a pooled fit,
parallelization happens at the solver level if the solver supports it. That is, sbiofit sets the parallel
option of the corresponding estimation method (solver) to true, and the objection function evaluations
are performed in parallel. For instance, gradients are computed in parallel for gradient-based
methods. If you are performing a pooled fit with multiple groups using a solver that does not have the
parallel option, the simulations run in parallel for each group during optimization (maximum
likelihood estimation on page 1-96).

Use parfeval or parfor

You can also call sbiofit inside a parfor loop or use a parfeval inside a for-loop to perform
multiple parameter estimations in parallel. It is recommended that you use parfeval because these
parallel estimations run asynchronously. If one fit produces an error, it does not affect the other fits.

If you are trying to find a global minimum, you can use global solvers, such as particleswarm or ga
(Global Optimization Toolbox is required). However, if you want to define the initial conditions and
run the fits in parallel, see the following example that shows how to use both parfor and parfeval.

Model and Data Setup

Load the G protein model.

sbioloadproject gprotein

Store the experimental data containing the time course for the fraction of active G protein [1].

time = [0 10 30 60 110 210 300 450 600]';
GaFracExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';

Create a groupedData object based on the experimental data.

tbl = table(time,GaFracExpt);
grpData = groupedData(tbl);

Map the appropriate model element to the experimental data.

responseMap = 'GaFrac = GaFracExpt';

Specify the parameter to estimate.

paramToEstimate = {'kGd'};

Generate initial parameter values for kGd.

rng('default');
iniVal = abs(normrnd(0.01,1,10,1));
fitResultPar = [];

Parallel Pool Setup

Start a parallel pool using the local profile.

poolObj = parpool('local');

 sbiofit

1-105

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Using parfeval (Recommended)

First, define a function handle that uses the local function sbiofitpar for estimation. Make sure the
function sbiofitpar is defined at the end of the script.

optimfun = @(x) sbiofitpar(m1,grpData,responseMap,x);

Perform multiple parameter estimations in parallel via parfeval using different initial parameter
values.

for i=1:length(iniVal)
 f(i) = parfeval(optimfun,1,iniVal(i));
end
fitResultPar = fetchOutputs(f);

Summarize the results for each run.

allParValues = vertcat(fitResultPar.ParameterEstimates);
allParValues.LogLikelihood = [fitResultPar.LogLikelihood]';
allParValues.RunNumber = (1:length(iniVal))';
allParValues.Name = categorical(allParValues.Name);
allParValues.InitialValue = iniVal;
% Rearrange the columns.
allParValues = allParValues(:,[5 1 6 2 3 4]);
% Sort rows by LogLikelihood.
sortrows(allParValues,'LogLikelihood')

ans=10×6 table
 RunNumber Name InitialValue Estimate StandardError LogLikelihood
 _________ ____ ____________ ________ _____________ _____________

 9 kGd 3.5884 3.022 0.127 -1.2843
 10 kGd 2.7794 2.779 0.029701 -1.2319
 3 kGd 2.2488 2.2488 0.096013 -1.0786
 2 kGd 1.8439 1.844 0.28825 -0.90104
 6 kGd 1.2977 1.2977 0.011344 -0.48209
 4 kGd 0.87217 0.65951 0.003583 0.9279
 1 kGd 0.54767 0.54776 0.0020424 1.5323
 7 kGd 0.42359 0.42363 0.0024555 2.6097
 8 kGd 0.35262 0.35291 0.00065289 3.6098
 5 kGd 0.32877 0.32877 0.00042474 4.0604

Define the local function sbiofitpar that performs parameter estimation using sbiofit.

function fitresult = sbiofitpar(model,grpData,responseMap,initialValue)
estimatedParam = estimatedInfo('kGd');
estimatedParam.InitialValue = initialValue;
fitresult = sbiofit(model,grpData,responseMap,estimatedParam);
end

Using parfor

Alternatively, you can perform multiple parameter estimations in parallel via the parfor loop.

1 Functions

1-106

parfor i=1:length(iniVal)
 estimatedParam = estimatedInfo(paramToEstimate,'InitialValue',iniVal(i));
 fitResultTemp = sbiofit(m1,grpData,responseMap,estimatedParam);
 fitResultPar = [fitResultPar;fitResultTemp];
end

Close the parallel pool.

delete(poolObj);

Parameter Estimation with Hybrid Solvers

sbiofit supports global optimization methods, namely ga and particleswarm (Global
Optimization Toolbox required). To improve optimization results, these methods lets you run a hybrid
function after the global solver stops. The hybrid function uses the final point returned by the global
solver as its initial point. Supported hybrid functions are:

• fminunc
• fmincon
• patternsearch
• fminsearch

Make sure that your hybrid function accepts your problem constraints. That is, if your parameters are
bounded, use an appropriate function (such as fmincon or patternsearch) for a constrained
optimization. If not bounded, use fminunc, fminsearch, or patternsearch. Otherwise, sbiofit
throws an error.

For an illustrated example, see Perform Hybrid Optimization Using sbiofit.

References
[1] Yi, T-M., Kitano, H., and Simon, M. (2003). A quantitative characterization of the yeast

heterotrimeric G protein cycle. PNAS. 100, 10764–10769.

[2] Gábor, A., and Banga, J.R. (2015). Robust and efficient parameter estimation in dynamic models of
biological systems. BMC Systems Biology. 9:74.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true.

For more information, see the 'UseParallel' name-value pair argument.

See Also
EstimatedInfo object | groupedData object | LeastSquaresResults object |
NLINResults object | OptimResults object | sbiofitmixed | nlinfit | fmincon | fminunc
| fminsearch | lsqcurvefit | lsqnonlin | patternsearch | ga | particleswarm

 sbiofit

1-107

Topics
“Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G
Protein Cycle”
“What is Nonlinear Regression?”
“Fitting Options in SimBiology”
“Parameter Transformations”
“Maximum Likelihood Estimation”
“Fitting Workflow for sbiofit”
“Supported Methods for Parameter Estimation in SimBiology”
“Sensitivity Analysis in SimBiology”
“Progress Plot”
“Importing Data — Supported Files and Data Types”
“Create Data File with SimBiology Definitions”

Introduced in R2014a

1 Functions

1-108

sbiofitmixed
Fit nonlinear mixed-effects model (requires Statistics and Machine Learning Toolbox software)

Syntax
fitResults = sbiofitmixed(sm,grpData,ResponseMap,covEstiminfo)
fitResults = sbiofitmixed(sm,grpData,ResponseMap,covEstiminfo,dosing)
fitResults = sbiofitmixed(sm,grpData,ResponseMap,covEstiminfo,dosing,
functionName)
fitResults = sbiofitmixed(sm,grpData,ResponseMap,covEstiminfo,dosing,
functionName,opt)
fitResults = sbiofitmixed(sm,grpData,ResponseMap,covEstiminfo,dosing,
functionName,opt,variants)
fitResults = sbiofitmixed(___ ,Name,Value)

[fitResults,simDataI,simDataP] = sbiofitmixed(_)

Description
fitResults = sbiofitmixed(sm,grpData,ResponseMap,covEstiminfo) performs nonlinear
mixed-effects estimation using the SimBiology model sm and returns a NLMEResults object
fitResults.

grpData is a groupedData object specifying the data to fit. ResponseMap defines the mapping
between the model components and response data in grpData. covEstiminfo is a
CovariateModel object or an array of estimatedInfo objects that defines the parameters to be
estimated.

If the model contains active doses and variants, they are applied during the simulation.

fitResults = sbiofitmixed(sm,grpData,ResponseMap,covEstiminfo,dosing) uses the
dosing information specified by a matrix of SimBiology dose objects dosing instead of using the
active doses of the model sm if there are any.

fitResults = sbiofitmixed(sm,grpData,ResponseMap,covEstiminfo,dosing,
functionName) uses the estimation function specified by functionName that must be either
'nlmefit' or 'nlmefitsa'.

fitResults = sbiofitmixed(sm,grpData,ResponseMap,covEstiminfo,dosing,
functionName,opt) uses the additional options specified by opt for the estimation function
functionName.

fitResults = sbiofitmixed(sm,grpData,ResponseMap,covEstiminfo,dosing,
functionName,opt,variants) applies variant objects specified as variants instead of using any
active variants of the model.

fitResults = sbiofitmixed(___ ,Name,Value) uses additional options specified by one or
more name-value arguments.

 sbiofitmixed

1-109

[fitResults,simDataI,simDataP] = sbiofitmixed(_) returns a vector of results objects
fitResults, vector of simulation results simDataI using individual-specific parameter estimates,
and vector of simulation results simDataP using population parameter estimates.

Note

• sbiofitmixed unifies sbionlmefit and sbionlmefitsa estimation functions. Use
sbiofitmixed to perform nonlinear mixed-effects modeling and estimation.

• sbiofitmixed simulates the model using a SimFunction object, which automatically
accelerates simulations by default. Hence it is not necessary to run sbioaccelerate before you
call sbiofitmixed.

Examples

Fit a One-Compartment PK Model to the Phenobarbital Data

This example uses data collected on 59 preterm infants given phenobarbital during the first 16 days
after birth [1]. Each infant received an initial dose followed by one or more sustaining doses by
intravenous bolus administration. A total of between 1 and 6 concentration measurements were
obtained from each infant at times other than dose times, for a total of 155 measurements. Infant
weights and APGAR scores (a measure of newborn health) were also recorded.

Load the data.

load pheno.mat ds

Convert the dataset to a groupedData object, a container for holding tabular data that is divided
into groups. It can automatically identify commonly used variable names as the grouping variable or
independent (time) variable. Display the properties of the data and confirm that
GroupVariableName and IndependentVariableName are correctly identified as 'ID' and
'TIME', respectively.

data = groupedData(ds);
data.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Observations' 'Variables'}
 VariableNames: {'ID' 'TIME' 'DOSE' 'WEIGHT' 'APGAR' 'CONC'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'TIME'

Create a simple one-compartment PK model with bolus dosing and linear clearance to fit such data.
Use the PKModelDesign object to construct the model. Each compartment is defined by a name,
dosing type, a clearance type, and whether or not the dosing requires a lag parameter. After

1 Functions

1-110

constructing the model, you can also get a PKModelMap object map that lists the names of species
and parameters in the model that are most relevant for fitting.

pkmd = PKModelDesign;
addCompartment(pkmd,'Central','DosingType','Bolus',...
 'EliminationType','linear-clearance',...
 'HasResponseVariable',true,'HasLag',false);
[onecomp, map] = pkmd.construct;

Describe the experimentally measured response by mapping the appropriate model component to the
response variable. In other words, indicate which species in the model corresponds to which response
variable in the data. The PKModelMap property Observed indicates that the relevant species in the
model is Drug_Central, which represents the drug concentration in the system. The relevant data
variable is CONC, which you visualized previously.

map.Observed

ans = 1x1 cell array
 {'Drug_Central'}

Map the Drug_Central species to the CONC variable.

responseMap = 'Drug_Central = CONC';

The parameters to estimate in this model are the volume of the central compartment Central and
the clearance rate Cl_Central. The PKModelMap property Estimated lists these relevant
parameters. The underlying algorithm of sbiofit assumes parameters are normally distributed, but
this assumption may not be true for biological parameters that are constrained to be positive, such as
volume and clearance. Specify a log transform for the estimated parameters so that the transformed
parameters follow a normal distribution. Use an estimatedInfo object to define such transforms
and initial values (optional).

map.Estimated

ans = 2x1 cell
 {'Central' }
 {'Cl_Central'}

Define such estimated parameters, appropriate transformations, and initial values.

estimatedParams = estimatedInfo({'log(Central)','log(Cl_Central)'},'InitialValue',[1 1]);

Each infant received a different schedule of dosing. The amount of drug is listed in the data variable
DOSE. To specify these dosing during fitting, create dose objects from the data. These objects use the
property TargetName to specify which species in the model receives the dose. In this example, the
target species is Drug_Central, as listed by the PKModelMap property Dosed.

map.Dosed

ans = 1x1 cell array
 {'Drug_Central'}

Create a sample dose with this target name and then use the createDoses method of groupedData
object data to generate doses for each infant based on the dosing data DOSE.

 sbiofitmixed

1-111

sampleDose = sbiodose('sample','TargetName','Drug_Central');
doses = createDoses(data,'DOSE','',sampleDose);

Fit the model.

[nlmeResults,simI,simP] = sbiofitmixed(onecomp,data,responseMap,estimatedParams,doses,'nlmefit');

Visualize the fitted results using individual-specific parameter estimates.

plot(nlmeResults,'ParameterType','individual');

Visualize the fitted results using population parameter estimates.

plot(nlmeResults,'ParameterType','population');

1 Functions

1-112

Display the variation of estimated parameters using boxplot.

boxplot(nlmeResults)

 sbiofitmixed

1-113

Compare the model predictions to the actual data.

plotActualVersusPredicted(nlmeResults)

1 Functions

1-114

Plot the distribution of residuals.

plotResidualDistribution(nlmeResults)

 sbiofitmixed

1-115

Plot residuals for each response using the model predictions on x-axis.

plotResiduals(nlmeResults,'Predictions')

1 Functions

1-116

Input Arguments
sm — SimBiology model
model object

SimBiology model, specified as a SimBiology model object. The active configset object of the
model contains solver settings for simulation. Any active doses and variants are applied to the model
during simulation unless specified otherwise using the dosing and variants input arguments,
respectively.

grpData — Data to fit
groupedData object

Data to fit, specified as a groupedData object.

The name of the time variable must be defined in the IndependentVariableName property of
grpData. For instance, if the time variable name is 'TIME', then specify it as follows.

grpData.Properties.IndependentVariableName = 'TIME';

grpData must have at least two groups, and the name of grouping variable name must be defined in
the GroupVariableName property of grpData. For example, if the grouping variable name is
'GROUP', then specify it as follows.

 sbiofitmixed

1-117

grpData.Properties.GroupVariableName = 'GROUP';

A group usually refers to a set of measurements that represent a single time course, often
corresponding to a particular individual or experimental condition.

Note sbiofitmixed uses the categorical function to identify groups. If any group values are
converted to the same value by categorical, then those observations are treated as belonging to
the same group. For instance, if some observations have no group information (that is, empty
character vector), then categorical converts empty character vectors to <undefined>, and these
observations are treated as one group.

ResponseMap — Mapping information of model components to response data
character vector | string | string vector | cell array of character vectors

Mapping information of model components to grpData, specified as a character vector, string, string
vector, or cell array of character vectors.

Each character vector or string is an equation-like expression, similar to assignment rules in
SimBiology. It contains the name (or qualified name) of a quantity (species, compartment, or
parameter) or an observable object in the model sm, followed by the character '=' and the name of
a variable in grpData. For clarity, white spaces are allowed between names and '='.

For example, if you have the concentration data 'CONC' in grpData for a species 'Drug_Central',
you can specify it as follows.

ResponseMap = 'Drug_Central = CONC';

To name a species unambiguously, use the qualified name, which includes the name of the
compartment. To name a reaction-scoped parameter, use the reaction name to qualify the parameter.

If the model component name or grpData variable name is not a valid MATLAB variable name,
surround it by square brackets, such as:

ResponseMap = '[Central 1].Drug = [Central 1 Conc]';

If a variable name itself contains square brackets, you cannot use it in the expression to define the
mapping information.

An error is issued if any (qualified) name matches two components of the same type. However, you
can use a (qualified) name that matches two components of different types, and the function first
finds the species with the given name, followed by compartments and then parameters.

covEstiminfo — Estimated parameters
vector of estimatedInfo objects | CovariateModel object

Estimated parameters, specified as a vector of estimatedInfo objects or a CovariateModel
object that defines the estimated parameters in the model sm, their initial estimates (optional), and
their relationship to group-specific covariates included in grpData (optional). If this is a vector of
estimatedInfo objects, then no covariates are used, and all parameters are estimated with group-
specific random effects.

You can also specify parameter transformations if necessary. Supported transforms are log, logit,
and probit. For details, see EstimatedInfo object and CovariateModel object.

1 Functions

1-118

If covEstiminfo is a vector of estimatedInfo objects, the CategoryVariableName property of
each of these objects is ignored.

dosing — Dosing information
[] | {} | 2-D matrix of dose objects | cell vector of dose objects

Dosing information, specified as an empty array ([] or {}), 2-D matrix or cell vector of dose objects
(ScheduleDose object or RepeatDose object).

If you omit the dosing input, the function applies the active doses of the model if there are any.

If you specify the input as empty [] or {}, no doses are applied during simulation, even if the model
has active doses.

For a matrix of dose objects, it must have a single row or one row per group in the input data. If it has
a single row, the same doses are applied to all groups during simulation. If it has multiple rows, each
row is applied to a separate group, in the same order as the groups appear in the input data. Multiple
columns are allowed so that you can apply multiple dose objects to each group.

Note As of R2021b, doses in the columns are no longer required to have the same configuration. If
you previously created default (dummy) doses to fill in the columns, these default doses have no
effect and indicate no dosing.

For a cell vector of doses, it must have one element or one element per group in the input data. Each
element must be [] or a vector of doses. Each element of the cell is applied to a separate group, in
the same order as the groups appear in the input data.

In addition to manually constructing dose objects using sbiodose, if the input groupedData object
has dosing information, you can use the createDoses method to construct doses.

functionName — Estimation function name
character vector | string

Estimation function name, specified as a character vector or string. Choices are 'nlmefit' or
'nlmefitsa'. For the summary supported methods and fitting options, see “Supported Methods for
Parameter Estimation in SimBiology”.

opt — Options specific to estimation function
struct

Options specific to the estimation function, specified as a structure.

The structure can contain fields and default values that are the name-value arguments accepted by
nlmefit and nlmefitsa, except the following that are not supported.

• 'FEConstDesign'
• 'FEGroupDesign’
• 'FEObsDesign'
• 'FEParamsSelect'
• 'ParamTransform'
• 'REConstDesign'

 sbiofitmixed

1-119

• 'REGroupDesign'
• 'REObsDesign'
• 'Vectorization'

'REParamsSelect' is only supported when you provide a vector of estimatedInfo objects when
specifying the estimated parameters.

Use the statset function only to set the 'Options' field of the structure (opt), as follows.

opt.Options = statset('Display','iter','TolX',1e-3,'TolFun',1e-3);

For other supported name-value arguments (see nlmefit and nlmefitsa), set them as follows.

opt.ErrorModel = 'proportional';
opt.ApproximationType = 'LME';

variants — Variants
[] | {} | vector of variant objects

Variants, specified as an empty array ([] or {}) or vector of variant objects.

If you

• Omit this input argument, the function applies the active variants of the model if there are any.
• Specify this input as empty, no variants are used even if the model has active variants.
• Specify this input as a vector of variants, the function applies the specified variants to all

simulations, and the model active variants are not used.
• Specify this input as a vector of variants and also specify the Variants name-value argument, the

function applies the variants specified in this input argument before applying the ones specified in
the name-value argument.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'UseParallel',true,'ProgressPlot',true specifies to run the simulations in
parallel and show the progress of parameter estimation.

UseParallel — Flag for parallel simulations
false or 0 (default) | true or 1

Flag to enable parallelization, specified as a numeric or logical 1 (true) or 0 (false). If true and
Parallel Computing Toolbox is available, the function performs parameter estimation in parallel.

ProgressPlot — Flag to show the progress of parameter estimation
false or 0 (default) | true or 1

Flag to show the progress of parameter estimation, specified as a numeric or logical 1 (true) or 0
(false). If true, a new figure opens containing plots.

1 Functions

1-120

Plots show the values of fixed effects parameters (theta), the estimates of the variance parameters,
that is, the diagonal elements of the covariance matrix of the random effects (Ψ), and the log-
likelihood. For details, see “Progress Plot”.

Variants — Group-specific variants
[] | {} | 2-D matrix of variants | cell vector of variants

Group-specific variants, specified as an empty array ([] or {}), 2-D matrix or cell vector of variant
objects. These variants let you specify parameter values for specific groups during fitting. The
software applies these group-specific variants after active variants or the variants input argument.
If the value is empty ([] or {}), no group-specific variants are applied.

For a matrix of variant objects, the number of rows must be one or must match the number of groups
in the input data. The ith row of variant objects is applied to the simulation of the ith group. The
variants are applied in order from the first column to the last. If this matrix has only one row of
variants, they are applied to all simulations.

For a cell vector of variant objects, the number of cells must be one or must match the number of
groups in the input data. Each element must be [] or a vector of variants. If this cell vector has a
single cell containing a vector of variants, they are applied to all simulations. If the cell vector has
multiple cells, the variants in the ith cell are applied to the simulation of the ith group.

In addition to manually constructing variant objects using sbiovariant, if the input groupedData
object has variant information, you can use createVariants to construct variants.

Output Arguments
fitResults — Estimation results
NLMEResults object

Estimation results, returned as an NLMEResults object.

simDataI — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects representing simulation results for each
group (or individual) using fixed-effect and random-effect estimates (individual-specific parameter
estimates).

The states reported in simDataI are the states that were included in the ResponseMap input
argument as well as any other states listed in the StatesToLog property of the runtime options
(RuntimeOptions) of the SimBiology model sm.

simDataP — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects representing simulation results for each
group (or individual) using only fixed-effect estimates (population parameter estimates).

The states reported in simDataP are the states that were included in the ResponseMap input
argument as well as any other states listed in the StatesToLog property of the runtime options
(RuntimeOptions) of the SimBiology model sm.

 sbiofitmixed

1-121

References
[1] Grasela Jr, T.H., Donn, S.M. (1985) Neonatal population pharmacokinetics of phenobarbital

derived from routine clinical data. Dev Pharmacol Ther. 8(6), 374–83.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true.

For more information, see the 'UseParallel' name-value pair argument.

See Also
sbiofit | nlmefit | nlmefitsa | groupedData | EstimatedInfo object | NLMEResults
object | sbiofitstatusplot | CovariateModel object

Topics
“Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”
“What Is a Nonlinear Mixed-Effects Model?”
“Nonlinear Mixed-Effects Modeling Workflow”
“Specify a Covariate Model”
“Specify an Error Model”
“Maximum Likelihood Estimation”
“Obtain the Fitting Status”
“Supported Methods for Parameter Estimation in SimBiology”
“Progress Plot”
“Importing Data — Supported Files and Data Types”
“Create Data File with SimBiology Definitions”

Introduced in R2014a

1 Functions

1-122

sbiofitstatusplot
Plot status of nonlinear mixed-effects estimation

Syntax
stop = sbiofitstatusplot(beta, status, state)
stop = sbiofitstatusplot(beta, status, state, fenames)

Description
stop = sbiofitstatusplot(beta, status, state) initializes or updates a plot with the fixed
effects, beta, the log likelihood status.fval, and the variance of the random effects,
diag(status.Psi).

The function returns an output (stop) to satisfy requirements for the 'OutputFcn' option of
nlmefit or nlmefitsa. For sbiofitstatusplot, the value of stop is always false.

stop = sbiofitstatusplot(beta, status, state, fenames) specifies the names for the
fixed-effects fenames.

Use sbiofitstatusplot to obtain status information about NLME fitting when using the
sbiofitmixed function. Specify @sbiofitstatusplot for the 'OutputFcn' field of a statset
option structure and then pass in the structure as an input argument to sbiofitmixed.

Alternatively, you can set the 'ProgressPlot' name-value pair argument to true when you run
sbiofitmixed. The function sbiofitmixed then calls sbiofitstatusplot at each function
iteration. For details, see “Progress Plot”.

Input Arguments
beta

Current fixed effects

status

Structure containing several fields

Field Value
inner Structure describing the current status of the inner iterations within the ALT

and LAP procedures, with the fields:

• procedure

• 'PNLS', 'LME', or 'none' when the procedure is 'ALT'
• 'PNLS', 'PLM', or 'none' when the procedure is 'LAP'

• state — 'init', 'iter', 'done', or 'none'
• iteration — Integer starting from 0, or NaN

 sbiofitstatusplot

1-123

Field Value
procedure 'ALT' or 'LAP'
iteration Integer starting from 0
fval Current log-likelihood
Psi Current random-effects covariance matrix
theta Current parameterization of Psi
mse Current error variance

state

Either 'init', 'iter', or 'done'.

fenames

Character vector, string, string vector, or cell array of character vectors specifying the names of fixed
effects

Examples
Obtain status information for NLME fitting:

% Create a statset option with 'OutputFcn'.
fitOptions.Options = statset('OutputFcn',@sbiofitstatusplot);
% Pass the structure to sbiofitmixed function.
results = sbiofitmixed(..., fitOptions);

More About
Alt

Alternating algorithm for the optimization of the LME or RELME approximations

FO

First-order estimate

FOCE

First-order conditional estimate

LAP

Optimization of the Laplacian approximation for FO or FOCE

LME

Linear mixed-effects estimation

NLME

Nonlinear mixed effects

1 Functions

1-124

PLM

Profiled likelihood maximization

PNLS

Penalized nonlinear least squares

RELME

Restricted likelihood for the linear mixed-effects model

See Also
sbiofitmixed | nlmefit | sbionlinfit | sbionlmefit | sbionlmefitsa

Topics
“Progress Plot”

Introduced in R2009b

 sbiofitstatusplot

1-125

sbiofittool
Open SimBiology desktop for population fitting

Note sbiofittool will be removed in a future release. Use simBiologyModelBuilder to open
the SimBiology Model Builder app. Use simBiologyModelAnalyzer to open the SimBiology
Model Analyzer app.

Syntax
sbiofittool

Description
sbiofittool opens the SimBiology desktop in a state designed for:

• Importing and plotting data for fitting
• Selecting from a library of pharmacokinetic models
• Performing population fit tasks using sbionlmefit or sbionlmefitsa
• Performing individual fit tasks using sbionlinfit

sbiofittool opens a simplified configuration of the SimBiology desktop. However, all desktop
functionality is available.

If you opened the SimBiology desktop using the simbiology function, then sbiofittool changes
the desktop layout to optimize it for population fitting.

See Also
simbiology

Introduced in R2011a

1 Functions

1-126

sbiogetmodel
Get model object that generated simulation data

Syntax
modelObj = sbiogetmodel(simDataObj)

Arguments

simDataObj SimData object returned by the function sbiosimulate or by
sbioensemblerun.

modelObj Model object associated with the SimData object.

Description
modelObj = sbiogetmodel(simDataObj) returns the SimBiology model (modelObj) associated
with the results from a simulation run (simDataObj). You can use this function to find the model
object associated with the specified SimData object when you load a project with several model
objects and SimData objects.

If the SimBiology model used to generate the SimData object (simDataObj) is not currently loaded,
modelObj is empty.

Examples
Retrieve the model object that generated the SimData object.

1 Create a model object, simulate, and then return the results as a SimData object.

modelObj = sbmlimport('oscillator');
simDataObj = sbiosimulate(modelObj);

2 Get the model that generated the simulation results.

modelObj2 = sbiogetmodel(simDataObj)
SimBiology Model - Oscillator

Model Components:
 Models: 0
 Parameters: 0
 Reactions: 42
 Rules: 0
 Species: 23

3 Check that the two models are the same.

modelObj == modelObj2
ans =
 1

 sbiogetmodel

1-127

See Also
sbiosimulate

Introduced before R2006a

1 Functions

1-128

sbiolasterror
SimBiology last error message

Syntax
sbiolasterror
diagstruct = sbiolasterror
sbiolasterror([])
sbiolasterror(diagstruct)

Arguments
diagstruct The diagnostic structure holding Type, Message ID, and Message for the

errors.

Description
sbiolasterror or diagstruct = sbiolasterror return a SimBiology diagnostic structure array
containing the last error(s) generated by the software. The fields of the diagnostic structure are:

Type 'error'
MessageID The message ID for the error (for example,

'SimBiology:ConfigSetNameClash')
Message The error message

sbiolasterror([]) resets the SimBiology last error so that it will return an empty array until the
next SimBiology error is encountered.

sbiolasterror(diagstruct) will set the SimBiology last error(s) to those specified in the
diagnostic structure (diagstruct).

Examples
This example shows how to use verify and sbiolasterror.

1 Import a model.

 a = sbmlimport('radiodecay.xml')

 a =

 SimBiology Model - RadioactiveDecay

 Model Components:
 Compartments: 1
 Events: 0
 Parameters: 1
 Reactions: 1
 Rules: 0

 sbiolasterror

1-129

 Species: 2
 Observables: 0

2 Change the ReactionRate of a reaction to make the model invalid.

 a.reactions(1).reactionrate = 'x*y'

a =

 SimBiology Model - RadioactiveDecay

 Model Components:
 Compartments: 1
 Events: 0
 Parameters: 1
 Reactions: 1
 Rules: 0
 Species: 2
 Observables: 0

3 Use the function verify to validate the model.

 a.verify

Error using SimBiology.Model/verify
--> Error reported from Expression Validation:
Name 'y' in reaction 'Reaction1' does not uniquely refer to any species, parameters, or
compartments according to SimBiology precedence rules.

4 Retrieve the error diagnostic struct.

 p = sbiolasterror

p =

 struct with fields:

 Type: 'Error'
 MessageID: 'SimBiology:ReactionObjectDoesNotResolve'
 Message: 'Name 'y' in reaction 'Reaction1' does not uniquely refer to any species, parameters, or compartments according to SimBiology precedence rules.↵'

5 Reset sbiolasterror.

sbiolasterror([]);

6 Set sbiolasterror to the diagnostic structure p.

sbiolasterror(p);

See Also
sbiolastwarning | verify

Topics
sbioroot on page 1-228

Introduced in R2006a

1 Functions

1-130

sbiolastwarning
SimBiology last warning message

Syntax
sbiolastwarning
diagstruct = sbiolastwarning
sbiolastwarning([])
sbiolastwarning(diagstruct)

Arguments
diagstruct The diagnostic structure holding Type, Message ID, and Message for the

warnings.

Description
sbiolastwarning or diagstruct = sbiolastwarning return a SimBiology diagnostic structure
array containing the last warnings generated by the software. The fields of the diagnostic structure
are:

Type 'warning'
MessageID The message ID for the warning (for example,

'SimBiology:DANotPerformedReactionRate')
Message The warning message

sbiolastwarning([]) resets the SimBiology last warning so that it will return an empty array until
the next SimBiology warning is encountered.

sbiolastwarning(diagstruct) will set the SimBiology last warnings to those specified in the
diagnostic structure (diagstruct).

See Also
sbiolasterror | verify

Topics
sbioroot on page 1-228

Introduced in R2006a

 sbiolastwarning

1-131

sbioloadproject
Load project from file

Syntax
sbioloadproject('projFilename')
sbioloadproject ('projFilename','variableName')
sbioloadproject projFilename variableName1 variableName2...
s = sbioloadproject (...)

Description
sbioloadproject('projFilename') loads a SimBiology project from a project file
(projFilename). If no extension is specified, sbioloadproject assumes a default extension
of .sbproj. Alternatively, the command syntax is sbioloadproject projFilename.

sbioloadproject ('projFilename','variableName') loads only the variable variableName
from the project file.

sbioloadproject projFilename variableName1 variableName2... loads the specified
variables from the project.

s = sbioloadproject (...) returns the contents of projFilename in a variable s. s is a
struct containing fields matching the variables retrieved from the SimBiology project.

You can display the contents of the project file using the sbiowhos command.

See Also
sbioaddtolibrary | sbioremovefromlibrary | sbiosaveproject | sbiowhos

Topics
sbiosaveproject on page 1-245
sbiowhos on page 1-311
sbioaddtolibrary on page 1-16
sbioremovefromlibrary on page 1-224

Introduced in R2006a

1 Functions

1-132

sbiomodel
Construct model object

Syntax
modelObj = sbiomodel('NameValue')

modelObj = sbiomodel(...'PropertyName', PropertyValue...)

Arguments
NameValue Required property to specify a unique name for a model object.

Enter a character vector or string.
PropertyName Property name for a Model object from “Property Summary” on page

1-135.
PropertyValue Property value. Valid value for the specified property.

Description
modelObj = sbiomodel('NameValue') creates and returns a SimBiology model object
(modelObj). In the model object, this method assigns a value (NameValue) to the property Name.

modelObj = sbiomodel(...'PropertyName', PropertyValue...) defines optional
properties. The name-value pairs can be in any format supported by the function set.

Simulate modelObj with the function sbiosimulate.

Add objects to a model object using the methods addkineticlaw on page 2-42, addparameter
on page 2-74, addreaction on page 2-82, addrule on page 2-87, and addspecies on page 2-
106.

All SimBiology model objects can be retrieved from the SimBiology root object. A SimBiology model
object has its Parent property set to the SimBiology root object.

 sbiomodel

1-133

Method Summary

addcompartment (model,
compartment)

Create compartment object

addconfigset (model) Create configuration set object and add to model object
adddose (model) Add dose object to model
addevent (model) Add event object to model object
addobservable Add observable object to SimBiology model
addparameter (model, kineticlaw)

Create parameter object and add to model or kinetic law
object

addreaction (model) Create reaction object and add to model object
addrule (model) Create rule object and add to model object
addspecies (model, compartment)

Create species object and add to compartment object within
model object

addvariant (model) Add variant to model
copyobj Copy SimBiology object and its children
createSimFunction (model) Create SimFunction object
delete Delete SimBiology object
display Display summary of SimBiology object
export (model) Export SimBiology models for deployment and standalone

applications
findUnusedComponents (model) Find unused species, parameters, and compartments in a

model
get Get SimBiology object properties
getadjacencymatrix (model) Get adjacency matrix from model object
getconfigset (model) Get configuration set object from model object
getdose (model) Return SimBiology dose object
getequations Return system of equations for model object
getstoichmatrix (model) Get stoichiometry matrix from model object
getvariant (model) Get variant from model
removeconfigset (model) Remove configuration set from model
removedose (model) Remove dose object from model
removevariant (model) Remove variant from model
rename Rename object and update expressions
reorder (model, compartment, kinetic
law)

Reorder component lists

set Set SimBiology object properties
setactiveconfigset (model) Set active configuration set for model object
verify (model, variant) Validate and verify SimBiology model

1 Functions

1-134

Property Summary

Compartments Array of compartments in model or compartment
Events Contain all event objects
Name Specify name of object
Notes HTML text describing SimBiology object
Observables Array of observable objects
Parameters Array of parameter objects
Parent Indicate parent object
Reactions Array of reaction objects
Rules Array of rules in model object
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

Examples
1 Create a SimBiology model object.

modelObj = sbiomodel('cell', 'Tag', 'mymodel');
2 List all modelObj properties and the current values.

get(modelObj)

MATLAB returns:

 Annotation: ''
 Models: [0x1 double]
 Name: 'cell'
 Notes: ''
 Parameters: [0x1 double]
 Parent: [1x1 SimBiology.Root]
 Species: [0x1 double]
 Reactions: [0x1 double]
 Rules: [0x1 double]
 Tag: 'mymodel'
 Type: 'sbiomodel'
 UserData: []

3 Display a summary of modelObj contents.

modelObj

 SimBiology Model - cell

 Model Components:
 Models: 0
 Parameters: 0
 Reactions: 0
 Rules: 0
 Species: 0

 sbiomodel

1-135

See Also
model object | addcompartment | addconfigset | addevent | addkineticlaw |
addparameter | addreaction | addrule | addspecies | copyobj | get | sbioroot |
sbiosimulate | set

Introduced in R2006a

1 Functions

1-136

sbiompgsa
Perform multiparametric global sensitivity analysis (requires Statistics and Machine Learning
Toolbox)

Syntax
mpgsaResults = sbiompgsa(modelObj,params,classifiers)
mpgsaResults = sbiompgsa(modelObj,samples,classifiers)
mpgsaResults = sbiompgsa(modelObj,scenarios,classifiers)
mpgsaResults = sbiompgsa(simdata,samples,classifiers)
mpgsaResults = sbiompgsa(simdata,scenarios,classifiers)
mpgsaResults = sbiompgsa(___ ,Name,Value)

Description
mpgsaResults = sbiompgsa(modelObj,params,classifiers) performs a multiparametric
global sensitivity analysis (MPGSA on page 1-147) [1] of classifiers with respect to model
parameters params on a SimBiology model modelObj. params are model quantities (sensitivity
inputs) and classifiers define the expressions of model responses (model outputs).

mpgsaResults = sbiompgsa(modelObj,samples,classifiers) uses parameter samples to
perform a multiparametric global sensitivity analysis of classifiers.

mpgsaResults = sbiompgsa(modelObj,scenarios,classifiers) draws samples from
scanarios, a SimBiology.Scenarios object, to perform the analysis.

mpgsaResults = sbiompgsa(simdata,samples,classifiers) uses model simulation data
simdata to perform a multiparametric global sensitivity analysis of classifiers.

mpgsaResults = sbiompgsa(simdata,scenarios,classifiers) uses samples specified in
scenarios, a SimBiology.Scenarios object.

mpgsaResults = sbiompgsa(___ ,Name,Value) uses additional options specified by one or
more name-value pair arguments. Available name-value arguments differ depending on which syntax
you are using.

Examples

Perform Multiparametric Global Sensitivity Analysis (MPGSA)

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Get the active configset and set the target occupancy (TO) as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Simulate the model and plot the TO profile.

 sbiompgsa

1-137

sbioplot(sbiosimulate(m1,cs));

Define an exposure (area under the curve of the TO profile) threshold for the target occupancy.

classifier = 'trapz(time,TO) <= 0.1';

Perform MPGSA to find sensitive parameters with respect to the TO. Vary the parameter values
between predefined bounds to generate 10,000 parameter samples.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
rng(0,'twister'); % For reproducibility
params = {'kel','ksyn','kdeg','km'};
bounds = [0.1, 1;
 0.1, 1;
 0.1, 1;
 0.1, 1];
mpgsaResults = sbiompgsa(m1,params,classifier,Bounds=bounds,NumberSamples=10000)

mpgsaResults =
 MPGSA with properties:

 Classifiers: {'trapz(time,TO) <= 0.1'}
 KolmogorovSmirnovStatistics: [4x1 table]
 ECDFData: {4x4 cell}
 SignificanceLevel: 0.0500
 PValues: [4x1 table]
 SupportHypothesis: [10000x1 table]

1 Functions

1-138

 ParameterSamples: [10000x4 table]
 Observables: {'TO'}
 SimulationInfo: [1x1 struct]

Plot the quantiles of the simulated model response.

plotData(mpgsaResults,ShowMedian=true,ShowMean=false);

Plot the empirical cumulative distribution functions (eCDFs) of the accepted and rejected samples.
Except for km, none of the parameters shows a significant difference in the eCDFs for the accepted
and rejected samples. The km plot shows a large Kolmogorov-Smirnov (K-S) distance between the
eCDFs of the accepted and rejected samples. The K-S distance is the maximum absolute distance
between two eCDFs curves.

h = plot(mpgsaResults);
% Resize the figure.
pos = h.Position(:);
h.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

 sbiompgsa

1-139

To compute the K-S distance between the two eCDFs, SimBiology uses a two-sided test based on the
null hypothesis that the two distributions of accepted and rejected samples are equal. See kstest2
(Statistics and Machine Learning Toolbox) for details. If the K-S distance is large, then the two
distributions are different, meaning that the classification of the samples is sensitive to variations in
the input parameter. On the other hand, if the K-S distance is small, then variations in the input
parameter do not affect the classification of samples. The results suggest that the classification is
insensitive to the input parameter. To assess the significance of the K-S statistic rejecting the null-
hypothesis, you can examine the p-values.

bar(mpgsaResults)

1 Functions

1-140

The bar plot shows two bars for each parameter: one for the K-S distance (K-S statistic) and another
for the corresponding p-value. You reject the null hypothesis if the p-value is less than the
significance level. A cross (x) is shown for any p-value that is almost 0. You can see the exact p-value
corresponding to each parameter.

[mpgsaResults.ParameterSamples.Properties.VariableNames',mpgsaResults.PValues]

ans=4×2 table
 Var1 trapz(time,TO) <= 0.1
 ________ _____________________

 {'kel' } 0.0021877
 {'ksyn'} 1
 {'kdeg'} 0.99983
 {'km' } 0

The p-values of km and kel are less than the significance level (0.05), supporting the alternative
hypothesis that the accepted and rejected samples come from different distributions. In other words,
the classification of the samples is sensitive to km and kel but not to other parameters (kdeg and
ksyn).

You can also plot the histograms of accepted and rejected samples. The historgrams let you see
trends in the accepted and rejected samples. In this example, the histogram of km shows that there
are more accepted samples for larger km values, while the kel histogram shows that there are fewer
rejected samples as kel increases.

 sbiompgsa

1-141

h2 = histogram(mpgsaResults);
% Resize the figure.
pos = h2.Position(:);
h2.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

Restore the warning settings.

warning(warnSettings);

Input Arguments
modelObj — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object.

params — Names of model parameters, species, or compartments
character vector | string | string vector | cell array of character vectors

1 Functions

1-142

Names of model parameters, species, or compartments, specified as a character vector, string, string
vector, or cell array of character vectors.
Example: ["k1","k2"]
Data Types: char | string | cell

simdata — Model simulation data
vector of SimData objects

Model simulation data, specified as a vector of SimData objects.

scenarios — Source for drawing samples
SimBiology.Scenarios object

Source for drawing samples, specified as a SimBiology.Scenarios object.

Note The object must not contain doses or variants as its entries.

classifiers — Expressions of model responses
character vector | string | string vector | cell array of character vectors

Expressions of model responses, specified as a character vector, string, string vector, or cell array of
character vectors. Specify expressions referencing simulated model quantities, observables, time, or
MATLAB functions that are on the path.

Each classifier must evaluate to a logical vector of the same length as the number of parameter
samples. Entities, such as model quantities or observables, referenced in a classifier expression are
evaluated as a matrix with columns containing time courses of the simulated quantity values. Each
column represents one sample. Each row represents one output time. For details, see
“Multiparametric Global Sensitivity Analysis (MPGSA)” on page 1-147.

If you specify a SimData object as the first input, each quantity or observable referenced by the
classifier must resolve to a logged component in the SimData object.

You can formulate a classifier as a modeling question such as whether a model parameter have an
effect on the model response exceeding or falling below a target threshold. For example, the
following classifier defines an exposure (area under the curve) threshold for the target occupancy TO:
trapz(time,TO) <= 0.1. Another classifier, used by the authors in [1], measures the deviation of
the averaged model response from the mean model response over the parameter domain:
mean(TO,1) < mean(TO,'all'). Here mean(TO,1) computes the averaged model response
across time for each sample of the sensitivity inputs, and mean(TO,'all') computes the mean value
of the TO response across all output times and all samples.
Example: "max(Central.Drug(time > 1,:),[],1) <= 7"
Data Types: char | string | cell

samples — Sampled values of model quantities
table

Sampled values of model quantities, specified as a table. The variable names of the table indicate the
quantity names.
Data Types: table

 sbiompgsa

1-143

Name-Value Pair Arguments

Specify one or more comma-separated pairs of Name,Value arguments. Name is the argument name
and Value is the corresponding value. Name must appear inside quotes. You can specify several name
and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note Depending on which syntax you use, available name-value pairs differ.

Example: mpgsaResults = sbiompgsa(m1,{'k1','k2'},classifier,'Bounds',[0.5 5;0.1
1]) specifies parameter bounds for k1 and k2.

For the First Syntax

Bounds — Parameter bounds
numeric matrix

Parameter bounds, specified as a numeric matrix with two columns. The first column contains the
lower bounds and the second column contains the upper bounds. The number of rows must be equal
to the number of parameters in params.

If a parameter has a nonzero value, the default bounds are ±10% of the value. If the parameter value
is zero, the default bounds are [0 1].
Example: [0.5 5]
Data Types: double

NumberSamples — Number of samples drawn to perform multiparametric global sensitivity
analysis
1000 (default) | positive integer

Number of samples drawn to perform multiparametric global sensitivity analysis, specified as the
comma-separated pair consisting of 'NumberSamples' and a positive integer.
Data Types: double

SamplingMethod — Method to generate parameter samples
'Sobol' (default) | character vector | string

Method to generate parameter samples, specified as a character vector or string. Valid options are:

• 'Sobol' — Use the low-discrepancy Sobol sequence to generate samples.
• 'Halton' — Use the low-discrepancy Halton sequence to generate samples.
• 'lhs' — Use the low-discrepancy Latin hypercube samples.
• 'random' — Use uniformly distributed random samples.

Data Types: char | string

SamplingOptions — Options for sampling method
struct

Options for the sampling method, specified as a scalar struct. The options differ depending on the
sampling method: sobol, halton, or lhs.

1 Functions

1-144

For sobol and halton, specify each field name and value of the structure according to each name-
value argument of the sobolset or haltonset function. SimBiology uses the default value of 1 for
the Skip argument for both methods. For all other name-value arguments, the software uses the
same default values of sobolset or haltonset. For instance, set up a structure for the Leap and
Skip options with nondefault values as follows.

s1.Leap = 50;
s1.Skip = 0;

For lhs, there are three samplers that support different sampling options.

• If you specify a covariance matrix, SimBiology uses lhsnorm for sampling. SamplingOptions
argument is not allowed.

• Otherwise, use the field name UseLhsdesign to select a sampler.

• If the value is true, SimBiology uses lhsdesign. You can use the name-value arguments of
lhsdesign to specify the field names and values.

• If the value is false (default), SimBiology uses a nonconfigurable Latin hypercube sampler
that is different from lhsdesign. This sampler does not require Statistics and Machine
Learning Toolbox. SamplingOptions cannot contain any other options, except
UseLhsdesign.

For instance, set up a structure to use lhsdesign with the Criterion and Iterations options.

s2.UseLhsdesign = true;
s2.Criterion = "correlation";
s2.Iterations = 10;

You cannot specify this argument when a SimBiology.Scenarios object is an input.

sbiompgsa ignores this argument if you are also specifying a table of samples as the second input.

Distributions — Probability distributions
prob.UniformDistribution (default) | prob.ProbabilityDistribution object | vector of
prob.ProbabilityDistribution objects

Probability distributions used to draw samples, specified as a prob.ProbabilityDistribution
object or vector of these objects. Specify a scalar prob.ProbabilityDistribution or vector of
length N, where N is the number of input parameters. You can create distribution objects to sample
from various distributions, such as uniform, normal, or lognormal distributions, using makedist.

If you specify a scalar prob.ProbabilityDistribution object, and there are multiple input
parameters, sbiompgsa uses the same distribution object to draw samples for each parameter.

You cannot specify this argument together with “Bounds” on page 1-0 .

You cannot specify this argument when a SimBiology.Scenarios object is an input.

sbiompgsa ignores this argument when a table of samples is an input.

For the First and Second Syntaxes

Doses — Doses to use during simulations
ScheduleDose object | RepeatDose object | vector of dose objects

 sbiompgsa

1-145

Doses to use during model simulations, specified as a ScheduleDose or RepeatDose object or a
vector of dose objects.

Variants — Variants to apply before simulations
variant object | vector of variant objects

Variants to apply before model simulations, specified as a variant object or vector of variant objects.

When you specify multiple variants with duplicate specifications for a property's value, the last
occurrence for the property value in the array of variants is used during simulation.

StopTime — Simulation stop time
nonnegative scalar

Simulation stop time, specified as a nonnegative scalar. If you specify neither StopTime nor
OutputTimes, the function uses the stop time from the active configuration set of the model. You
cannot specify both StopTime and OutputTimes.
Data Types: double

UseParallel — Flag to run model simulations in parallel
false (default) | true

Flag to run model simulations in parallel, specified as true or false. When the value is true and
Parallel Computing Toolbox is available, the function runs simulations in parallel.
Data Types: logical

Accelerate — Flag to turn on model acceleration
true (default) | false

Flag to turn on model acceleration, specified as true or false.
Data Types: logical

For All Syntaxes

OutputTimes — Simulation output times
numeric vector

Simulation output times, specified as the comma-separated pair consisting of 'OutputTimes' and a
numeric vector. The function computes model responses at these output time points. You cannot
specify both StopTime and OutputTimes. By default, the function uses the output times of the first
model simulation.
Example: [0 1 2 3.5 4 5 5.5]
Data Types: double

SignificanceLevel — Significance level for Kolmogorov-Smirnov test
0.05 (default) | numeric scalar between 0 and 1

Significance level for Kolmogorov-Smirnov test, specified as the comma-separated pair consisting of
'SignificanceLevel' and a numeric scalar between 0 and 1. For details, see “Two-Sample
Kolmogorov-Smirnov Test” (Statistics and Machine Learning Toolbox).
Example: 0.1

1 Functions

1-146

Data Types: double

InterpolationMethod — Method for interpolation of model simulations
"interp1q" (default) | character vector | string

Method for interpolation of model responses to a common set of output times, specified as a
character vector or string. The valid options follow.

• "interp1q" — Use the interp1q function.
• Use the interp1 function by specifying one of the following methods:

• "nearest"
• "linear"
• "spline"
• "pchip"
• "v5cubic"

• "zoh" — Specify zero-order hold.

Data Types: char | string

Output Arguments
mpgsaResults — Multiparametric global sensitivity analysis results
SimBiology.gsa.MPGSA object

Multiparametric global sensitivity analysis results, returned as a SimBiology.gsa.MPGSA object.
The object also contains model simulation data used to perform MPGSA.

More About
Multiparametric Global Sensitivity Analysis (MPGSA)

Multiparametric global sensitivity analysis lets you study the relative importance of parameters with
respect to a classifier defined by model responses. A classifier is an expression of model responses
that evaluates to a logical vector. sbiompgsa implements the MPSA method described by Tiemann
et. al. (see supporting information text S2) [1].

sbiompgsa performs the following steps.

1 Generate N parameter samples using a sampling method. sbiompgsa stores these samples as a
table in a property, mpgsaResults.ParameterSamples, of the returned object. The number of
rows is equal to the number of samples and the number of columns is equal to the number of
input parameters.

Tip You can specify N and the sampling method using the 'NumberSamples' and
'SamplingMethod' name-value pair arguments, respectively, when you call sbiompgsa.

2 Calculate the model response by simulating the model for each parameter set, which is a single
realization of the model parameter values. In this case, a parameter set is equal to a row in the
ParameterSamples table.

 sbiompgsa

1-147

3 Evaluate the classifier. A classifier is an expression that evaluates to a logical vector. For
instance, if your model response is the AUC of plasma drug concentration, you can define a
classifier with a toxicity threshold of 0.8 where the AUC of the drug concentration above that
threshold is considered toxic.

4 Parameter sets are then separated into two different groups, such as accepted (nontoxic) and
rejected (toxic) groups.

5 For each input parameter, compute the empirical cumulative distribution functions (ecdf) of
accepted and rejected sample values.

6 Compare the two eCDFs of accepted and rejected groups using the “Two-Sample Kolmogorov-
Smirnov Test” (Statistics and Machine Learning Toolbox) to compute the Kolmogorov-Smirnov
distance. The default significance level of the Kolmogorov-Smirnov test is 0.05. If two eCDFs are
similar, the distance is small, meaning the model response is not sensitive with respect to the
input parameter. If two eCDFs are different, the distance is large, meaning the model response is
sensitive to the parameter.

Note The Kolmogorov-Smirnov test assumes that the samples follow a continuous distribution.
Make sure that the eCDF plots are continuous as you increase the number of samples. If eCDFs
are not continuous but step-like in the limit of infinite samples, then the results might not reflect
the true sensitivities.

References
[1] Tiemann, Christian A., Joep Vanlier, Maaike H. Oosterveer, Albert K. Groen, Peter A. J. Hilbers, and

Natal A. W. van Riel. “Parameter Trajectory Analysis to Identify Treatment Effects of
Pharmacological Interventions.” Edited by Scott Markel. PLoS Computational Biology 9, no. 8
(August 1, 2013): e1003166. https://doi.org/10.1371/journal.pcbi.1003166.

See Also
SimBiology.gsa.MPGSA | sbiosobol | sbioelementaryeffects | ecdf | kstest2 |
Observable

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2020a

1 Functions

1-148

sbionca
Compute noncompartmental analysis (NCA) parameters (requires Statistics and Machine Learning
Toolbox)

Syntax
ncaparameters = sbionca(data,opt)

Description
ncaparameters = sbionca(data,opt) computes NCA parameters from the concentration-time
data. The options object opt defines the data columns and other calculation options.
ncaparameters is a table of calculated NCA parameter values for each group.

Examples

Compute NCA Parameters from Concentration-Time Data

Load a synthetic data set that contains the drug concentration measurements of four individuals after
an IV bolus dose.

load data1.mat

Set the dose amounts to NaN at time points when no dose was administered.

data1.Dose(data1.Dose(:) == 0) = NaN;

Display the data.

sbiotrellis(data1,'ID','Time','DrugConc','Marker','o','LineStyle','--');

 sbionca

1-149

Categorize the data columns using an NCA options object.

opt = sbioncaoptions;
opt.groupColumnName = 'ID';
opt.concentrationColumnName = 'DrugConc';
opt.timeColumnName = 'Time';
opt.IVDoseColumnName = 'Dose';

Compute NCA parameters for each individual.

ncaparameters = sbionca(data1,opt);

Display the first few columns of the table. Each row of ncaparameters table represents an
individual (or group), and each column lists the corresponding NCA parameter value.

ncaparameters(:,1:15)

ans=4×15 table
 ID doseSchedule administrationRoute Lambda_Z R2 adjusted_R2 Num_points AUC_0_last Tlast C_max C_max_Dose T_max MRT T_half AUC_infinity
 __ ____________ ___________________ ________ _______ ___________ __________ __________ _____ ______ __________ _____ ______ ______ ____________

 1 {'Single'} {'IVBolus'} 0.57893 0.99991 0.9999 11 143.61 48 74.412 1488.2 0 1.5408 1.1973 143.61
 2 {'Single'} {'IVBolus'} 0.66798 0.99998 0.99998 11 299.37 48 191.96 1919.6 0 1.3352 1.0377 299.37
 3 {'Single'} {'IVBolus'} 0.62124 0.99999 0.99999 11 766.5 48 411.06 1644.2 0 1.4476 1.1157 766.5
 4 {'Single'} {'IVBolus'} 0.58011 0.99995 0.99995 11 1301.8 48 648.33 1296.7 0 1.5721 1.1949 1301.8

1 Functions

1-150

You can also specify a custom time range to compute T_max and C_max within that time range, say
from time = 0 to 20. You can do so by setting the C_max_ranges property as a cell array of two-
element row vector.

opt.C_max_ranges = {[5.5 20]};
ncaparameters2 = sbionca(data1,opt);

The function reports the T_max and C_max values within the range by adding two new columns:
T_max_5_5__20 and C_max_5_5__20. Note that in the names of these two columns, the last time point
is preceded by two consecutive underscores (__).

ncaparameters2.T_max_5_5__20(:)

ans = 4×1

 6
 6
 6
 6

ncaparameters2.C_max_5_5__20(:)

ans = 4×1

 2.2719
 3.0213
 10.0233
 19.9006

Similarly, you can specify a custom time range to compute the partial AUC value for each group.

opt.PartialAreas = {[0 20]};
ncaparameters3 = sbionca(data1,opt);
ncaparameters3.AUC_0__20(:)

ans = 4×1
103 ×

 0.1436
 0.2994
 0.7665
 1.3017

You can also specify multiple time ranges for C_max_ranges and PartialAreas.

opt.C_max_ranges = {[0 20],[0 10],[0 15]};
opt.PartialAreas = {[0 12],[0 30]};
ncaparameters4 = sbionca(data1,opt);

Input Arguments
data — Concentration-time data
table | dataset

 sbionca

1-151

Concentration-time data for NCA parameter computation, specified as a table or dataset.
Example: concData

opt — Options object to define data columns and calculation options
options object

Options object to define data columns and calculation options, specified as an NCA options object.
Use sbioncaoptions to create this object and set the options.
Example: ncaopt

Output Arguments
ncaparameters — Calculated NCA parameters
table

Calculated NCA parameters, returned as a table. For details on how the parameters are computed,
see “Noncompartmental Analysis”.

See Also
sbioncaoptions

Topics
“Noncompartmental Analysis”
“Importing Data — Supported Files and Data Types”
“Create Data File with SimBiology Definitions”

Introduced in R2017b

1 Functions

1-152

sbioncaoptions
Specify options to calculate noncompartmental analysis (NCA) parameters

Syntax
opt = sbioncaoptions

Description
opt = sbioncaoptions returns an NCA options object. Use dot notation to set the object
properties for the options.

Examples

Compute NCA Parameters from Concentration-Time Data

Load a synthetic data set that contains the drug concentration measurements of four individuals after
an IV bolus dose.

load data1.mat

Set the dose amounts to NaN at time points when no dose was administered.

data1.Dose(data1.Dose(:) == 0) = NaN;

Display the data.

sbiotrellis(data1,'ID','Time','DrugConc','Marker','o','LineStyle','--');

 sbioncaoptions

1-153

Categorize the data columns using an NCA options object.

opt = sbioncaoptions;
opt.groupColumnName = 'ID';
opt.concentrationColumnName = 'DrugConc';
opt.timeColumnName = 'Time';
opt.IVDoseColumnName = 'Dose';

Compute NCA parameters for each individual.

ncaparameters = sbionca(data1,opt);

Display the first few columns of the table. Each row of ncaparameters table represents an
individual (or group), and each column lists the corresponding NCA parameter value.

ncaparameters(:,1:15)

ans=4×15 table
 ID doseSchedule administrationRoute Lambda_Z R2 adjusted_R2 Num_points AUC_0_last Tlast C_max C_max_Dose T_max MRT T_half AUC_infinity
 __ ____________ ___________________ ________ _______ ___________ __________ __________ _____ ______ __________ _____ ______ ______ ____________

 1 {'Single'} {'IVBolus'} 0.57893 0.99991 0.9999 11 143.61 48 74.412 1488.2 0 1.5408 1.1973 143.61
 2 {'Single'} {'IVBolus'} 0.66798 0.99998 0.99998 11 299.37 48 191.96 1919.6 0 1.3352 1.0377 299.37
 3 {'Single'} {'IVBolus'} 0.62124 0.99999 0.99999 11 766.5 48 411.06 1644.2 0 1.4476 1.1157 766.5
 4 {'Single'} {'IVBolus'} 0.58011 0.99995 0.99995 11 1301.8 48 648.33 1296.7 0 1.5721 1.1949 1301.8

1 Functions

1-154

You can also specify a custom time range to compute T_max and C_max within that time range, say
from time = 0 to 20. You can do so by setting the C_max_ranges property as a cell array of two-
element row vector.

opt.C_max_ranges = {[5.5 20]};
ncaparameters2 = sbionca(data1,opt);

The function reports the T_max and C_max values within the range by adding two new columns:
T_max_5_5__20 and C_max_5_5__20. Note that in the names of these two columns, the last time point
is preceded by two consecutive underscores (__).

ncaparameters2.T_max_5_5__20(:)

ans = 4×1

 6
 6
 6
 6

ncaparameters2.C_max_5_5__20(:)

ans = 4×1

 2.2719
 3.0213
 10.0233
 19.9006

Similarly, you can specify a custom time range to compute the partial AUC value for each group.

opt.PartialAreas = {[0 20]};
ncaparameters3 = sbionca(data1,opt);
ncaparameters3.AUC_0__20(:)

ans = 4×1
103 ×

 0.1436
 0.2994
 0.7665
 1.3017

You can also specify multiple time ranges for C_max_ranges and PartialAreas.

opt.C_max_ranges = {[0 20],[0 10],[0 15]};
opt.PartialAreas = {[0 12],[0 30]};
ncaparameters4 = sbionca(data1,opt);

Output Arguments
opt — Options to calculate NCA parameters
SimBiology.nca.Options object

 sbioncaoptions

1-155

Options to calculate NCA parameters, returned as a SimBiology.nca.Options object. The
properties of the object are classified into two groups, data classification options and parameter
calculation options.

Data Classification Options

Property Description
IVDoseColumnName Name of the data column that contains the IV

dose amount.
EVDoseColumnName Name of the data column that contains the

extravascular (EV) dose amount.
concentrationColumnName Name of the data column that contains the

measured concentrations.
timeColumnName Name of the data column that contains the time

points.
groupColumnName Name of the data column that contains the

grouping information. You can specify grouping
using two levels of hierarchy. Specify the outer
level of grouping in this column. Specify the inner
level of grouping (subgroups) in idColumnName.

If you specify idColumnName, then you must also
specify groupColumnName.

For example, consider data that contains three
groups, where each group contains four patients.
The group column labels the three groups, and
the ID column labels each patient.

idColumnName Name of the data column that contains the
grouping information. You can specify grouping
using two levels of hierarchy. Specify the inner
level of grouping (subgroups) in this column.
Specify the outer level of grouping in
groupColumnName.

If you specify idColumnName, then you must also
specify groupColumnName.

infusionRateColumnName Name of the data column that contains the
infusion rates.

1 Functions

1-156

Parameter Calculation Options

Property Description
LOQ Lower limit of quantization, a threshold below

which the values of dependent variable are
truncated to zero.

AdministrationRoute Drug administration route. Three types of
administration are supported: IVBolus,
IVInfusion, and ExtraVascular.

TAU Dosing interval for multiple-dosing data.
SparseData Boolean that indicates whether or not the values

of dependent variable are averaged between
subgroups to further populate a profile for a
group. Time values for each measurement across
subgroups (IDs) within a group must be identical.

Lambda_Z_Time_Min_Max Two-element row vector that specifies a custom
time range to compute the terminal rate constant
(Lambda_z). The time range applies to all groups;
you cannot specify a different time range for each
group. For details, see “Noncompartmental
Analysis”.

PartialAreas Cell array of one or more two-element row
vectors that specify one or more time ranges used
to compute the partial AUC values. You can
specify multiple rows for group-specific ranges,
where the number of rows equal the number of
groups. If there is only one row, the same time
ranges are used for all groups.

C_max_ranges Cell array of one or more two-element row
vectors that specify one or more time ranges used
to report the T_max,C_max pairs within the
specified ranges. You can specify multiple rows
for group-specific ranges, where the number of
rows equal the number of groups. If there is only
one row, the same time ranges are used for all
groups.

See Also
sbionca

Topics
“Noncompartmental Analysis”
“Importing Data — Supported Files and Data Types”
“Create Data File with SimBiology Definitions”

Introduced in R2017b

 sbioncaoptions

1-157

sbionlinfit
Perform nonlinear least-squares regression using SimBiology models (requires Statistics and Machine
Learning Toolbox software)

Note sbionlinfit will be removed in a future release. Use sbiofit instead.

Syntax
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates)
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates,
Name,Value)
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates,
optionStruct)
[results, SimDataI] = sbionlinfit(...)

Description
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates)
performs least-squares regression using the SimBiology model, modelObj, and returns estimated
results in the results structure.

results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates,
Name,Value) performs least-squares regression, with additional options specified by one or more
Name,Value pair arguments.

Following is an alternative to the previous syntax:

results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates,
optionStruct) specifies optionStruct, a structure containing fields and values used by the
options input structure to the nlinfit function.

[results, SimDataI] = sbionlinfit(...) returns simulations of the SimBiology model,
modelObj, using the estimated values of the parameters.

Input Arguments
modelObj

SimBiology model object used to fit observed data.

Note If using a model object containing active doses (that is, containing dose objects created using
the adddose method, and specified as active using the Active property of the dose object), be aware
that these active doses are ignored by the sbionlinfit function.

1 Functions

1-158

pkModelMapObject

PKModelMap object that defines the roles of the model components in the estimation. For details, see
PKModelMap object.

Note If using a PKModelMap object that specifies multiple doses, ensure each element in the Dosed
property is unique.

pkDataObj

PKData object that defines the data to use in fitting, and the roles of the data columns used for
estimation. For details, see PKData object.

Note For each subset of data belonging to a single group (as defined in the data column specified by
the GroupLabel property), the software allows multiple observations made at the same time. If this
is true for your data, be aware that:

• These data points are not averaged, but fitted individually.
• Different numbers of observations at different times cause some time points to be weighted more.

InitEstimates

Vector of initial parameter estimates for each parameter estimated in
pkModelMapObject.Estimated. The length of InitEstimates must equal at least the length of
pkmodelMapObject.Estimated. The elements of InitEstimates are transformed as specified by
the ParamTransform name-value pair argument.

optionStruct

Structure containing fields and values used by the options input structure to the nlinfit function.
The structure can also use the name-value pairs listed below as fields and values. Defaults for
optionStruct are the same as for the options input structure to nlinfit, except for:

• DerivStep — Default is the lesser of 1e-4, or the value of the
SolverOptions.RelativeTolerance property of the configuration set associated with
modelObj, with a minimum of eps^(1/3).

• FunValCheck — Default is off.

If you have Parallel Computing Toolbox, you can enable parallel computing for faster data fitting by
setting the name-value pair argument 'UseParallel' to true in the statset options structure as
follows:

parpool; % Open a parpool for parallel computing
opt = statset(...,'UseParallel',true); % Enable parallel computing
results = sbionlinfit(...,opt); % Perform data fitting

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 sbionlinfit

1-159

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

The Name,Value arguments are the same as the fields and values in the options structure accepted
by nlinfit. For a complete list, see the options input argument in the nlinfit reference page in
the Statistics and Machine Learning Toolbox documentation. The defaults for Name,Value
arguments are the same as for the options structure accepted by nlinfit, except for:

• DerivStep — Default is the lesser of 1e-4, or the value of the
SolverOptions.RelativeTolerance property of the configuration set associated with
modelObj, with a minimum of eps^(1/3).

• FunValCheck — Default is off.

Following are additional Name,Value arguments that you can use with sbionlinfit.

ParamTransform

Vector of integers specifying a transformation function for each estimated parameter. The
transformation function, f, takes estimate as an input and returns beta:

beta = f(estimate)

Each element in the vector must be one of these integers specifying the transformation for the
corresponding value of estimate:

• 0 – beta = estimate
• 1 – beta = log(estimate) (default)
• 2 – beta = probit(estimate)
• 3 – beta = logit(estimate)

ErrorModel

Character vector specifying the form of the error term. Default is 'constant'. Each model defines
the error using a standard normal (Gaussian) variable e, the function value f, and one or two
parameters a and b. Choices are:

• 'constant': y = f + a*e
• 'proportional': y = f + b*abs(f)*e
• 'combined': y = f + (a+b*abs(f))*e
• 'exponential': y = f*exp(a*e), or equivalently log(y) = log(f) + a*e

If you specify an error model, the results output argument includes an errorparam property,
which has the value:

• a for 'constant' and 'exponential'
• b for 'proportional'
• [a b] for 'combined'

Note If you specify an error model, you cannot specify weights.

1 Functions

1-160

Weights

Either of the following:

• A matrix of real positive weights, where the number of columns corresponds to the number of
responses. That is, the number of columns must equal the number of entries in the
DependentVarLabel property of pkDataObj. The number of rows in the matrix must equal the
number of rows in the data set.

• A function handle that accepts a vector of predicted response values and returns a vector of real
positive weights.

Note If using a function handle, the weights must be a function of the response (dependent
variable).

Default is no weights. If you specify weights, you cannot specify an error model.

Pooled

Logical specifying whether sbionlinfit does fitting for each individual (false) or if it pools all
individual data and does one fit (true). If set to true, sbionlinfit uses the same model
parameters for each dose level.

Default: false

Output Arguments
results

1-by-N array of objects, where N is the number of groups in pkDataObj. There is one object per
group, and each object contains these properties:

• ParameterEstimates — A dataset (Statistics and Machine Learning Toolbox)
array containing fitted coefficients and their standard errors.

• CovarianceMatrix — Estimated covariance matrix for the fitted coefficients.
• beta — Vector of scalars specifying the fitted coefficients in transformed space.
• R — Vector of scalars specifying the residual values, where R(i,j) is the residual for the ith time

point and the jth response in the group of data. If your model incudes:

• A single response, then R is a column vector of residual values associated with time points in
the group of data.

• Multiple responses, then R is a matrix of residual values associated with time points in the
group of data, for each response.

• J — Matrix specifying the Jacobian of the model, with respect to an estimated parameter, that is

J(i, j, k) =
∂yk
∂β j ti

where ti is the ith time point, βj is the jth estimated parameter in the transformed space, and yk is
the kth response in the group of data.

If your model incudes:

 sbionlinfit

1-161

• A single response, then J is a matrix of Jacobian values associated with time points in the
group of data.

• Multiple responses, then J is a 3-D array of Jacobian values associated with time points in the
group of data, for each response.

• COVB — Estimated covariance matrix for the transformed coefficients.
• mse — Scalar specifying the estimate of the error of the variance term.
• errorparam — Estimated parameters of the error model. This property is a scalar if you specify

'constant', 'exponential', or 'proportional' for the error model. This property is a two-
element vector if you specify 'combined' for the error model. This property is an empty array if
you specify weights using the 'Weights' name-value pair argument.

SimDataI

SimData object containing data from simulating the model using estimated parameter values for
individuals. This object includes observed states and logged states.

See Also
PKData object | PKModelDesign object | PKModelDesign object | PKModelMap object |
Model object | sbionlmefit | nlinfit | sbionlmefitsa

Introduced in R2009a

1 Functions

1-162

sbionlmefit
Estimate nonlinear mixed effects using SimBiology models (requires Statistics and Machine Learning
Toolbox software)

Note sbionlmefit will be removed in a future release. Use sbiofitmixed instead.

Syntax
results = sbionlmefit(modelObj, pkModelMapObject, pkDataObject,
InitEstimates)
results = sbionlmefit(modelObj, pkModelMapObject, pkDataObject, CovModelObj)
results = sbionlmefit(..., Name,Value)
results = sbionlmefit(..., optionStruct)
[results, SimDataI, SimDataP] = sbionlmefit(...)

Description
results = sbionlmefit(modelObj, pkModelMapObject, pkDataObject,
InitEstimates) performs nonlinear mixed-effects estimation using the SimBiology model,
modelObj, and returns estimated results in the results structure.

results = sbionlmefit(modelObj, pkModelMapObject, pkDataObject, CovModelObj)
specifies the relationship between parameters and covariates using CovModelObj, a
CovariateModel object. The CovariateModel object also provides the parameter transformation.

results = sbionlmefit(..., Name,Value) performs nonlinear mixed-effects estimation, with
additional options specified by one or more Name,Value pair arguments.

Following is an alternative to the previous syntax:

results = sbionlmefit(..., optionStruct) specifies optionStruct, a structure containing
fields and values, that are the name-value pair arguments accepted by nlmefit. The defaults for
optionStruct are the same as the defaults for the arguments used by nlmefit, with the exceptions
explained in “Input Arguments” on page 1-163.

[results, SimDataI, SimDataP] = sbionlmefit(...) returns simulation data of the
SimBiology model, modelObj, using the estimated values of the parameters.

Input Arguments
modelObject

SimBiology model object used to fit observed data.

Note If using a model object containing active doses (that is, containing dose objects created using
the adddose method, and specified as active using the Active property of the dose object), be aware
that these active doses are ignored by the sbionlmefit function.

 sbionlmefit

1-163

pkModelMapObject

PKModelMap object that defines the roles of the model components used for estimation. For details,
see PKModelMap on page 2-439 object.

Note If using a PKModelMap object that specifies multiple doses, ensure each element in the Dosed
property is unique.

pkDataObject

PKData object that defines the data to use in fitting, and the roles of the columns used for estimation.
pkDataObject must define target data for at least two groups. For details, see PKData object.

Note For each subset of data belonging to a single group (as defined in the data column specified by
the GroupLabel property), the software allows multiple observations made at the same time. If this
is true for your data, be aware that:

• These data points are not averaged, but fitted individually.
• Different numbers of observations at different times cause some time points to be weighted more.

InitEstimates

Vector of initial estimates for the fixed effects. The first P elements of InitEstimates correspond to
the fixed effects for each P element of pkModelMapObject.Estimated. Additional elements
correspond to the fixed effects for covariate factors. The first P elements of InitEstimates are
transformed as specified by the ParamTransform name-value pairs (log transformed by default).

CovModelObj

CovariateModel object that defines the relationship between parameters and covariates. For
details, see CovariateModel object.

Tip To simultaneously fit data from multiple dose levels, omit the random effect (eta) from the
expressions in the CovariateModel object.

optionStruct

Structure containing fields and values that are the name-value pairs accepted by the nlmefit
function. The defaults for optionStruct are the same as the defaults for the arguments used by
nlmefit, with the exceptions noted in “Name-Value Pair Arguments” on page 1-165.

If you have Parallel Computing Toolbox, you can enable parallel computing for faster data fitting by
setting the name-value pair argument 'UseParallel' to true in the statset options structure as
follows:

parpool; % Open a parpool for parallel computing
opt = statset(...,'UseParallel',true); % Enable parallel computing
results = sbionlmefit(...,'Options',opt); % Perform data fitting

1 Functions

1-164

Tip SimBiology software includes the sbiofitstatusplot function, which you can specify in the
OutputFcn field of the Options field. This function lets you monitor the status of fitting.

Tip To simultaneously fit data from multiple dose levels, use the InitEstimates input argument
and set the value of the REParamsSelect field to a 1-by-n logical vector, with all entries set to
false, where n equals the number of fixed effects.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

The sbionlmefit function uses the name-value pair arguments supported by the nlmefit function.

These nlmefit name-value pairs are hard-coded in sbionlmefit, and therefore, you cannot set
them:

• FEParamsSelect
• FEConstDesign
• FEGroupDesign
• FEObsDesign
• REConstDesign
• REGroupDesign
• REObsDesign
• Vectorization

If you provide a CovariateModel object as input to sbionlmefit, then these nlmefit name-value
pairs are computed from the covariate model, and therefore, you cannot set them:

• FEGroupDesign
• ParamTransform
• REParamsSelect

You can set all other nlmefit name-value pairs. For details, see the nlmefit reference page.

Be aware that the defaults for these nlmefit name-value pairs differ when used by sbionlmefit:

FEGroupDesign

Numeric array specifying the design matrix for each group.

Default: repmat(eye(P),[1 1 nGroups]), where P = the number of estimated parameters, and
nGroups = the number of groups in the observed data.

ParamTransform

Vector of integers specifying how the parameters are distributed.

 sbionlmefit

1-165

Note Do not use the ParamTransform option to specify parameter transformations when providing
a CovariateModel object to a fitting function. The CovariateModel object provides the parameter
transformation.

Default: Vector of ones, which specifies all parameters are log transformed.

OptimFun

Character vector specifying the optimization function used in maximizing the likelihood.

Default: fminunc, if you have Optimization Toolbox installed. Otherwise, the default is fminsearch.

Options

Structure containing multiple fields, including DerivStep, a scalar or vector specifying the relative
difference used in the finite difference gradient calculation, and FunValCheck, a logical specifying
whether to check for invalid values, such as NaN or Inf, from modelfun.

Default: The default for DerivStep is the lesser of 1e-4, or the value of the
SolverOptions.RelativeTolerance property of the configuration set associated with modelObj,
with a minimum of eps^(1/3). The default for FunValCheck is off.

Tip SimBiology software includes the sbiofitstatusplot function, which you can specify in the
OutputFcn field of the Options name-value pair input argument. This function lets you monitor the
status of fitting.

Tip To simultaneously fit data from multiple dose levels, use the InitEstimates input argument
and set the REParamsSelect name-value pair input argument to a 1-by-n logical vector, with all
entries set to false, where n equals the number of fixed effects.

Output Arguments
results

Structure containing these fields:

• FixedEffects — A dataset (Statistics and Machine Learning Toolbox) array
containing estimated fixed effects, including standard errors.

• RandomEffects — A dataset array containing sampled random effects for each group in the
observed data in pkDataObject.

• IndividualParametereEstimates — A dataset array containing estimated parameter values
for individuals, including random effects.

• PopulationParameterEstimates — A dataset array containing estimated parameter values
for the population, without random effects.

• RandomEffectCovarianceMatrix — A dataset array containing the estimated covariance
matrix of the random effects.

• EstimatedParameterNames — Cell array of character vectors specifying names of the estimated
parameters.

1 Functions

1-166

• CovariateNames — Cell array of character vectors specifying names of the covariates in
CovModelObj.

• FixedEffectsStruct — Structure containing the values of the estimated fixed effects.
• stats — Structure containing information such as AIC, BIC, and weighted residuals. For details

on the fields in this structure, see the stats structure in nlmefit in the Statistics and Machine
Learning Toolbox documentation. However, the fields in the stats structure returned by
sbionlmefit vary slightly from those returned by nlmefit, namely:

• ires, pres, iwres, pwres, and cwres each contain a matrix of raw or weighted residuals,
with the number of columns equal to the number of responses in the model.

• The stats structure returned by sbionlmefit includes an additional field, Observed. This
field contains a character vector or cell array of character vectors specifying the measured
responses that correspond to the columns in the matrices of the ires, pres, iwres, pwres,
and cwres fields. The Observed field is the same as the Observed property of the
PKModelMap input argument.

SimDataI

SimData object containing data from simulating the model using the estimated parameter values
for individuals. This object includes observed states and logged states.

SimDataP

SimData object containing data from simulating the model using the estimated parameter values
for the population. This object includes observed states and logged states.

See Also
Model object | nlmefit | PKData object | SimData object | PKModelDesign object |
PKModelMap object | sbiofitstatusplot | sbionlinfit | sbionlmefitsa

Introduced in R2009a

 sbionlmefit

1-167

sbionlmefitsa
Estimate nonlinear mixed effects with stochastic EM algorithm (requires Statistics and Machine
Learning Toolbox software)

Note sbionlmefitsa will be removed in a future release. Use sbiofitmixed instead.

Syntax
results = sbionlmefitsa(modelObj, pkModelMapObject, pkDataObject,
InitEstimates)
results = sbionlmefitsa(modelObj, pkModelMapObject, pkDataObject,
CovModelObj)
results = sbionlmefitsa(..., Name,Value)
results = sbionlmefitsa(..., optionStruct)
[results, SimDataI, SimDataP] = sbionlmefitsa(...)

Description
results = sbionlmefitsa(modelObj, pkModelMapObject, pkDataObject,
InitEstimates) performs estimations using the Stochastic Approximation Expectation-
Maximization (SAEM) algorithm for fitting population data with the SimBiology model, modelObj,
and returns the estimated results in the results structure.

results = sbionlmefitsa(modelObj, pkModelMapObject, pkDataObject,
CovModelObj) specifies the relationship between parameters and covariates using CovModelObj, a
CovariateModel object. The CovariateModel object also provides the parameter transformation.

results = sbionlmefitsa(..., Name,Value) performs estimations using the SAEM algorithm,
with additional options specified by one or more Name,Value pair arguments.

Following is an alternative to the previous syntax:

results = sbionlmefitsa(..., optionStruct) specifies optionStruct, a structure
containing fields and values, that are the name-value pair arguments accepted by nlmefitsa. The
defaults for optionStruct are the same as the defaults for the name-value pair arguments used by
nlmefitsa, with the exceptions explained in “Input Arguments” on page 1-168.

[results, SimDataI, SimDataP] = sbionlmefitsa(...) returns simulation data of the
SimBiology model, modelObj, using the estimated values of the parameters.

Input Arguments
modelObject

SimBiology model object used to fit observed data.

1 Functions

1-168

Note If using a model object containing active doses (that is, containing dose objects created using
the adddose method, and specified as active using the Active property of the dose object), be aware
that these active doses are ignored by the sbionlmefitsa function.

pkModelMapObject

PKModelMap object that defines the roles of the model components used for estimation. For details,
see PKModelMap object.

Note If using a PKModelMap object that specifies multiple doses, ensure each element in the Dosed
property is unique.

pkDataObject

PKData object that defines the data to use in fitting and the roles of the columns used for estimation.
pkDataObject must define target data for at least two groups. For details, see PKData object.

Note For each subset of data belonging to a single group (as defined in the data column specified by
the GroupLabel property), the software allows multiple observations made at the same time. If this
is true for your data, be aware that:

• These data points are not averaged, but fitted individually.
• Different numbers of observations at different times cause some time points to be weighted more.

InitEstimates

Vector of initial estimates for the fixed effects. The first P elements of InitEstimates correspond to
the fixed effects for each P element of pkModelMapObject.Estimated. Additional elements
correspond to the fixed effects for covariate factors. The first P elements of InitEstimates are
transformed as specified by the ParamTransform name-value pair argument (log transformed by
default).

CovModelObj

CovariateModel object that defines the relationship between parameters and covariates. For
details, see CovariateModel object.

optionStruct

Structure containing fields and values that are name-value pair arguments accepted by the
nlmefitsa function. The defaults for optionStruct are the same as the defaults for the arguments
used by nlmefitsa, with the exceptions noted in “Name-Value Pair Arguments” on page 1-170.

If you have Parallel Computing Toolbox, you can enable parallel computing for faster data fitting by
setting the name-value pair argument 'UseParallel' to true in the statset options structure as
follows:

parpool; % Open a parpool for parallel computing
opt = statset(...,'UseParallel',true); % Enable parallel computing
results = sbionlmefitsa(...,'Options',opt); % Perform data fitting

 sbionlmefitsa

1-169

Tip SimBiology software includes the sbiofitstatusplot function, which you can specify in the
OutputFcn field of the Options field. This function lets you monitor the status of fitting.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

The sbionlmefitsa function uses the name-value pair arguments supported by the nlmefitsa
function.

These nlmefitsa name-value pair arguments are hard-coded in sbionlmefitsa, and therefore, you
cannot set them:

• FEParamsSelect
• FEConstDesign
• FEGroupDesign
• FEObsDesign
• REConstDesign
• REGroupDesign
• REObsDesign
• Vectorization

If you provide a CovariateModel object as input to sbionlmefitsa, then these nlmefitsa name-
value pairs are computed from the covariate model, and therefore, you cannot set them:

• FEGroupDesign
• ParamTransform
• REParamsSelect

You can set all other nlmefitsa name-value pair arguments. For details on these arguments, see the
nlmefitsa reference page.

Be aware that the defaults for these nlmefitsa name-value pair arguments differ when used by
sbionlmefitsa:

FEGroupDesign

Numeric array specifying the design matrix for each group.

Default: repmat(eye(P),[1 1 nGroups]), where P = the number of estimated parameters, and
nGroups = the number of groups in the observed data.

ParamTransform

Vector of integers specifying how the parameters are distributed.

1 Functions

1-170

Note Do not use the ParamTransform option to specify parameter transformations when providing
a CovariateModel object to a fitting function. The CovariateModel object provides the parameter
transformation.

Default: Vector of ones, which specifies all parameters are log transformed.

OptimFun

Character vector specifying the optimization function used in maximizing the likelihood.

Default: fminunc, if you have Optimization Toolbox installed. Otherwise, the default is fminsearch.

Options

Structure containing multiple fields, including DerivStep, a scalar or vector specifying the relative
difference used in the finite difference gradient calculation, and FunValCheck, a logical specifying
whether to check for invalid values, such as NaN or Inf, from modelfun.

Default: The default for DerivStep is the lesser of 1e-4, or the value of the
SolverOptions.RelativeTolerance property of the configuration set associated with modelObj,
with a minimum of eps^(1/3). The default for FunValCheck is off.

Tip SimBiology software includes the sbiofitstatusplot function, which you can specify in the
OutputFcn field of the Options name-value pair input argument. This function lets you monitor the
status of fitting.

Output Arguments
results

Structure containing these fields:

• FixedEffects — A dataset (Statistics and Machine Learning Toolbox) array
containing estimated fixed effects, including standard errors.

• RandomEffects — A dataset array containing sampled random effects for each group in the
observed data in pkDataObject.

• IndividualParametereEstimates — A dataset array containing estimated parameter values
for individuals, including random effects.

• PopulationParameterEstimates — A dataset array containing estimated parameter values
for the population, without random effects.

• RandomEffectCovarianceMatrix — A dataset array containing the estimated covariance
matrix of the random effects.

• EstimatedParameterNames — Cell array of character vectors specifying names of the estimated
parameters.

• CovariateNames — Cell array of character vectors specifying names of the covariates in
CovModelObj.

• FixedEffectsStruct — Structure containing the values of the estimated fixed effects.
• stats — Structure containing information such as AIC, BIC, and weighted residuals. For details

on the fields in this structure, see the stats structure in nlmefitsa in the Statistics and

 sbionlmefitsa

1-171

Machine Learning Toolbox documentation. However, the fields in the stats structure returned by
sbionlmefitsa vary slightly from those returned by nlmefitsa, namely:

• ires, pres, iwres, pwres, and cwres each contain a matrix of raw or weighted residuals,
with the number of columns equal to the number of responses in the model.

• The stats structure returned by sbionlmefit includes an additional field, Observed. This
field contains a character vector or cell array of character vectors specifying the measured
responses that correspond to the columns in the matrices of the ires, pres, iwres, pwres,
and cwres fields. The Observed field is the same as the Observed property of the
PKModelMap input argument.

SimDataI

SimData object containing data from simulating the model using the estimated parameter values
for individuals. This object includes observed states and logged states.

SimDataP

SimData object containing data from simulating the model using the estimated parameter values
for the population. This object includes observed states and logged states.

See Also
Model object | nlmefitsa | PKData object | SimData object | PKModelDesign object |
PKModelMap object | sbiofitstatusplot | sbionlinfit | sbionlmefit

Introduced in R2010a

1 Functions

1-172

sbionmfiledef
NONMEM file definition object for sbionmimport

Syntax
nmdefObj = sbionmfiledef
nmdefObj = sbionmfiledef('PropertyName', PropertyValue)

Description
nmdefObj = sbionmfiledef creates an NONMEM® file definition object. The NONMEM file
definition object contains properties for specifying the NONMEM data items such as group, time, and
dependent variable. The NONMEM file definition object lets you configure the properties to the
column heading or the index of the column. Use the NONMEM file definition object in conjunction
with the sbionmimport function to import NONMEM formatted files for use in fitting.

nmdefObj = sbionmfiledef('PropertyName', PropertyValue) accepts one or more comma-
separated property name/value pairs. Specify PropertyName inside single quotes. To see the default
interpretations for NONMEM formatted files see “Support for Importing NONMEM Formatted Files”.

Input Arguments
Filename

If Filename extension is .xls or .xlsx it is assumed to be an Excel® file, otherwise it is assumed to
be a text file. sbionmfiledef file reads the file using the dataset constructor.

Property Name/Value Pairs

CompartmentLabel

Identifies the column in the NONMEM formatted file that contains the compartment. Specify the
header name as a character vector or specify the index number of the header. During import the
sbionmimport function uses the information in the column to interpret which compartment receives
a dose or measured an observation. The EventIDLabel property specifies whether the value is a
dose or an observation.

Default: ''

ContinuousCovariateLabels

Identifies the column in the NONMEM formatted file that contains continuous covariates. Specify the
header name as a character vector or specify the index number of the header.

Default: {}

DateLabel

Identifies the column in the NONMEM formatted file that contains the date. Specify the header name
as a character vector or specify the index number of the header. During import the sbionmimport

 sbionmfiledef

1-173

function uses the information in the column to interpret time information for each dose, response and
covariate measurement.

Default: ''

DependentVariableLabel

Identifies the column in the NONMEM formatted file that contains observations. Specify the header
name as a character vector or specify the index number of the header.

Default: ''

DoseLabel

Identifies the column in the NONMEM formatted file that contains the dosing information. Specify
the header name as a character vector or specify the index number of the header.

Default: ''

DoseIntervalLabel

Identifies the column in the NONMEM formatted file that contains the time between doses. Specify
the header name as a character vector or specify the index number of the header.

Default: ''

DoseRepeatLabel

Identifies the column in the NONMEM formatted file that contains the number of times (excluding
the initial dose) that the dose is repeated. Specify the header name as a character vector or specify
the index number of the header.

Default: ''

EventIDLabel

Identifies the column in the NONMEM formatted file that contains the event identification specifying
whether the value is a dose, observation, or covariate. Specify the header name as a character vector
or specify the index number of the header.

Default: ''

GroupLabel

Identifies the column in the NONMEM formatted file that contains the Group ID. Specify the header
name as a character vector or specify the index number of the header.

Default: ''

MissingDependentVariableLabel

Identifies the column in the NONMEM formatted file that contains information about whether a row
contains an observation event (0), or not (1). Specify the header name as a character vector or
specify the index number of the header.

Default: ''

1 Functions

1-174

RateLabel

Identifies the column in the NONMEM formatted file that contains the rate of infusion. Specify the
header name as a character vector or specify the index number of the header.

Default: ''

TimeLabel

Identifies the column in the NONMEM formatted file that contains the time or date of observation.
During import the sbionmimport function uses this information to interpret when a dose was given,
an observation or covariate measurement recorded. Specify the header name as a character vector or
specify the index number of the header.

Default: ''

Type

Identifies the object as 'NMFileDef', (Read-only).

Output Arguments
nmdefObj

Defines the meanings of the file column headings. It contains properties for specifying data items
such as group, time and date. TimeLabel and DependentVariableLabel must be specified.

Examples
Configure a NONMEM file definition object and import data from a NONMEM formatted file.

 % Configure a NMFileDef object.
 def = sbionmfiledef;
 def.CompartmentLabel = 'CPT';
 def.DoseLabel = 'AMT';
 def.DoseIntervalLabel = 'II';
 def.DoseRepeatLabel = 'ADDL';
 def.GroupLabel = 'ID';
 def.TimeLabel = 'TIME';
 def.DependentVariableLabel = 'DV';
 def.EventIDLabel = 'EVID';

 filename = 'C:\work\datafiles\dose.xls';
 ds = sbionmimport(filename, def);

Tips
• Use sbionmfiledef with sbionmimport if you want to apply NONMEM interpretation of

headers, and the data file has column header labels different from the table shown in “Support for
Importing NONMEM Formatted Files”.

• Use sbionmimport if the data file has column header labels identical to the table shown in
“Support for Importing NONMEM Formatted Files”.

 sbionmfiledef

1-175

See Also
sbionmimport

Topics
“Importing Data”
“Support for Importing NONMEM Formatted Files”

Introduced in R2010a

1 Functions

1-176

sbionmimport
Import NONMEM-formatted data

Syntax
data = sbionmimport('Filename')
data = sbionmimport (nmds)
data = sbionmimport('Filename', nmdefObj)
data = sbionmimport(_,'ParameterName',ParameterValue)
data = sbionmimport(nmds,nmdefObj)
[data, PKDataObj] = sbionmimport(_)

Description
data = sbionmimport('Filename') or data = sbionmimport (nmds) converts a NONMEM
formatted file, and assumes that the file is configured to use the following default values for column
headers: ADDL, AMT, CMT, DATE , DV, EVID, ID, II, MDV, RATE, TIME. See “Support for Importing
NONMEM Formatted Files” for more information on each of the headers.

data = sbionmimport('Filename', nmdefObj) imports a NONMEM formatted file named
Filename, into a SimBiology formatted dataset data using the meanings of the file column headings
defined in the NONMEM file definition object nmdefObj.

data = sbionmimport(_,'ParameterName',ParameterValue) accepts one or more comma-
separated name-value pairs that are accepted by the readtable method. If additional information is
required to read the file such as the delimiter, specify required name-value pairs. See readtable for
a list of supported name-value pairs.

data = sbionmimport(nmds,nmdefObj) reads a NONMEM formatted dataset nmds and returns
a groupedData object data. Each variable in nmds must be a column vector.

[data, PKDataObj] = sbionmimport(_) returns a PKData object, PKDataObj containing the
dataset data. The PKDataObj properties show the labels specified in data.

Input Arguments
Filename

If extension of Filename is .xls or .xlsx, sbionmimport assumes it to be an Excel file. Otherwise
sbionmimport assumes Filename is a text file. sbionmimport reads the file using dataset or
readtable.

nmds

NONMEM-formatted data, specified as a dataset, table, or groupedData object. Each variable
in nmds must be a column vector.

nmdefObj

nmdefObj defines the meanings of the file column headings. nmdefObj is a NONMEM file definition
object created using the sbionmfiledef function. It contains properties for specifying data items

 sbionmimport

1-177

such as group, time, and date. You must specify the TimeLabel and the DependentVariableLabel
properties.

When this argument is omitted or empty [], the default NONMEM interpretation is used.

Output Arguments
data

groupedData object. It contains a separate column for each dose and observation. The
Description property of data contains a list of warnings, if any, that occurred while constructing
data. To view the warnings, enter the following in the command line.

data.Properties.Description

PkDataObj

The PKData object defines the data to use in fitting and the roles of the columns used for estimation.
For more information, see PKData object.

Examples

Import a Dataset

Load a sample dataset.

load pheno ds;

The dataset contains 6 variables (columns). Display the names of these variables.

ds.Properties.VariableNames

ans = 1x6 cell
 {'ID'} {'TIME'} {'DOSE'} {'WEIGHT'} {'APGAR'} {'CONC'}

Define what these variables mean according to the NONMEM definition.

def = sbionmfiledef;
def.GroupLabel = 'ID';
def.TimeLabel = 'TIME';
def.DependentVariableLabel = 'CONC';
def.DoseLabel = 'DOSE'

def =
 NMFileDef with properties:

 CompartmentLabel: ''
 ContinuousCovariateLabels: {}
 DateLabel: ''
 DependentVariableLabel: 'CONC'
 DoseLabel: 'DOSE'
 DoseIntervalLabel: ''
 DoseRepeatLabel: ''
 EventIDLabel: ''

1 Functions

1-178

 GroupLabel: 'ID'
 MissingDependentVariableLabel: ''
 RateLabel: ''
 TimeLabel: 'TIME'
 Type: 'NMFileDef'

def.ContinuousCovariateLabels = {'WEIGHT', 'APGAR'};

Import the dataset.

data = sbionmimport(ds,def);

Import Data from a GroupedData Object

Load a sample dataset.

load pheno ds

Create a groupedData object.

grpData = groupedData(ds);

Use the groupedData object variable names and define what column headings or variables mean
according to the NONMEM definition.

def = sbionmfiledef;
def.GroupLabel = grpData.Properties.GroupVariableName;
def.TimeLabel = grpData.Properties.IndependentVariableName;
def.DependentVariableLabel = 'CONC';
def.DoseLabel = 'DOSE';
def.ContinuousCovariateLabels = {'WEIGHT', 'APGAR'};

Import the dataset.

data = sbionmimport(grpData,def);

See Also
sbionmfiledef

Topics
“Importing Data”
“Support for Importing NONMEM Formatted Files”

Introduced in R2010a

 sbionmimport

1-179

sbioparameterci
Compute confidence intervals for estimated parameters (requires Statistics and Machine Learning
Toolbox)

Syntax
ci = sbioparameterci(fitResults)
ci = sbioparameterci(fitResults,Name,Value)

Description
ci = sbioparameterci(fitResults) computes 95% confidence intervals for the estimated
parameters from fitResults, an NLINResults object or OptimResults object returned by
the sbiofit function. ci is a ParameterConfidenceInterval object that contains the computed
confidence intervals.

ci = sbioparameterci(fitResults,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Compute Confidence Intervals for Estimated PK Parameters and Model Predictions

Load Data

Load the sample data to fit. The data is stored as a table with variables ID , Time , CentralConc , and
PeripheralConc. This synthetic data represents the time course of plasma concentrations measured at
eight different time points for both central and peripheral compartments after an infusion dose for
three individuals.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},'Marker','+',...
 'LineStyle','none');

1 Functions

1-180

Create Model

Create a two-compartment model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Define Dosing

Define the infusion dose.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';

 sbioparameterci

1-181

Define Parameters

Define the parameters to estimate. Set the parameter bounds for each parameter. In addition to these
explicit bounds, the parameter transformations (such as log, logit, or probit) impose implicit bounds.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};
paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,...
 'InitialValue',[1 1 1 1],...
 'Bounds',[0.1 3;0.1 10;0 10;0.1 2]);

Fit Model

Perform an unpooled fit, that is, one set of estimated parameters for each patient.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Perform a pooled fit, that is, one set of estimated parameters for all patients.

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Compute Confidence Intervals for Estimated Parameters

Compute 95% confidence intervals for each estimated parameter in the unpooled fit.

ciParamUnpooled = sbioparameterci(unpooledFit);

Display Results

Display the confidence intervals in a table format. For details about the meaning of each estimation
status, see “Parameter Confidence Interval Estimation Status” on page 2-611.

ci2table(ciParamUnpooled)

ans =

 12x7 table

 Group Name Estimate ConfidenceInterval Type Alpha Status
 _____ ______________ ________ __________________ ________ _____ ___________

 1 {'Central' } 1.422 1.1533 1.6906 Gaussian 0.05 estimable
 1 {'Peripheral'} 1.5629 0.83143 2.3551 Gaussian 0.05 constrained
 1 {'Q12' } 0.47159 0.20093 0.80247 Gaussian 0.05 constrained
 1 {'Cl_Central'} 0.52898 0.44842 0.60955 Gaussian 0.05 estimable
 2 {'Central' } 1.8322 1.7893 1.8751 Gaussian 0.05 success
 2 {'Peripheral'} 5.3368 3.9133 6.7602 Gaussian 0.05 success
 2 {'Q12' } 0.27641 0.2093 0.34351 Gaussian 0.05 success
 2 {'Cl_Central'} 0.86034 0.80313 0.91755 Gaussian 0.05 success
 3 {'Central' } 1.6657 1.5818 1.7497 Gaussian 0.05 success
 3 {'Peripheral'} 5.5632 4.7557 6.3708 Gaussian 0.05 success
 3 {'Q12' } 0.78361 0.65581 0.91142 Gaussian 0.05 success
 3 {'Cl_Central'} 1.0233 0.96375 1.0828 Gaussian 0.05 success

Plot the confidence intervals. If the estimation status of a confidence interval is success, it is plotted
in blue (the first default color). Otherwise, it is plotted in red (the second default color), which

1 Functions

1-182

indicates that further investigation into the fitted parameters may be required. If the confidence
interval is not estimable, then the function plots a red line with a centered cross. If there are any
transformed parameters with estimated values 0 (for the log transform) and 1 or 0 (for the probit or
logit transform), then no confidence intervals are plotted for those parameter estimates. To see the
color order, type get(groot,'defaultAxesColorOrder').

Groups are displayed from left to right in the same order that they appear in the GroupNames
property of the object, which is used to label the x-axis. The y-labels are the transformed parameter
names.

plot(ciParamUnpooled)

Compute the confidence intervals for the pooled fit.

ciParamPooled = sbioparameterci(pooledFit);

Display the confidence intervals.

ci2table(ciParamPooled)

ans =

 4x7 table

 Group Name Estimate ConfidenceInterval Type Alpha Status
 ______ ______________ ________ __________________ ________ _____ ___________

 sbioparameterci

1-183

 pooled {'Central' } 1.6626 1.3287 1.9965 Gaussian 0.05 estimable
 pooled {'Peripheral'} 2.687 0.89848 4.8323 Gaussian 0.05 constrained
 pooled {'Q12' } 0.44956 0.11445 0.85152 Gaussian 0.05 constrained
 pooled {'Cl_Central'} 0.78493 0.59222 0.97764 Gaussian 0.05 estimable

Plot the confidence intervals. The group name is labeled as "pooled" to indicate such fit.

plot(ciParamPooled)

Plot all the confidence interval results together. By default, the confidence interval for each
parameter estimate is plotted on a separate axes. Vertical lines group confidence intervals of
parameter estimates that were computed in a common fit.

ciAll = [ciParamUnpooled;ciParamPooled];
plot(ciAll)

1 Functions

1-184

You can also plot all confidence intervals in one axes grouped by parameter estimates using the
'Grouped' layout.

plot(ciAll,'Layout','Grouped')

 sbioparameterci

1-185

In this layout, you can point to the center marker of each confidence interval to see the group name.
Each estimated parameter is separated by a vertical black line. Vertical dotted lines group confidence
intervals of parameter estimates that were computed in a common fit. Parameter bounds defined in
the original fit are marked by square brackets. Note the different scales on the y-axis due to
parameter transformations. For instance, the y-axis of Q12 is in the linear scale, but that of Central
is in the log scale due to its log transform.

Compute Confidence Intervals for Model Predictions

Calculate 95% confidence intervals for the model predictions, that is, simulation results using the
estimated parameters.

% For the pooled fit
ciPredPooled = sbiopredictionci(pooledFit);
% For the unpooled fit
ciPredUnpooled = sbiopredictionci(unpooledFit);

Plot Confidence Intervals for Model Predictions

The confidence interval for each group is plotted in a separate column, and each response is plotted
in a separate row. Confidence intervals limited by the bounds are plotted in red. Confidence intervals
not limited by the bounds are plotted in blue.

plot(ciPredPooled)

1 Functions

1-186

plot(ciPredUnpooled)

 sbioparameterci

1-187

Input Arguments
fitResults — Parameter estimation results from sbiofit
NLINResults object | OptimResults object | vector

Parameter estimation results from sbiofit, specified as an NLINResults object, OptimResults
object, or a vector of objects for unpooled fits that were returned from the same sbiofit call.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01,'Type','profileLikelihood' specifies to compute a 99% confidence
interval using the profile likelihood approach.

Depending on the type of confidence interval, the compatible name-value arguments differ. The table
below lists all the name-value arguments and their corresponding confidence interval types. A check
mark (✔) indicates that the name-value argument is applicable for that type.

1 Functions

1-188

Name-Value
Argument

Gaussian
(default)

Optimization-
based profile
likelihood

Integration-
based profile
likelihood

Bootstrap

“Alpha” on
page 1-0

✔ ✔ ✔ ✔

“Type” on page
1-0

✔ ✔ ✔ ✔

“Display” on
page 1-0

✔ ✔ ✔ ✔

“UseParallel”
on page 1-0

✔ ✔ ✔ ✔

“NumSamples”
on page 1-0

 ✔

“Tolerance” on
page 1-0

 ✔ ✔ ✔

“Parameters”
on page 1-0

 ✔ ✔

“MaxStepSize”
on page 1-0

 ✔ ✔

“UseIntegratio
n” on page 1-
0

 ✔ ✔

“IntegrationOp
tions” on page
1-0

 ✔

Alpha — Confidence level
0.05 (default) | positive scalar

Confidence level, (1-Alpha) * 100%, specified as the comma-separated pair consisting of 'Alpha'
and a positive scalar between 0 and 1. The default value is 0.05, meaning a 95% confidence interval
is computed.
Example: 'Alpha',0.01

Type — Confidence interval type
'gaussian' (default) | 'profileLikelihood' | 'bootstrap'

Confidence interval type, specified as the comma-separated pair consisting of 'Type' and a
character vector. The valid choices are:

• 'gaussian' — Use the Gaussian approximation on page 1-193 of the distribution of parameter
estimates.

• 'profileLikelihood' — Compute the profile likelihood intervals. The function has two
methods to compute profile likelihood curves. By default, the function uses the optimization-based
method. To use the integration-based method, you must also set 'UseIntegration' to true.

The optimization-based method fixes one parameter value at a time and reruns an optimization to
compute the maximum likelihood. This optimization is done for every parameter and every point

 sbioparameterci

1-189

on the curve of the profile likelihood. The integration-based method is based on integrating the
differential equations derived from the Lagrange equations of the optimization-based method. For
details about these two methods, see “Profile Likelihood Confidence Interval Calculation” on page
1-193.

Note This type is not supported for parameter estimates from hierarchical models, that is,
estimated results from fitting different categories on page 1-76 (such as age or sex). In other
words, if you set the CategoryVariableName property of the EstimatedInfo object in your
original fit, then the fit results are hierarchical and you cannot compute the profileLikelihood
confidence intervals on the results.

• 'bootstrap' — Compute confidence intervals using the bootstrap method on page 1-195.

Example: 'Type','bootstrap'

Display — Level of display returned to the command line
'off' (default) | 'none' | 'final' | 'iter'

Level of display returned to the command line, specified as the comma-separated pair consisting of
'Display' and a character vector. 'off' (default) or 'none' displays no output. 'final' displays
a message when a computation finishes. 'iter' displays output at each iteration.
Example: 'Display','final'

UseParallel — Logical flag to compute confidence intervals in parallel
true | false

Logical flag to compute confidence intervals in parallel, specified as the comma-separated pair
consisting of 'UseParallel' and true or false. By default, the parallel options in the original fit
are used. If this argument is set to true and Parallel Computing Toolbox is available, the parallel
options in the original fit are ignored, and confidence intervals are computed in parallel.

For the Gaussian confidence intervals:

• If the input fitResults is a vector of results objects, then the computation of confidence
intervals for each object is performed in parallel. The Gaussian confidence intervals are quick to
compute. So, it might be more beneficial to parallelize the original fit (sbiofit) and not set
UseParallel to true for sbioparameterci.

For the Profile Likelihood confidence intervals:

• If the number of results objects in the input fitResults vector is greater than the number of
estimated parameters, then the computation of confidence intervals for each object is performed
in parallel.

• Otherwise, the confidence intervals for all estimated parameters within one results object are
computed in parallel before the function moves on to the next results object.

For the Bootstrap confidence intervals:

• The function forwards the UseParallel flag to bootci. There is no parallelization over the input
vector of results objects.

Note If you have a global stream for random number generation with several substreams to compute
in parallel in a reproducible fashion, sbioparameterci first checks to see if the number of workers

1 Functions

1-190

is same as the number of substreams. If so, sbioparameterci sets UseSubstreams to true in the
statset option and passes it to bootci. Otherwise, the substreams are ignored by default.

Example: 'UseParallel',true

NumSamples — Number of samples for bootstrapping
1000 (default) | positive integer

Number of samples for bootstrapping, specified as the comma-separated pair consisting of
'NumSamples' and a positive integer. This number defines the number of fits that are performed
during the confidence interval computation to generate bootstrap samples. The smaller the number
is, the faster the computation of the confidence intervals becomes, at the cost of decreased accuracy.
Example: 'NumSamples',500

Tolerance — Tolerance for profile likelihood and bootstrap confidence interval
computations
1e-5 (default) | positive scalar

Tolerance for the profile likelihood and bootstrap confidence interval computations, specified as the
comma-separated pair consisting of 'Tolerance' and a positive scalar.

The profile likelihood method uses this value as a termination tolerance. For details, see “Profile
Likelihood Confidence Interval Calculation” on page 1-193.

The bootstrap method uses this value to determine whether a confidence interval is constrained by
bounds specified in the original fit. For details, see “Bootstrap Confidence Interval Calculation” on
page 1-195.
Example: 'Tolerance',1e-6

Parameters — Names of parameters for which profile likelihood curves are calculated
character vector | string | string vector | cell array of character vectors

Names of parameters for which the profile likelihood curves are calculated, specified as a character
vector, string, string vector, or cell array of character vectors. By default, the function computes the
confidence intervals for all parameters listed in the EstimatedParameterNames property of the
fitResults object. You can also specify a subset of those parameters if needed.

Note This name-value argument is applicable only when you specify Type as
'profileLikelihood'.

Example: 'Parameters',{'ka'}

MaxStepSize — Maximum step size used for computing profile likelihood curves
positive scalar | [] | cell array

Maximum step size used for computing profile likelihood curves, specified as the comma-separated
pair consisting of 'MaxStepSize' and a positive scalar, [], or cell array.

• For the optimization-based method, the default value is 0.1. If you set 'MaxStepSize' to [],
then the maximum step size is set to 10% of the width of the Gaussian approximation of the

 sbioparameterci

1-191

confidence interval, if it exists. You can specify a maximum step size (or []) for each estimated
parameter using a cell array.

• For the integration-based method, the default value is Inf. Internally, the function uses the
ode15s solver.

Example: 'MaxStepSize',0.5

UseIntegration — Flag to use integration-based profile likelihood confidence interval
method
false (default) | true

Flag to use the integration-based profile likelihood confidence interval method, specified as true or
false. The integration-based method integrates differential equations derived from the Lagrange
equations. By default, the function uses the optimization-based method. For details about these two
methods, see “Profile Likelihood Confidence Interval Calculation” on page 1-193.
Example: 'UseIntegration',true

IntegrationOptions — Options for integration-based profile likelihood confidence interval
method
structure

Options for the integration-based profile likelihood confidence interval method, specified as a
structure. Specify options as fields of the structure as follows.

Field Name Field Value Description
Hessian 'finiteDifference' — Use the finite difference approximation

of the Hessian matrix. This is the default value.

'identity' — Use the identity matrix as the Hessian matrix
approximation. You must also specify a positive
CorrectionFactor value.

CorrectionFactor Nonnegative scalar. The default value is 0.
AbsoluteTolerance Positive scalar for the step size control in ode15s. The default

value is 1e-2.
RelativeTolerance Positive scalar less than 1 for the step size control in ode15s. The

default value is 1e-2.
InitialStepSize Positive scalar as the initial step size for solving the differential

equations. If a parameter is bounded, the function uses the default
initial step size of ode15s. If not, it uses 1e-4.

Output Arguments
ci — Confidence interval results
ParameterConfidenceInterval object

Confidence interval results, returned as a ParameterConfidenceInterval object. For an unpooled
fit, ci can be a vector of ParameterConfidenceInterval objects.

1 Functions

1-192

More About

Note All confidence interval computations are based on the untransformed parameters. Only when
plotted, the confidence intervals are mapped to the transformed space using the parameter
transformations defined in the original fit.

Gaussian Confidence Interval Calculation

The function uses the Wald test statistic [1] to compute the confidence intervals. Assuming that there
are enough data, the parameter estimates, Pest, are approximately Student's t-distributed with the
covariance matrix S (the CovarianceMatrix property of the results object) returned by sbiofit.

The confidence interval for the ith parameter estimate Pest,i is computed as follows:

Pest, i ± Si, i * Tinv 1− Alpha
2 , where Tinv is the Student's t inverse cumulative distribution function

(tinv) with the probability 1-(Alpha/2), and Si,i is the diagonal element (variance) of the
covariance matrix S.

In cases where the confidence interval is constrained by the parameter bounds defined in the original
fit, the confidence interval bounds are adjusted according to the approach described by Wu, H. and
Neale, M. [2].
Setting Estimation Status

• For each parameter estimate, the function first decides whether the confidence interval of the
parameter estimate is unbounded. If so, the function sets the estimation status of the
corresponding parameter estimate to not estimable.

• Otherwise, if the confidence interval for a parameter estimate is constrained by a parameter
bound defined in the original fit, the function sets the estimation status to constrained.
Parameter transformations (such as log, probit, or logit) impose implicit bounds on the
estimated parameters, for example, positivity constraints. Such bounds can lead to the
overestimation of confidence, that is, the confidence interval can be smaller than expected.

• If no confidence interval has the estimation status not estimable or constrained, then the
function sets the estimation statuses of all parameter estimates to success. Otherwise, the
estimation statuses of remaining parameter estimates are set to estimable.

Profile Likelihood Confidence Interval Calculation

Define L to be the likelihood, LH, of the parameter estimates (stored in the ParameterEstimates
property of the results object) returned by sbiofit, L = LH(Pest), where Pest is a vector of
parameter estimates, Pest,1, Pest,2, …, Pest,n.

The profile likelihood function PL for a parameter Pi is defined as PL(Pi) = max
P j, j ≠ i

LH(P1, ..., Pi, .., Pn),

where n is the total number of parameters.

Per Wilks's Theorem [3], the likelihood ratio test statistic, −2log PL Pi
L , is chi-square distributed

with 1 degree of freedom.

Therefore, find all Pi so that: log L − log PL Pi ≤ chiinv 1, 1− alpha
2 .

 sbioparameterci

1-193

Equivalently, log PL Pi ≥ log L − chiinv 1, 1− alpha
2 , where log L − chiinv 1, 1− alpha

2 is the
target value used in computing the log profile likelihood curve. The function provides two methods to
compute such curve.
Optimization-based Method to Compute Log Profile Likelihood Curve

1 Start at Pest,i and evaluate the likelihood L.
2 Compute the log profile likelihood at Pest,i + k * MaxStepSize for each side (or direction) of

the confidence interval, that is, k = 1, 2, 3,… and k = -1, -2, -3,….
3 Stop if one of these stopping criteria is met on each side.

• The log profile likelihood falls below the target value. In this case, start bisecting between
Pbelow and Pabove, where Pbelow is the parameter value with the largest log profile likelihood
value below the target value, and Pabove the parameter value with the smallest log profile
likelihood value greater than the target value. Stop the bisection if one of the following is
true:

• Either neighboring log profile likelihood values are less than Tolerance on page 1-0
apart. Set the status for the corresponding side of the confidence interval to success.

• The bisection interval becomes smaller than max(Tolerance,2*eps('double')) and
the profile likelihood curve computed so far is above the target value. Set the status of the
corresponding side to not estimable.

• The linear gradient approximation of the profile likelihood curve (finite difference between
two neighboring parameter values) is larger than -Tolerance on page 1-0 (the negative
value of the tolerance). Set the status of the corresponding side to not estimable.

• The step is limited by a bound defined in the original fit. Evaluate at the bound and set the
status of the corresponding side to constrained.

Integration-Based Method to Compute Log Profile Likelihood Curve

This method [4] solves the constrained optimization problem PL(Pi) = max
P j, j ≠ i

LH(P1, ..., Pi, .., Pn) by

integrating the differential equations derived from the Lagrange equations

−∇p L(p (c)) + λ(c)e i = 0

p (c = c

Here, e i is the ith canonical unit vector, the Lagrange multiplier is λ(c), and c = Pi.

In other words, instead of optimizing point by point, this method solves differential equations that
define the profile likelihood curve as follows.

−∇p
2 L(p (c)) e i

±e i
T 0

ṗ (c)
λ̇(c)

=
0
1

Here, ṗ (c) = ∂p (c)
∂c , λ̇(c) = ∂λ(c)

∂c , and− ∇p
2 L(p (c)) is the Hessian of the log likelihood function.

Using the finite-difference approximation of the Hessian matrix is recommended. However, the
numerical computation of the Hessian matrix using finite differencing can be computationally

1 Functions

1-194

expensive. To reduce the computational costs, Chen and Jennrich [4] proposed an approximate
version based on the assumption that the second-order sufficient Karush-Kuhn-Tucker conditions
must hold with strict inequality at every point in the domain of the profile likelihood curve as outlined
in Assumption 2 in the Appendix of [4]. In other words, at every point on the profile likelihood curve,
the remaining parameters must be estimable.

If this assumption holds, then the Hessian can be replaced with the identity matrix I as follows:

−I e i

±e i
T 0

ṗ (c)
λ̇(c)

= −γ∇p L(p (c))
1

Here, ∇p L(p (c)) is the gradient of the log likelihood and γ is a correction factor to ensure the solution
of the differential equation stays on the path of the profile likelihood curve.

If γ is too small, the approximation of the profile likelihood curve may become inaccurate, resulting in
an underestimation of the profile likelihood confidence intervals. Setting γ to a large value ensures
accurate results, but might require ode15s to take smaller steps, which increases the computational
cost.

Tip You can specify the Hessian approximation and correction factor using the
“IntegrationOptions” on page 1-0 name-value argument.

The stopping criterion of the algorithm is when one of the following conditions becomes true:

• The gradient approximation of the profile likelihood curve is larger than -Tolerance on page 1-0 .
• The profile likelihood falls below the target value.
• A parameter bound is reached.

Setting Estimation Status

• If both sides of the confidence interval are unsuccessful, that is, have the status not estimable,
the function sets the estimation status (ci.Results.Status on page 2-0) to not estimable.

• If no side has the status not estimable and one side has the status constrained, the function
sets the estimation status (ci.Results.Status on page 2-0) to constrained.

• If the computation for all parameters on both sides of the confidence intervals is successful, set
the estimation status (ci.Results.Status on page 2-0) to success.

• Otherwise, the function sets the estimation statuses of the remaining parameter estimates to
estimable.

Bootstrap Confidence Interval Calculation

The bootci function from Statistics and Machine Learning Toolbox is used to compute the bootstrap
confidence intervals. The first input nboot is the number of samples (NumSamples), and the second
input bootfun is a function that performs these actions:

• Resample the data (independently within each group, if multiple groups are available).
• Run a parameter fit with the resampled data.
• Return the estimated parameters.

 sbioparameterci

1-195

Setting Estimation Status

If a confidence interval is closer than Tolerance to a parameter bound, as defined in the original fit,
the function sets the estimation status to constrained. If all confidence intervals are further away
from the parameter bounds than Tolerance, the function sets the status to success. Otherwise, it
is set to estimable.

References
[1] Wald, A. "Tests of Statistical Hypotheses Concerning Several Parameters when the Number of

Observations is Large." Transactions of the American Mathematical Society. 54 (3), 1943, pp.
426-482.

[2] Wu, H., and M.C. Neale. "Adjusted Confidence Intervals for a Bounded Parameter." Behavior
Genetics. 42 (6), 2012, pp. 886-898.

[3] Wilks, S.S. "The Large-Sample Distribution of the Likelihood Ratio for Testing Composite
Hypotheses." The Annals of Mathematical Statistics. 9 (1), 1938, pp. 60–62.

[4] Chen, Jian-Shen, and Robert I. Jennrich. “Simple Accurate Approximation of Likelihood Profiles.”
Journal of Computational and Graphical Statistics 11, no. 3 (September 2002): 714–32.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true.

For more information, see the 'UseParallel' name-value pair argument.

See Also
sbiopredictionci | sbiofit | ConfidenceInterval | ParameterConfidenceInterval

Introduced in R2017b

1 Functions

1-196

sbioparamestim
Perform parameter estimation

Note sbioparamestim will be removed in a future release. Use sbiofit instead.

Note Statistics and Machine Learning Toolbox™, Optimization Toolbox™, and Global Optimization
Toolbox are recommended for this function.

Syntax
[k, result]= sbioparamestim(modelObj, tspan, xtarget, observed_array,
estimated_array)
[___]= sbioparamestim(___ , observed_array, estimated_array, k0)
[___]= sbioparamestim(___ , observed_array, estimated_array, k0, method)

Arguments
k Vector of estimated parameter values. For all optimization methods except

'fminsearch', the parameters are constrained to be greater than or
equal to 0.

result Structure with fields that provide information about the progress of
optimization.

modelObj SimBiology model object.
tspan n-by-1 vector representing the time span of the target data xtarget.
xtarget n-by-m matrix, where n is the number of time samples and m is the number

of states to match during the simulation. The number of rows in xtarget
must equal the number of rows in tspan.

 sbioparamestim

1-197

observed_array Either of the following:

• Array of objects (species, compartment, or nonconstant parameter) in
modelObj, whose values should be matched during the estimation
process

• Cell array of character vectors or string vector containing the names of
objects (species, compartment, or nonconstant parameter) in
modelObj, whose values should be matched during the estimation
process

Note If duplicate names exist for any species or parameters, ensure there
are no ambiguities by specifying either an array of objects or a cell array of
qualified names, such as compartmentName.speciesName or
reactionName.parameterName. For example, for a species named sp1
that is in a compartment named comp2, the qualified name is comp2.sp1.

The length of observed_array must equal the number of columns in
xtarget. sbioparamestim assumes that the order of elements in
observed_array is the same as the order of columns in xtarget.

estimated_array Either of the following:

• Array of objects (compartment, species, or parameter) in modelObj
whose initial values should be estimated

• Cell array of character vectors or string vector containing the names of
objects (compartment, species, or parameter) in modelObj whose
initial values should be estimated

Note If duplicate names exist for any compartments, species, or
parameters, ensure there are no ambiguities by specifying either an array
of objects or a cell array of qualified names, such as
compartmentName.speciesName or reactionName.parameterName.
For example, for a parameter named param1 scoped to a reaction named
reaction1, the qualified name is reaction1.param1.

k0 Numeric vector containing the initial values of compartments, species, or
parameters to be estimated. The length of k0 must equal that of
estimated_array. If you do not specify k0, or specify an empty vector
for k0, then sbioparamestim takes initial values for compartments,
species, or parameters from modelObj, or, if there are active variants,
sbioparamestim uses any initial values specified in the active variants.
For details about variants, see Variant object.

1 Functions

1-198

method Optimization algorithm to use during the estimation process, specified by
either of the following:

• Character vector (or string) specifying one of the following functions:

• 'fminsearch'
• 'lsqcurvefit'
• 'lsqnonlin'
• 'fmincon'
• 'patternsearch'
• 'patternsearch_hybrid'
• 'ga'
• 'ga_hybrid'
• 'particleswarm'
• 'particleswarm_hybrid'

For descriptions of how sbioparamestim uses the previous functions,
see the Function Descriptions table.

• Two-element cell array, with the first element being one of the previous
functions, and the second element being an options structure or object.
Use an appropriate options structure or object for each method listed
next.

Method Options Structure or Object
'fminsearch' optimset
'fmincon'
'lsqcurvefit'

'lsqnonlin'
'particleswarm'

'particleswarm_hybrid'

'patternsearch'

'patternsearch_hybrid'

'ga'

'ga_hybrid'

optimoptions

Tip Use a two-element cell array to provide your own options structure
for the optimization algorithm.

If you have Parallel Computing Toolbox, you can enable parallel
computing for faster data fitting by:

1 Opening a MATLAB worker pool:

 sbioparamestim

1-199

parpool
2 Setting the name-value pair argument 'UseParallel' to true in

an options structure or object.

1 Functions

1-200

Function Descriptions

Function Description
fminsearch sbioparamestim uses the default options structure associated with

fminsearch, except for:
Display = 'off'
TolFun = 1e-6* (Initial value of objective function)

Note 'fminsearch' is an unconstrained optimization method, which can
result in negative values for parameters.

lsqcurvefit Requires Optimization Toolbox.

sbioparamestim uses the default options structure associated with
lsqcurvefit, except for:
Display = 'off'
FiniteDifferenceStepSize = value of the
SolverOptions.RelativeTolerance property of the configuration set
associated with modelObj, with a minimum of eps^(1/3)
FunctionTolerance = 1e-6* (Initial value of objective function)
TypicalX = 1e-6* (Initial values of components to be estimated)

lsqnonlin Requires Optimization Toolbox.

sbioparamestim uses the default options structure associated with
lsqnonlin, except for:
Display = 'off'
FiniteDifferenceStepSize = value of the
SolverOptions.RelativeTolerance property of the configuration set
associated with modelObj, with a minimum of eps^(1/3)
FunctionTolerance = 1e-6* (Initial value of objective function)
TypicalX = 1e-6* (Initial values of components to be estimated)

fmincon Requires Optimization Toolbox.

sbioparamestim uses the default options structure associated with
fmincon, except for:
Algorithm = 'interior-point'
Display = 'off'
FiniteDifferenceStepSize = value of the
SolverOptions.RelativeTolerance property of the configuration set
associated with modelObj, with a minimum of eps^(1/3)
FunctionTolerance = 1e-6* (Initial value of objective function)
TypicalX = 1e-6* (Initial values of components to be estimated)

patternsearch Requires Global Optimization Toolbox.

sbioparamestim uses the default options structure associated with
patternsearch, except for:
Display = 'off'
FunctionTolerance = 1e-6* (Initial value of objective function)
MeshTolerance = 1.0e-3
AccelerateMesh = true

 sbioparamestim

1-201

Function Description
patternsearch_hyb
rid

Requires Global Optimization Toolbox.

sbioparamestim calls the patternsearch function with the additional
option SearchMethod = {@searchlhs,10,15}. This option adds an
additional search step that uses Latin hypercube sampling.

The sbioparamestim function uses the default options structure associated
with patternsearch, except for:
Display = 'off'
FunctionTolerance = 1e-6* (Initial value of objective function)
MeshTolerance = 1.0e-3
AccelerateMesh = true
SearchMethod = {@searchlhs,10,15}

ga Requires Global Optimization Toolbox.

sbioparamestim uses the default options structure associated with ga,
except for:
Display = 'off'
FunctionTolerance = 1e-6* (Initial value of objective function)
PopulationSize = 10
Generations = 30
MutationFcn = @mutationadaptfeasible

ga_hybrid Requires Global Optimization Toolbox.

sbioparamestim calls the ga function with the additional option
HybridFcn = {@fmincon, fminopt}, where fminopt is the same set of
default options sbioparamestim uses for fmincon. This option causes an
additional gradient-based minimization after the genetic algorithm step ends.

The sbioparamestim function uses the default options structure associated
with ga, except for:
Display = 'off'
FunctionTolerance = 1e-6* (Initial value of objective function)
PopulationSize = 10
Generations = 30
MutationFcn = @mutationadaptfeasible
HybridFcn = {@fmincon, structure of name/value pairs for
fmincon}

particleswarm Requires Global Optimization Toolbox.
sbioparamestim uses the following default options for particleswarm,
except for:

Display = 'off';
FunctionTolerance = 1e-6*[Initial objective function value]
SwarmSize = 10;
MaxIter = 30;

1 Functions

1-202

Function Description
particleswarm_hyb
rid

Requires Global Optimization Toolbox.

sbioparamestim calls the particleswarm function with the additional
option HybridFcn = {@objFcn, options}. The objective function,
objFcn, is one of these supported functions: patternsearch, fminsearch,
fminunc, or fmincon. options is a structure of options for these functions
and their values.

Display = 'off';
FunctionTolerance = 1e-6*[Initial objective function value]
SwarmSize = 10;
MaxIter = 30;
HybridFcn = {@fmincon, [Fmincon Options, described above]}

Note sbioparamestim does not support setting the Vectorized option to 'on' in algorithms that
support this option.

Description
[k, result]= sbioparamestim(modelObj, tspan, xtarget, observed_array,
estimated_array) estimates the initial values of compartments, species, and parameters of
modelObj, a SimBiology model object, specified in estimated_array, so as to match the values of
species and nonconstant parameters given by observed_array with the target state, xtarget,
whose time variation is given by the time span tspan. If you have Optimization Toolbox installed,
sbioparamestim uses the lsqnonlin function as the default method for the parameter estimation.
If you do not have Optimization Toolbox installed, sbioparamestim uses the MATLAB function
fminsearch as the default method for the parameter estimation.

[___]= sbioparamestim(___ , observed_array, estimated_array, k0) specifies the
initial values of compartments, species, and parameters listed in estimated_array.

[___]= sbioparamestim(___ , observed_array, estimated_array, k0, method)
specifies the optimization method to use.

Examples
Given a model and some target data, estimate all of its parameters without explicitly specifying any
initial values:

1 Load a model from the project, gprotein_norules.sbproj. The project contains two models,
one for the wild-type strain (stored in variable m1), and one for the mutant strain (stored in
variable m2). Load the G protein model for the wild-type strain.

sbioloadproject gprotein_norules m1;
2 Store the target data in a variable:

Gt = 10000;
tspan = [0 10 30 60 110 210 300 450 600]';
Ga_frac = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';
xtarget = Ga_frac * Gt;

 sbioparamestim

1-203

3 Store all model parameters in an array:

p_array = sbioselect(m1,'Type','parameter');
4 Store the species that should match target:

Ga = sbioselect(m1,'Type','species','Name','Ga');
% In this example only one species is selected.
% To match more than one targeted species data
% replace with selected species array.

5 Estimate the parameters:

[k, result] = sbioparamestim(m1, tspan, xtarget, Ga, p_array)

k =

 0.0100
 0.0000
 0.0004
 4.0000
 0.0040
 1.0000
 0.0000
 0.1100

result =

 fval: 1.4193e+06
 residual: [9x1 double]
 exitflag: 2
 iterations: 2
 funccount: 27
 algorithm: 'trust-region-reflective'
 message: [1x413 char]

Estimate parameters specified in p_array for species Ga using different algorithms.

[k1,r1] = sbioparamestim(m1,tspan,xtarget,Ga,p_array, ...
 {},'fmincon');
[k2,r2] = sbioparamestim(m1,tspan,xtarget,Ga,p_array, ...
 {},'patternsearch');
[k3,r3] = sbioparamestim(m1,tspan,xtarget,Ga,p_array, ...
 {},'ga');
[k4,r4] = sbioparamestim(m1,tspan,xtarget,Ga,p_array, ...
 {},'particleswarm');

Estimate parameters specified in p_array for species Ga, and change default optimization options to
use user-specified options.

myopt1 = optimoptions('Display','iter');
[k1,r1] = sbioparamestim(m1,tspan,xtarget, ...
 Ga,p_array,{},{'fmincon',myopt1});

myopt2 = optimoptions('MeshTolerance',1.0e-4);
[k2,r2] = sbioparamestim(m1,tspan,xtarget, ...
 Ga,p_array,{},{'patternsearch',myopt2});

myopt3 = optimoptions('PopulationSize',25, 'Generations', 10);

1 Functions

1-204

[k3,r3] = sbioparamestim(m1,tspan,xtarget, ...
 Ga,p_array,{},{'ga',myopt3});

myopt4 = optimoptions('particleswarm','Display','iter');
[k4,r4] = sbioparamestim(m1,tspan,xtarget,Ga,p_array,{},{'particleswarm',myopt4});

Algorithms
sbioparamestim estimates parameters by attempting to minimize the discrepancy between
simulation results and the data to fit. The minimization uses one of these optimization algorithms:
fminsearch (from MATLAB); lsqcurvefit, lsqnonlinfit, or fmincon (from Optimization
Toolbox); or patternsearch or ga (from Global Optimization Toolbox). All optimization methods
require an objective function as an input. This objective function takes as input a vector of parameter
values and returns an estimate of the discrepancy between simulation and data. When using
lsqcurvefit or lsqnonlinfit as the optimization method, this objective function returns a vector
of the residuals. For other optimization methods, the objective function returns the 2-norm of the
residuals.

References
[1] Yi, T-M., Kitano, H., and Simon, M.I. (2003) A quantitative characterization of the yeast

heterotrimeric G protein cycle. PNAS 100, 10764–10769.

See Also
sbiomodel | optimset

Introduced in R2006a

 sbioparamestim

1-205

sbiopredictionci
Compute confidence intervals for model predictions (requires Statistics and Machine Learning
Toolbox)

Syntax
ci = sbiopredictionci(fitResults)
ci = sbiopredictionci(fitResults,Name,Value)

Description
ci = sbiopredictionci(fitResults) computes 95% confidence intervals for the model
simulation results from fitResults, an NLINResults object or OptimResults object
returned by sbiofit. ci is a PredictionConfidenceInterval object that contains the computed
confidence interval data.

ci = sbiopredictionci(fitResults,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Compute Confidence Intervals for Estimated PK Parameters and Model Predictions

Load Data

Load the sample data to fit. The data is stored as a table with variables ID , Time , CentralConc , and
PeripheralConc. This synthetic data represents the time course of plasma concentrations measured at
eight different time points for both central and peripheral compartments after an infusion dose for
three individuals.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},'Marker','+',...
 'LineStyle','none');

1 Functions

1-206

Create Model

Create a two-compartment model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Define Dosing

Define the infusion dose.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';

 sbiopredictionci

1-207

Define Parameters

Define the parameters to estimate. Set the parameter bounds for each parameter. In addition to these
explicit bounds, the parameter transformations (such as log, logit, or probit) impose implicit bounds.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};
paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,...
 'InitialValue',[1 1 1 1],...
 'Bounds',[0.1 3;0.1 10;0 10;0.1 2]);

Fit Model

Perform an unpooled fit, that is, one set of estimated parameters for each patient.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Perform a pooled fit, that is, one set of estimated parameters for all patients.

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Compute Confidence Intervals for Estimated Parameters

Compute 95% confidence intervals for each estimated parameter in the unpooled fit.

ciParamUnpooled = sbioparameterci(unpooledFit);

Display Results

Display the confidence intervals in a table format. For details about the meaning of each estimation
status, see “Parameter Confidence Interval Estimation Status” on page 2-611.

ci2table(ciParamUnpooled)

ans =

 12x7 table

 Group Name Estimate ConfidenceInterval Type Alpha Status
 _____ ______________ ________ __________________ ________ _____ ___________

 1 {'Central' } 1.422 1.1533 1.6906 Gaussian 0.05 estimable
 1 {'Peripheral'} 1.5629 0.83143 2.3551 Gaussian 0.05 constrained
 1 {'Q12' } 0.47159 0.20093 0.80247 Gaussian 0.05 constrained
 1 {'Cl_Central'} 0.52898 0.44842 0.60955 Gaussian 0.05 estimable
 2 {'Central' } 1.8322 1.7893 1.8751 Gaussian 0.05 success
 2 {'Peripheral'} 5.3368 3.9133 6.7602 Gaussian 0.05 success
 2 {'Q12' } 0.27641 0.2093 0.34351 Gaussian 0.05 success
 2 {'Cl_Central'} 0.86034 0.80313 0.91755 Gaussian 0.05 success
 3 {'Central' } 1.6657 1.5818 1.7497 Gaussian 0.05 success
 3 {'Peripheral'} 5.5632 4.7557 6.3708 Gaussian 0.05 success
 3 {'Q12' } 0.78361 0.65581 0.91142 Gaussian 0.05 success
 3 {'Cl_Central'} 1.0233 0.96375 1.0828 Gaussian 0.05 success

Plot the confidence intervals. If the estimation status of a confidence interval is success, it is plotted
in blue (the first default color). Otherwise, it is plotted in red (the second default color), which

1 Functions

1-208

indicates that further investigation into the fitted parameters may be required. If the confidence
interval is not estimable, then the function plots a red line with a centered cross. If there are any
transformed parameters with estimated values 0 (for the log transform) and 1 or 0 (for the probit or
logit transform), then no confidence intervals are plotted for those parameter estimates. To see the
color order, type get(groot,'defaultAxesColorOrder').

Groups are displayed from left to right in the same order that they appear in the GroupNames
property of the object, which is used to label the x-axis. The y-labels are the transformed parameter
names.

plot(ciParamUnpooled)

Compute the confidence intervals for the pooled fit.

ciParamPooled = sbioparameterci(pooledFit);

Display the confidence intervals.

ci2table(ciParamPooled)

ans =

 4x7 table

 Group Name Estimate ConfidenceInterval Type Alpha Status
 ______ ______________ ________ __________________ ________ _____ ___________

 sbiopredictionci

1-209

 pooled {'Central' } 1.6626 1.3287 1.9965 Gaussian 0.05 estimable
 pooled {'Peripheral'} 2.687 0.89848 4.8323 Gaussian 0.05 constrained
 pooled {'Q12' } 0.44956 0.11445 0.85152 Gaussian 0.05 constrained
 pooled {'Cl_Central'} 0.78493 0.59222 0.97764 Gaussian 0.05 estimable

Plot the confidence intervals. The group name is labeled as "pooled" to indicate such fit.

plot(ciParamPooled)

Plot all the confidence interval results together. By default, the confidence interval for each
parameter estimate is plotted on a separate axes. Vertical lines group confidence intervals of
parameter estimates that were computed in a common fit.

ciAll = [ciParamUnpooled;ciParamPooled];
plot(ciAll)

1 Functions

1-210

You can also plot all confidence intervals in one axes grouped by parameter estimates using the
'Grouped' layout.

plot(ciAll,'Layout','Grouped')

 sbiopredictionci

1-211

In this layout, you can point to the center marker of each confidence interval to see the group name.
Each estimated parameter is separated by a vertical black line. Vertical dotted lines group confidence
intervals of parameter estimates that were computed in a common fit. Parameter bounds defined in
the original fit are marked by square brackets. Note the different scales on the y-axis due to
parameter transformations. For instance, the y-axis of Q12 is in the linear scale, but that of Central
is in the log scale due to its log transform.

Compute Confidence Intervals for Model Predictions

Calculate 95% confidence intervals for the model predictions, that is, simulation results using the
estimated parameters.

% For the pooled fit
ciPredPooled = sbiopredictionci(pooledFit);
% For the unpooled fit
ciPredUnpooled = sbiopredictionci(unpooledFit);

Plot Confidence Intervals for Model Predictions

The confidence interval for each group is plotted in a separate column, and each response is plotted
in a separate row. Confidence intervals limited by the bounds are plotted in red. Confidence intervals
not limited by the bounds are plotted in blue.

plot(ciPredPooled)

1 Functions

1-212

plot(ciPredUnpooled)

 sbiopredictionci

1-213

Input Arguments
fitResults — Parameter estimation results from sbiofit
NLINResults object | OptimResults object | vector

Parameter estimation results from sbiofit, specified as an NLINResults object, OptimResults
object, or a vector of objects for unpooled fits that were returned from the same sbiofit call.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Alpha',0.01,'Type','bootstrap' specifies to compute a 99% confidence interval
using the bootstrap method.

Alpha — Confidence level
0.05 (default) | positive scalar

Confidence level, (1-Alpha) * 100%, specified as the comma-separated pair consisting of 'Alpha'
and a positive scalar between 0 and 1. The default value is 0.05, meaning a 95% confidence interval
is computed.

1 Functions

1-214

Example: 'Alpha',0.01

Type — Confidence interval type
'gaussian' (default) | 'bootstrap'

Confidence interval type, specified as the comma-separated pair consisting of 'Type' and a
character vector. The valid choices are:

• 'gaussian'– Use the Gaussian approximation on page 1-216 of the distribution of the linearized
model responses around the parameter estimates.

• 'bootstrap'– Compute confidence intervals using the bootstrap method on page 1-217.

Example: 'Type','bootstrap'

NumSamples — Number of samples for bootstrapping
1000 (default) | positive integer

Number of samples for bootstrapping, specified as the comma-separated pair consisting of
'NumSamples' and a positive integer. This number defines the number of fits that are performed
during the confidence interval computation to generate bootstrap samples. The smaller the number
is, the faster the computation of the confidence intervals becomes, at the cost of decreased accuracy.
Example: 'NumSamples',500

Display — Level of display returned to the command line
'off' (default) | 'none' | 'final'

Level of display returned to the command line, specified as the comma-separated pair consisting of
'Display' and a character vector. 'off' (default) or 'none' displays no output. 'final' displays
a message when the computation finishes.
Example: 'Display','final'

UseParallel — Logical flag to compute confidence intervals in parallel
true | false

Logical flag to compute confidence intervals in parallel, specified as the comma-separated pair
consisting of 'UseParallel' and true or false. By default, the parallel options in the original fit
are used. If this argument is set to true and Parallel Computing Toolbox is available, the parallel
options in the original fit are ignored, and confidence intervals are computed in parallel.

For the Gaussian confidence intervals:

• If the input fitResults is a vector of results objects, then the computation of confidence
intervals for each object is performed in parallel. The Gaussian confidence intervals are quick to
compute. So, it might be more beneficial to parallelize the original fit (sbiofit) and not set
UseParallel to true for sbiopredictionci.

For the Bootstrap confidence intervals:

• The function forwards the UseParallel flag to bootci. There is no parallelization over the input
vector of results objects.

Note If you have a global stream for random number generation with a number of substreams to
compute in parallel in a reproducible fashion, sbiopredictionci first checks to see if the number

 sbiopredictionci

1-215

of workers is same as the number of substreams. If so, the function sets UseSubstreams to true in
the statset option and passes to bootci. Otherwise, the substreams are ignored by default.

Example: 'UseParallel',true

Output Arguments
ci — Confidence interval results
PredictionConfidenceInterval object

Confidence interval results, returned as a PredictionConfidenceInterval object. For an
unpooled fit, ci can be a vector of PredictionConfidenceInterval objects.

More About
Gaussian Confidence Interval Calculation for Model Predictions

The model is linearized around the parameter estimates Pest that are obtained from the fit results
returned by sbiofit. The CovarianceMatrix is transformed using the linearized model. In
addition, implicit parameter bounds (log, probit, or logit parameter transforms specified in the
original fit) and explicit parameter bounds (if specified in the original fit) are also mapped through
the linearized model.

To linearize the model, sbiopredictionci first checks to see if the sensitivity analysis feature is
turned on in the original fit. If the feature is on, the function uses the Jacobian computed via the
complex step differentiation. If the feature is off, the Jacobian is computed using finite differencing.
Finite differencing can be inaccurate, and consider turning on the sensitivity analysis on page 1-0
feature when you run sbiofit.

The function uses the transformed CovarianceMatrix and computes the Gaussian confidence
intervals for each estimated model response at every time step.

In cases where the confidence interval is constrained by the parameter bounds defined in the original
fit, the confidence interval bounds are adjusted according to the approach described by Wu, H. and
Neale, M. [1].

Setting Estimation Status

• For each model response, the function first decides whether the confidence interval is unbounded.
If so, the estimation status of the corresponding model response is set to not estimable.

• Otherwise, if the confidence interval for a response is constrained by a parameter bound defined
in the original fit, the function sets its status to constrained. Parameter transformations (such
as log, probit, or logit) impose implicit bounds on the estimated parameters, for example,
positivity constraints. Such bounds can lead to the overestimation of confidence, that is, the
confidence interval can be smaller than expected.

• If no confidence interval has the estimation status not estimable or constrained, then the
function sets the estimation statuses of all model responses to success. Otherwise, the
estimation statuses of remaining model responses are set to estimable.

1 Functions

1-216

Bootstrap Confidence Interval Calculation

The bootci function from Statistics and Machine Learning Toolbox is used to compute the bootstrap
confidence intervals. The first input nboot is the number of samples (NumSamples), and the second
input bootfun is a function that performs these actions.

• Resample the data (independently within each group, if multiple groups are available).
• Run a parameter fit with the resampled data.
• Simulate the model using the estimated parameters to get model responses.
• Return model responses.

Setting Estimation Status

The estimation status is always set to estimable since the function cannot determine if the
confidence intervals are constrained by the bounds on the parameter estimates.

References
[1] Wu, H., and M.C. Neale. "Adjusted Confidence Intervals for a Bounded Parameter." Behavior

Genetics. 42 (6), 2012, pp. 886-898.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true.

For more information, see the 'UseParallel' name-value pair argument.

See Also
PredictionConfidenceInterval | sbioparameterci | sbiofit |
ParameterConfidenceInterval

Introduced in R2017b

 sbiopredictionci

1-217

sbioplot
Plot simulation results in one figure

Syntax
sbioplot(sd)
sbioplot(sd,fcnHandle,xArgs,yArgs,Name,Value)

Description
sbioplot(sd) plots each simulation run from sd, a SimData object or array of objects, in the same
figure. The plot is a time plot of each state in sd. The figure also shows a hierarchical display of all
the runs as different nodes in a tree, and you can select which run to display.

sbioplot(sd,fcnHandle,xArgs,yArgs,Name,Value) plots simulation results by calling the
function handle fcnHandle with inputs sd, xArgs, and yArgs, and uses additional options specified
by one or more name-value pair arguments. For example, you can specify the x-label and y-label of
the plot. xArgs and yArgs must be cell arrays or string vectors of the names of the states to plot.

Examples

Plot Selected States from Simulation Data

Plot the prey versus predator data from the stochastically simulated lotka model by using a custom
function (plotXY).

Load the model. Set the solver type to SSA to perform stochastic simulations, and set the stop time to
3.

sbioloadproject lotka;
cs = getconfigset(m1);
cs.SolverType = 'SSA';
cs.StopTime = 3;
rng('default') % For reproducibility

Set the number of runs and use sbioensemblerun for simulation.

numRuns = 2;
sd = sbioensemblerun(m1,numRuns);

Plot the simulation data. By default, sbioplot shows the time plot of each species for each run.

sbioplot(sd);

1 Functions

1-218

Plot selected states against each other; in this case, plot the prey population versus the predator
population. Use the function plotXY (shown at the end of this example) to plot the simulated y1
(prey) data versus the y2 (predator) data. Specify the function as a function handle.

If you use the live script file for this example, the plotXY function is already included at the end of
the file. Otherwise, you must define the plotXY function at the end of your .m or .mlx file or add it as
a file on the MATLAB path.

sbioplot(sd,@plotXY,{'y1'},{'y2'},'xlabel','y1','ylabel','y2','title','Prey versus Predator');

 sbioplot

1-219

Define plotXY Function

sbioplot accepts a function handle for a function with the signature:

function [handles,names] = functionName(sd,xArgs,yArgs).

The plotXY function plots two selected states against each other. The first input sd is the simulation
data (SimBiology SimData object or vector of objects). In this particular example, xArgs is a cell
array containing the name of the species to be plotted on the x-axis, and yArgs is a cell array
containing the name of the second species to be plotted on the y-axis. However, you can use the
inputs xArgs and yArgs in any way in your custom plotting function. The function returns handles,
an array of function handles to the line plots, and names, a cell array of character vectors shown on
the nodes that are children of a Run node in a hierarchical display.

function [handles,names] = plotXY(sd,xArgs,yArgs)

% Select simulation data for each state from each run.
xData1 = selectbyname(sd(1),xArgs);
xData2 = selectbyname(sd(2),xArgs);
yData1 = selectbyname(sd(1),yArgs);
yData2 = selectbyname(sd(2),yArgs);

% Plot the species against each other.
fH1 = plot(xData1.Data,yData1.Data);
fH2 = plot(xData2.Data,yData2.Data);

% The first output, handles, is a two-dimensional array of handles of the line plots. It must be of size M x N,

1 Functions

1-220

% where M is the number of line plots for each run and N is the number of runs.
handles = [fH1,fH2];

% The second output, names, must be a one-dimensional cell array of character vectors.
% Its length must be equal to the number of rows in handles, and the texts are displayed on the
% nodes that are children of a Run node.
names = {'y1 vs y2'};

end

Input Arguments
sd — Simulation results
SimData object

Simulation results, specified as a SimData object or vector of SimData objects.

This argument corresponds to the first input of the function referenced by fcnHandle.
Example: simdata

fcnHandle — Function to generate line plots
function handle

Function to generate line plots, specified as a function handle. For an example of a custom function to
plot selected species from simulation data, see Plot Selected States from Simulation Data on page 1-
218.

The function must have the signature:

function [handles,names] = functionName(sd,xArgs,yArgs).

The inputs sd, xArgs, and yArgs are the same inputs that you pass in when you call sbioplot.

The first output handles is a two-dimensional array of handles of the line plots generated by the
function. Its size must be P-by-R, where P is the number of line plots, and R is the number of runs.

The second output names is a one-dimensional cell array of character vectors containing the names
to be displayed on the nodes that are children of a Run node in a hierarchical display. The length of
names must be equal to the number of rows in handles.
Example: @plotXY
Data Types: function_handle

xArgs — State names
string vector | cell array of character vectors

State names to plot, specified as a string vector or cell array of character vectors. For instance, you
can use xArgs to represent the states to be plotted on the x-axis of your custom plot.

This argument corresponds to the second input of the function referenced by fcnHandle.
Example: {'y1'}
Data Types: cell

 sbioplot

1-221

yArgs — State names
string vector | cell array of character vectors

State names to plot, specified as a string vector or cell array of character vectors. For instance, you
can use yArgs to represent the states to be plotted on the y-axis of your custom plot.

This argument corresponds to the third input of the function referenced by fcnHandle.
Example: {'y2','z'}
Data Types: cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'title','Species X versus Species Y' specifies the axes title of the plot.

title — Axes title
character vector | string

Axes title, specified as the comma-separated pair consisting of 'title' and character vector or
string.
Example: 'title','Prey versus Predator'
Data Types: char | string

xlabel — Label for x-axis
character vector | string

Label for the x-axis of the plot, specified as the comma-separated pair consisting of 'xlabel' and a
character vector or string.
Example: 'xlabel','y1'
Data Types: char | string

ylabel — Label for y-axis
character vector | string

Label for the y-axis of the plot, specified as the comma-separated pair consisting of 'ylabel' and a
character vector or string.
Example: 'ylabel','y2'
Data Types: char | string

Compatibility Considerations
Legends are statically displayed
Behavior changed in R2020a

Starting in R2020a, the figure legends are statistically displayed. The All Runs checkbox has been
removed.

1 Functions

1-222

See Also
sbiosubplot | SimData

Introduced in R2008a

 sbioplot

1-223

sbioremovefromlibrary
Remove kinetic law, unit, or unit prefix from library

Syntax
sbioremovefromlibrary (Obj)
sbioremovefromlibrary ('Type', 'Name')

Description
sbioremovefromlibrary (Obj) removes the kinetic law definition, unit, or unit prefix object
(Obj) from the user-defined library. The removed component will no longer be available automatically
in future MATLAB sessions.

sbioremovefromlibrary does not remove a kinetic law definition that is being used in a model.

You can use a built-in or user-defined kinetic law definition when you construct a kinetic law object
with the method addkineticlaw.

sbioremovefromlibrary ('Type', 'Name') removes the object of type 'Type' with name
'Name' from the corresponding user-defined library. Type can be 'kineticlaw', 'unit' or
'unitprefix'.

To get a component of the built-in and user-defined libraries, use the commands get(sbioroot,
'BuiltInLibrary') and get(sbioroot, 'UserDefinedLibrary').

To create a kinetic law definition, unit, or unit prefix, use sbioabstractkineticlaw, sbiounit, or
sbiounitprefix respectively.

To add a kinetic law definition, unit, or unit prefix to the user-defined library, use the function
sbioaddtolibrary.

Examples
This example shows how to remove a kinetic law definition from the user-defined library.

1 Create a kinetic law definition.
abstkineticlawObj = sbioabstractkineticlaw('mylaw1', '(k1*s)/(k2+k1+s)');

2 Add the new kinetic law definition to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

sbioaddtolibrary adds the kinetic law definition to the user-defined library. You can verify
this using sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array

Index: Library: Name: Expression:
1 UserDefined mylaw1 (k1*s)/(k2+k1+s)

1 Functions

1-224

3 Remove the kinetic law definition.

sbioremovefromlibrary('kineticlaw', 'mylaw1');

See Also
sbioaddtolibrary | sbioabstractkineticlaw | sbiounit | sbiounitprefix

Introduced in R2006a

 sbioremovefromlibrary

1-225

sbioreset
Delete all model objects

Syntax
sbioreset

Description
sbioreset deletes all SimBiology model objects at the root level. You cannot use a SimBiology model
object after it is deleted.

Tip To remove a SimBiology model object from the MATLAB workspace, without deleting it from the
root level, use the clear function.

Note If the SimBiology desktop is open, calling sbioreset at the command line deletes all model
objects that are open in the desktop.

The SimBiology root object contains a list of SimBiology model objects, available units, unit prefixes,
and kinetic law objects. A SimBiology model object has its Parent property set to the SimBiology
root object.

To add a kinetic law definition to the SimBiology root user-defined library, use the
sbioaddtolibrary function. To add a unit to the SimBiology user-defined library on the root, use
sbiounit followed by sbioaddtolibrary. To add a unit prefix to the SimBiology user-defined
library on the root, use sbiounitprefix followed by sbioaddtolibrary.

Examples
This example shows the difference between sbioreset and clear all.

1 Import a model into the workspace.

modelObj = sbmlimport('oscillator');

Note that the workspace contains modelObj and if you query the SimBiology root, there is one
model on the root object.

rootObj = sbioroot

SimBiology Root Contains:

 Models: 1
 Builtin Abstract Kinetic Laws: 3
 User Abstract Kinetic Laws: 0
 Builtin Units: 54
 User Units: 0
 Builtin Unit Prefixes: 13
 User Unit Prefixes: 0

1 Functions

1-226

2 Use clear all to clear the workspace. The modelObj still exists on the rootObj.

clear all

rootObj

SimBiology Root Contains:

 Models: 1
 Builtin Abstract Kinetic Laws: 3
 User Abstract Kinetic Laws: 0
 Builtin Units: 54
 User Units: 0
 Builtin Unit Prefixes: 13
 User Unit Prefixes: 0

3 Usesbioreset to delete the modelObj from the root.

sbioreset
rootObj

SimBiology Root Contains:

 Models: 0
 Builtin Abstract Kinetic Laws: 3
 User Abstract Kinetic Laws: 0
 Builtin Units: 54
 User Units: 0
 Builtin Unit Prefixes: 13
 User Unit Prefixes: 0

See Also
sbioaddtolibrary | sbioroot | sbiounit | sbiounitprefix

Topics
sbioroot on page 1-228

Introduced before R2006a

 sbioreset

1-227

sbioroot
Return SimBiology root object

Syntax
rootObj = sbioroot

Arguments
rootObj Return sbioroot to this object.

Description
rootObj = sbioroot returns the SimBiology root object to root. The SimBiology root object
contains a list of the SimBiology model objects, available units, unit prefixes, and available kinetic
laws.

The units define the set of built-in units and user-defined units. See Unit object for more
information.

The unit prefixes define the set of built-in prefixes and user-defined prefixes. See Unit Prefix
object for more information.

The kinetic laws define the built-in kinetic laws and user-defined kinetic laws. See
AbstractKineticLaw object for more information.

To add a unit, prefix or kinetic law to the root (in the user-defined library), use the
sbioaddtolibrary function. To remove, use sbioremovefromlibrary.

The models opened in the SimBiology desktop are stored in the root object.

Method Summary
copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
reset (root) Delete all model objects from root object
set Set SimBiology object properties

1 Functions

1-228

Property Summary
BuiltInLibrary Library of built-in components
Models Contain all model objects
Type Display SimBiology object type
UserDefinedLibrary Library of user-defined components

See Also
addkineticlaw | sbiomodel | sbioreset | Unit object | UnitPrefix object

Topics
sbiomodel on page 1-133
addkineticlaw on page 2-42
sbioreset on page 1-226

Introduced in R2006a

 sbioroot

1-229

sbiosampleparameters
Generate parameters by sampling covariate model (requires Statistics and Machine Learning Toolbox
software)

Syntax
phi = sbiosampleparameters(covexpr,thetas,omega,ds)
phi = sbiosampleparameters(covexpr,thetas,omega,n)
[phi,covmodel] = sbiosampleparameters(_)

Description
phi = sbiosampleparameters(covexpr,thetas,omega,ds) generates a matrix phi
containing sampled parameter values using the covariate model specified by the covariate expression
covexpr, fixed effects thetas, covariance matrix omega, and covariate data ds.

phi = sbiosampleparameters(covexpr,thetas,omega,n) uses a scalar n that specifies the
number of rows in phi when the parameters are not dependent on any covariate.

[phi,covmodel] = sbiosampleparameters(_) returns a matrix phi and a covariate model
object covmodel using any of the input arguments from previous syntaxes.

Examples

Sample Parameter Values from a Covariate Model

This example uses data collected on 59 preterm infants given phenobarbital during the first 16 days
after birth. Each infant received an initial dose followed by one or more sustaining doses by
intravenous bolus administration. A total of between 1 and 6 concentration measurements were
obtained from each infant at times other than dose times, for a total of 155 measurements. Infant
weights and APGAR scores (a measure of newborn health) were also recorded. Data was described in
[1], a study funded by the NIH/NIBIB grant P41-EB01975.

Load the data.

load pheno.mat ds

Visualize the data.

t = sbiotrellis(ds,'ID','TIME','CONC','marker','o','markerfacecolor',[.7 .7 .7],'markeredgecolor','r','linestyle','none');
t.plottitle = 'States versus Time';

1 Functions

1-230

Create a one-compartment PK model with bolus dosing and linear clearance to model such data.

pkmd = PKModelDesign;
pkmd.addCompartment('Central','DosingType','Bolus','EliminationType','linear-clearance',...
 'HasResponseVariable',true,'HasLag',false);
onecomp = pkmd.construct;

Suppose there is a correlation between the volume of the central compartment (Central) and the
weight of infants. You can define this parameter-covariate relationship using a covariate model that
can be described as

log(Vi) = θV + θV WEIGHT ∗WEIGHTi + ηV, i,

where, for each ith infant, V is the volume, θs (thetas) are fixed effects, η (eta) represents random
effects, and WEIGHT is the covariate.

covM = CovariateModel;
covM.Expression = {'Central = exp(theta1+theta2*WEIGHT+eta1)'};

Define the fixed and random effects. The column names of each table must have the names of fixed
effects and random effects, respectively.

thetas = table(1.4,0.05,'VariableNames',{'theta1','theta2'});
eta1 = table(0.2,'VariableNames',{'eta1'});

Change the group label ID to GROUP as required by the sbiosampleparameters function.

ds.Properties.VariableNames{'ID'} = 'GROUP';

 sbiosampleparameters

1-231

Generate parameter values for the volumes of central compartments Central based on the covariate
model for all infants in the data set.

phi = sbiosampleparameters(covM.Expression,thetas,eta1,ds);

You can then simulate the model using the sampled parameter values. For convenience, use the
function-like interface provided by a SimFunction object.

First, construct a SimFunction object using the createSimFunction method, specifying the volume
(Central) as the parameter, and the drug concentration in the compartment (Drug_Central) as the
output of the SimFunction object, and the dosed species.

f = createSimFunction(onecomp,covM.ParameterNames,'Drug_Central','Drug_Central');

The data set ds contains dosing information for each infant, and the groupedData object provides a
convenient way to extract such dosing information. Convert ds to a groupedData object and extract
dosing information.

grpData = groupedData(ds);
doses = createDoses(grpData,'DOSE');

Simulate the model using the sampled parameter values from phi and the extracted dosing
information of each infant, and plot the results. The ith run uses the ith parameter value in phi and
dosing information of the ith infant.

t = sbiotrellis(f(phi,200,doses.getTable),[],'TIME','Drug_Central');
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

1 Functions

1-232

Input Arguments
covexpr — Covariate expressions
cell array of character vectors | string vector

Covariate expressions, specified as a cell array of character vectors or string vector that defines the
parameter-covariate relationships.

If a model component name or covariate name is not a valid MATLAB variable name, surround it by
square brackets when referring to it in the expression. For example, if the name of a species is DNA
polymerase+, write [DNA polymerase+]. If a covariate name itself contains square brackets, you
cannot use it in the expression.

See CovariateModel object to learn more about covariate expressions.

thetas — Fixed effects
table | dataset | numeric vector

Fixed effects, specified as a table, dataset, or numeric vector containing values for fixed effect
parameters defined in the covariate expressions covexpr. Fixed effect parameter names must start
with 'theta'.

• If thetas is a table, thetas.Properties.VariableNames must match the names of the fixed
effects.

 sbiosampleparameters

1-233

For example, suppose that you have three thetas: thetaOne = 0.1, theta2 = 0.2, and theta3
= 0.3. You can create the corresponding table.

thetas = table(0.1,0.2,0.3);
thetas.Properties.VariableNames = {'thetaOne','theta2','theta3'}

thetas =

 1×3 table

 thetaOne theta2 theta3
 ________ ______ ______

 0.1 0.2 0.3
• If thetas is a dataset, thetas.Properties.VarNames must match the names of the fixed
effects.

• If thetas is a numeric vector, the order of the values in the vector must be the same ascending
ASCII dictionary order as the fixed effect names.

Use the sort function to sort a cell array of character vectors to see the order.

sort({'thetaOne','theta2','theta3'})

ans =

 1×3 cell array

 {'theta2'} {'theta3'} {'thetaOne'}

Then specify the value of each theta in the same order.

thetas = [0.2 0.3 0.1];

omega — Covariance matrix of random effects
table | dataset | matrix

Covariance matrix of random effects, specified as a table, dataset, or matrix. Random effect
parameter names must start with 'eta'.

• If omega is a table, omega.Properties.VariableNames must match the names of the random
effects. Specifying the row names (RowNames) is optional, but if you do, they must also match the
names of random effects.

Suppose that you want to define a diagonal covariance matrix with three random effect
parameters eta1, eta2, and eta3 with the values 0.1, 0.2, and 0.3, respectively.

Cov(η1, η1) Cov(η ,1 η2) Cov(η1, η3)
Cov(η2, η1) Cov(η2, η2) Cov(η2, η3)
Cov(η3, η1) Cov(η3, η2) Cov(η3, η3)

=
eta1 0 0
0 eta2 0
0 0 eta3

You can construct the corresponding table.

eta1 = [0.1;0;0];
eta2 = [0;0.2;0];
eta3 = [0;0;0.3];
omega = table(eta1,eta2,eta3,'VariableNames',{'eta1','eta2','eta3'})

1 Functions

1-234

omega =

 3×3 table

 eta1 eta2 eta3
 ____ ____ ____

 0.1 0 0
 0 0.2 0
 0 0 0.3

• If omega is a dataset, omega.Properties.VarNames must match the names of the random
effects. Specifying the row names (ObsNames) is optional, but if you do, they must also match the
names of random effects.

• If omega is a matrix, the rows and columns must have the same ascending ASCII dictionary order
as the random effect names.

Use the sort function to sort a cell array of character vectors to see the order.

sort({'eta1','eta2','eta3'})

ans =

 1×3 cell array

 {'eta1'} {'eta2'} {'eta3'}

ds — Covariate data
dataset | table

Covariate data, specified as a dataset or table containing the covariate data for all groups.

ds must have a column named 'Group' or 'GROUP' specifying the group labels as well as a column
each for all covariates used in the covariate model. The column names must match the names of the
corresponding covariates used in the covariate expressions.

n — Number of rows in phi
scalar

Number of rows in phi, specified as a scalar.

Output Arguments
phi — Sampled parameter values
matrix

Sampled parameter values, returned as a matrix of size S-by-P, where S is the number of groups
specified in ds or specified by n and P is the number of parameters which is equal to the number of
elements in covexpr.

covmodel — Covariate model
CovariateModel object

Covariate model, returned as a CovariateModel object which represents the model defined by
covexpr.

 sbiosampleparameters

1-235

Compatibility Considerations
Support for numeric vector and matrix inputs for fixed and random effects will be removed
Warns starting in R2018b

Support for specifying a numeric vector for the fixed effects (thetas) or a matrix for the covariance
matrix of random effects (omega) will be removed in a future release. Use a table instead.

References
[1] Grasela Jr, T.H., Donn, S.M. (1985) Neonatal population pharmacokinetics of phenobarbital

derived from routine clinical data. Dev Pharmacol Ther. 8(6), 374–83.

See Also
sbiosampleerror | createSimFunction | SimFunction object | CovariateModel object

Introduced in R2014a

1 Functions

1-236

sbiosampleerror
Sample error based on error model and add noise to simulation data

Syntax
sdN = sbiosampleerror(sd,errormodel,errorparam)

Description
sdN = sbiosampleerror(sd,errormodel,errorparam) adds noise to the simulation data sd
using one or more error models errormodel and error parameters errorparam.

Examples

Add Noise to Simulation Data

This example adds noise (or error) to the simulation data from a radioactive decay model with the
first-order reaction: dz

dt = c ⋅ x, where x and z are species and c is the forward rate constant.

Load the sample project containing the radiodecay model m1.

sbioloadproject radiodecay;

Simulate the model.

[t,sd,names] = sbiosimulate(m1);

Plot the simulation results.

plot(t,sd);
legend(names,'AutoUpdate','off');
hold on

 sbiosampleerror

1-237

Add noise to the simulation results using the constant error model with the error parameter set to 20.

sdNoisy = sbiosampleerror(sd,'constant',20);

Plot the noisy simulation data.

plot(t,sdNoisy);

1 Functions

1-238

Define a Custom Error Model Using a Function Handle

This example defines a custom error model using a function handle and adds noise to simulation data

of a radioactive decay model with the first-order reaction , where x and z are species, and c
is the forward rate constant.

Load the sample project containing the radiodecay model m1.

sbioloadproject radiodecay;

Suppose you have a simple custom error model with a standard mean-zero and unit-variance
(Gaussian) normal variable e, simulation results f, and two parameters p1 and p2:

Define a function handle that represents the error model.

em = @(y,p1,p2) y+p1+p2*randn(size(y));

Simulate the model.

[t,sd,names] = sbiosimulate(m1);

Plot the simulation results and hold the plot.

 sbiosampleerror

1-239

plot(t,sd);
legend(names,'AutoUpdate','off');
hold on

Sample the error using the previously defined custom function with two parameters set to 0.5 and 30,
respectively.

sdNoisy = sbiosampleerror(sd,em,{0.5,30});

Plot the noisy simulation data.

plot(t,sdNoisy);

1 Functions

1-240

You can also apply a different error model to each state, which is a column in sd. Suppose you want
to apply the custom error model (em) to the first column (species x data) and the proportional error
model to the second column (species z data).

hold off
sdNoisy = sbiosampleerror(sd,{em,'proportional'},{{0.5,30},0.3});
plot(t,sd);
legend(names,'AutoUpdate','off');
hold on
plot(t,sdNoisy);

 sbiosampleerror

1-241

Input Arguments
sd — Simulation results
SimData object | vector of SimData objects | numeric matrix

Simulation results, specified as a SimData object, vector of SimData objects, or numeric matrix. If
it is a vector of SimData objects, the error is added to each of the columns in the Data property. If it
is a numeric matrix, the error is added to each column in the matrix.

errormodel — Error model
character vector | string | function handle | string vector | cell array of character vectors

Error model(s), specified as a character vector, string, function handle, string vector, cell array of
character vectors, or cell array containing a mixture of character vectors and function handles.

If it is a string vector or cell array, its length must match the number of columns (responses) in sd,
and each error model is applied to the corresponding column in sd. If it is a single character vector,
string, or function handle, the same error model is applied to all columns in sd.

The first argument of a function handle must be a matrix of simulation results. The subsequent
arguments are the parameters of the error model supplied in the errorparam input argument. The
output of the function handle must be a matrix of the same size as the first input argument
(simulation results).

1 Functions

1-242

For example, suppose you have a custom error model with a standard mean-zero and unit-variance
(Gaussian) normal variable e, simulation results f, and two parameters p1 and p2: y = f + p1 + p2 ∗ e.
You can define the corresponding function handle as follows.

em = @(y,p1,p2) y+p1+p2*randn(size(y));

where y is the matrix of simulation results and p1 and p2 are the error parameters. The output of the
function handle must be the same size as y, which is the same as the simulation results specified in
the sd input argument. The parameters p1 and p2 are specified in the errorparam argument.

There are four built-in error models. Each model defines the error using a standard mean-zero and
unit-variance (Gaussian) variable e, simulation results f, and one or two parameters a and b. The
models are:

• 'constant': y = f + ae
• 'proportional': y = f + b f e
• 'combined': y = f + (a + b f)e
• 'exponential': y = f ∗ exp(ae)

errorparam — Error model parameter
scalar | vector | cell array

Error model parameter(s), specified as a scalar, vector, or cell array. If errormodel is 'constant',
'proportional', or 'exponential', then errorparam is specified as a numeric scalar. If it is
'combined', then errorparam is specified as a row vector with two elements [a b].

If errormodel is a cell array, then errorparam must be a cell array of the same length. In other
words, errorparam must contain N elements, where N is the number of error models in
errormodel. Each element must have the correct number of parameters for the corresponding error
model.

For example, suppose you have three columns in sd, and you are applying a different error model
(constant, proportional, and exponential error models with error parameters 0.1, 0.2, and
0.5, respectively) to each column, then errormodel and errorparam must be cell arrays with three
elements as follows.

errormodel = {'constant','proportional','exponential'};
errorparam = {0.1,0.2,0.5};

Output Arguments
sdN — Simulation results with added noise
vector of SimData objects | matrix

Simulation results with added noise, returned as a vector of SimData objects or numeric matrix. If sd
is a vector of SimData objects, sdN is also a vector of SimData objects, and the error is added to
each column in the sd.Data property. If sd is specified as a matrix, sdN is a matrix, and the error is
added to each column in the matrix.

See Also
sbiosampleparameters | createSimFunction | SimFunction object

 sbiosampleerror

1-243

Introduced in R2014a

1 Functions

1-244

sbiosaveproject
Save all models in root object

Syntax
sbiosaveproject projFilename
sbiosaveproject projFilename variableName
sbiosaveproject projFilename variableName1 variableName2 ...

Description
sbiosaveproject projFilename saves all models in the SimBiology root object to the binary
SimBiology project file named projFilename.sbproj. The project can be loaded with
sbioloadproject. sbiosaveproject returns an error if projFilename.sbproj is not writable.

sbiosaveproject creates the binary SimBiology project file named simbiology.sbproj.
sbiosaveproject returns an error if this is not writable.

sbiosaveproject projFilename variableName saves only variableName. variableName
can be a SimBiology model or any MATLAB variable.

sbiosaveproject projFilename variableName1 variableName2 ... saves the specified
variables in the project.

Use the functional form of sbiosaveproject when the file name or variable names are stored in a
character vector. For example, if the file name is stored in the variable fileName and you want to
store MATLAB variables variableName1 and variableName2, type sbiosaveproject
(projFileName, 'variableName1', 'variableName2') at the command line.

Examples
1 Import an SBML file and simulate (default configset object is used).

modelObj = sbmlimport ('oscillator.xml');
timeseriesObj = sbiosimulate(modelObj);

2 Save the model and the simulation results to a project.

sbiosaveproject myprojectfile modelObj timeseriesObj

See Also
sbioaddtolibrary | sbioloadproject | sbioremovefromlibrary | sbiowhos

Topics
sbioloadproject on page 1-132
sbiowhos on page 1-311
sbioaddtolibrary on page 1-16
sbioremovefromlibrary on page 1-224

 sbiosaveproject

1-245

Introduced in R2006a

1 Functions

1-246

sbioselect
Search for objects with specified constraints

Syntax
Out = sbioselect('PropertyName', PropertyValue)
Out = sbioselect('Where', 'PropertyName', 'Condition', PropertyValue)
Out = sbioselect(Obj, 'PropertyName', PropertyValue)
Out = sbioselect(Obj, 'Type', 'TypeValue', 'PropertyName', PropertyValue)
Out = sbioselect(Obj, 'Where', 'PropertyName', 'Condition', PropertyValue)
Out = sbioselect(Obj, 'Where', 'PropertyNameCondition',
'PropertyNamePattern', 'Condition', PropertyValue)
Out = sbioselect(Obj, 'Where', 'PropertyName1', 'Condition1', PropertyValue1,
'Where', 'PropertyName2', 'Condition2', PropertyValue2,...)
Out = sbioselect(Obj, 'Where', 'PropertyName1', 'Condition1',
PropertyValue1,Bool_Operator, 'Where', 'PropertyName2', 'Condition2',
PropertyValue2,...)
Out = sbioselect(Obj, 'Depth', DepthValue,...)

Arguments

Out Object or array of objects returned by the sbioselect function. Out might
contain a mixture of object types (for example, species and parameters),
depending on the selection you specify.

If PropertyValue is a cell array, then the function returns all objects with
the property 'PropertyName' that matches any element of
PropertyValue.

Obj SimBiology object or array of objects to search. If an object is not specified,
sbioselect searches the root.

PropertyName Any property of the object being searched.
PropertyValue Specify PropertyValue to include in the selection criteria.
TypeValue Type of object to include in the selection, for example, sbiomodel, species,

reaction, or kineticlaw.
Condition The search condition. See the table under “Description” on page 1-248 for a

list of conditions.
PropertyNameCondition Search condition that applies only to the name property. See the table listing

“Conditions for Names” below.
PropertyNamePattern Character vector or string used to select the property name according to the

condition imposed by PropertyNameCondition.
DepthValue Specify the depth number to search. Valid numbers are positive integer

values and inf. If DepthValue is inf, sbioselect searches Obj and all of
its children. If DepthValue is 1, sbioselect only searches Obj and not its
children. By default, DepthValue is inf.

 sbioselect

1-247

Description
sbioselect searches for objects with specified constraints.

Out = sbioselect('PropertyName', PropertyValue) searches the root object (including all
model objects contained by the root object) and returns the objects with the property name
(PropertyName) and property value (PropertyValue) contained by the root object.

Out = sbioselect('Where', 'PropertyName', 'Condition', PropertyValue) searches
the root object and finds objects that have a property name (PropertyName) and value
(PropertyValue) that matches the condition (Condition).

Out = sbioselect(Obj, 'PropertyName', PropertyValue) returns the objects with the
property name (PropertyName) and property value (PropertyValue) found in any object (Obj). If
the property name in a property-value pair contains either a '?' or '*', then the name is
automatically interpreted as a wildcard expression, equivalent to the where clause ('Where',
'wildcard', 'PropertyName', '==', PropertyValue).

Out = sbioselect(Obj, 'Type', 'TypeValue', 'PropertyName', PropertyValue) finds
the objects of type (TypeValue), with the property name (PropertyName) and property value
(PropertyValue) found in any object (Obj). TypeValue is the type of SimBiology object to be
included in the selection, for example, species, reaction, or kineticlaw.

Out = sbioselect(Obj, 'Where', 'PropertyName', 'Condition', PropertyValue)
finds objects that have a property name (PropertyName) and value (PropertyValue) that match
the condition (Condition).

If you search for a character vector property value without specifying a condition, you must use the
same format as get returns. For example, if get returns the Name as 'MyObject', sbioselect will
not find an object with a Name property value of 'myobject'. Therefore, for this example, you must
specify:

modelObj = sbioselect ('Name', 'MyObject')

Instead, if you use a condition, you can specify:

modelObj = sbioselect ('Where', 'Name', '==i', 'myobject')

Thus, conditions let you control the specificity of your selection.

sbioselect searches for model objects on the root in both cases.

Out = sbioselect(Obj, 'Where', 'PropertyNameCondition',
'PropertyNamePattern', 'Condition', PropertyValue) finds objects with a property name
that matches the pattern in (PropertyNamePattern) with the condition
(PropertyNameCondition) and matches the value (PropertyValue) with the condition
(Condition). Use this syntax when you want search conditions on both property names and property
values.

The conditions, with examples of property names and corresponding examples of property values that
you can use, are listed in the following tables. This table shows you conditions for numeric properties.

1 Functions

1-248

Conditions for Numeric Properties Example Syntax
== Search in the model object (modelObj), and return parameter objects

that have Value equal to 0.5. sbioselect returns parameter objects
because only parameter objects have a property called Value.

parameterObj = sbioselect (modelObj,...
 'Where', 'Value', '==', 0.5)

In the case of ==, this is equivalent to omitting the condition as shown:

parameterObj = sbioselect (modelObj,...
'Value', 0.5)

Search in the model object (modelObj), and return parameter objects
that have ConstantValue false (nonconstant parameters).

parameterObj = sbioselect (modelObj,...
 'Where', 'ConstantValue', '==', false)

~= Search in the model object (modelObj), and return parameter objects
that do not have Value equal to 0.5.

parameterObj = sbioselect (modelObj,...
 'Where', 'Value', '~=', 0.5)

>,<,>=,<= Search in the model object (modelObj), and return species objects
that have an initial amount (InitialAmount) greater than 50.

speciesObj = sbioselect (modelObj, ...
 'Where', 'InitialAmount', '>', 50)

Search in the model object (modelObj), and return species objects
that have an initial amount (InitialAmount) less than or equal to 50.

speciesObj = sbioselect (modelObj,...
 'Where', 'InitialAmount', '<=', 50)

between Search in the model object (modelObj), and return species objects
that have an initial amount (InitialAmount) between 200 and 300.

speciesObj = sbioselect (modelObj,...
 'Where', 'InitialAmount',...
 'between', [200 300])

~between Search in the model object (modelObj), and return species objects
that have an initial amount (InitialAmount) that is not between 200
and 300.

speciesObj = sbioselect (modelObj,...
 'Where', 'InitialAmount',...
 '~between', [200 300])

 sbioselect

1-249

Conditions for Numeric Properties Example Syntax
equal_and_same_type Similar to ==, but in addition requires the property value to be of the

same type.

Search in the model object (modelObj), and return all objects
containing a property of type double and a value equal to 0. (Using
'==' would also select objects containing a property with a value of
false.)

zeroObj = sbioselect(modelObj, ...
 'Where', '*', 'equal_and_same_type', 0);

unequal_and_same_type Similar to ~=, but in addition requires the property value to be of the
same type.

Select all objects containing a property of type double and value not
equal to 0. (Using '~=' would also select objects containing a
property with a value of true.)

nonzeroObj = sbioselect(modelObj, ...
'Where', '*', 'unequal_and_same_type', 0);

The following table shows you conditions for the name property or for properties whose values are
character vectors.

Conditions for Names Example Syntax
== Search in the model object (modelObj), and return species objects

named 'Glucose'.

speciesObj = sbioselect (modelObj,...
 'Type', 'species', 'Where',...
 'Name', '==', 'Glucose')

~= Search in the model object (modelObj), and return species objects
that are not named 'Glucose'.

speciesObj = sbioselect (modelObj,...
 'Type', 'species', 'Where',...
 'Name', '~=', 'Glucose')

==i Same as ==; in addition, this is case insensitive.
~=i Search in the model object (modelObj), and return species objects

that are not named 'Glucose', ignoring case.

speciesObj = sbioselect (modelObj,...
 'Type', 'species', 'Where',...
 'Name', '~=i', 'glucose')

1 Functions

1-250

Conditions for Names Example Syntax
regexp. Supports expressions
supported by the functions regexp
and regexpi.

Search in the model object (modelObj), and return objects that have
'ese' or 'ase' anywhere within the name.

Obj = sbioselect (modelObj, 'Where',...
 'Name', 'regexp', '[ea]se')

Search in the root, and return objects that have kinase anywhere
within the name.

Obj = sbioselect ('Where',...
 'Name', 'regexp', 'kinase')

Note that this query could result in a mixture of object types (for
example, species and parameters).

regexpi Same as regexp; in addition, this is case insensitive.
~regexp Search in the model object (modelObj), and return objects that do not

have kinase anywhere within the name.

Obj = sbioselect (modelObj, 'Where',...
 'Name', '~regexp', 'kinase')

~regexpi Same as ~regexp; in addition, this is case insensitive.
wildcard Supports DOS-style wildcards ('?' matches any single character, '*'

matches any number of characters, and the pattern must match the
entire character vector). See regexptranslate for more
information.

wildcardi Same as wildcard; in addition, this is case insensitive.
~wildcard Search in the model object (modelObj), and return objects that have

names that do not begin with kin*.

Obj = sbioselect (modelObj, 'Where',...
 'Name', '~wildcard', 'kin*')

~wildcardi Same as ~wildcard; in addition, this is case insensitive.

Use the condition type function for any property. The specified value should be a function handle
that, when applied to a property value, returns a boolean indicating whether there is a match. The
following table shows an example of using function.

Condition Example Syntax
'function' Search in the model object and return reaction objects whose

Stoichiometry property contains the specified stoichiometry.

Out = sbioselect(modelObj, 'Where',...
'Stoichiometry', 'function',...
 @(x)any(x>2))

Select all objects with a numeric value that is even.

iseven = @(x) isnumeric(x)...
 && isvector(x) && mod(x, 2) == 0;
evenValuedObj = sbioselect(modelObj, ...
'where', 'Value', 'function', iseven);

 sbioselect

1-251

The condition 'contains' can be used only for those properties whose values are an array of
SimBiology objects. The following table shows an example of using contains.

Condition Example Syntax
'contains' Search in the model object and return reaction objects whose

Reactant property contains the specified species.

Out = sbioselect(modelObj, 'Where',...
'Reactants', 'contains',...
 modelObj.Species(1))

Out = sbioselect(Obj, 'Where', 'PropertyName1', 'Condition1', PropertyValue1,
'Where', 'PropertyName2', 'Condition2', PropertyValue2,...) finds objects contained
by Obj that matches all the conditions specified.

You can combine any number of property name/property value pairs and conditions in the
sbioselect command.

Out = sbioselect(Obj, 'Where', 'PropertyName1', 'Condition1',
PropertyValue1,Bool_Operator, 'Where', 'PropertyName2', 'Condition2',
PropertyValue2,...) finds objects contained by Obj that matches all the conditions specified.
Supported character vectors for Bool_Operator are as follows.

'and' True if ('Where', 'PropertyName1','Condition1',PropertyValue1) and ('Where',
'PropertyName2','Condition2',PropertyValue2) are both true.

'or' True if either ('Where', 'PropertyName1','Condition1',PropertyValue1) or
('Where', 'PropertyName2','Condition2',PropertyValue2) is true.

'xor' True if exactly one of ('Where', 'PropertyName1','Condition1',PropertyValue1) or
('Where', 'PropertyName2','Condition2',PropertyValue2) is true.

'not' True if ('Where', 'PropertyName1','Condition1',PropertyValue1) is true and
('Where', 'PropertyName2','Condition2',PropertyValue2) is not true.

Compound expressions with multiple boolean operators are supported. Precedence of the operators
follows the order of operations for boolean algebra not –> and –> xor –> or.

Out = sbioselect(Obj, 'Depth', DepthValue,...) finds objects using a model search depth
of DepthValue.

Note The order of results from sbioselect is not guaranteed. Hence, it is not recommended to
depend on the order of results.

Examples

Find Species from a SimBiology Model

Import a model.

modelObj = sbmlimport('oscillator');

Find and return an object named pA.

1 Functions

1-252

pA = sbioselect(modelObj, 'Name', 'pA')

pA =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed pA 100

Find and return species objects whose Name starts with p and have A or B as the next letter in the
name.

speciesObjs = sbioselect(modelObj, 'Type', 'species', 'Where',...
 'Name', 'regexp', '^p[AB]')

speciesObjs =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed pA 100
 2 unnamed pB 0
 3 unnamed pA_OpB1 0
 4 unnamed pB_OpC1 0
 5 unnamed pA_OpB_pA 20
 6 unnamed pA_OpB2 0
 7 unnamed pB_OpC2 0
 8 unnamed pB_OpC_pB 0

Find a cell array. Note how cell array values must be specified inside another cell array.

modelObj.Species(2).UserData = {'a' 'b'};
Obj = sbioselect(modelObj, 'UserData', {{'a' 'b'}})

Obj =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed pB 0

Find and return objects that do not have their units set.

unitlessObj = sbioselect(modelObj, 'Where', 'wildcard', '*Units', '==', '');

Alternatively, you can do the following.

unitlessObj = sbioselect(modelObj, '*Units', '');

See Also
regexp

Introduced before R2006a

 sbioselect

1-253

sbioshowunitprefixes
Show unit prefixes in library

Syntax
UnitPrefixObjs = sbioshowunitprefixes
[Name, Multiplier] = sbioshowunitprefixes
[Name, Multiplier, Builtin] = sbioshowunitprefixes
[Name, Multiplier, Builtin] = sbioshowunitprefixes('Name')

Arguments
unitPrefixObjs Vector of unit prefix objects from the BuiltInLibrary and

UserDefinedLibrary properties of the Root.
Name Name of the built-in or user-defined unit prefix. Built-in prefixes

are defined based on the International System of Units (SI).
Multiplier Shows the value of 10^Exponent that defines the relationship of

the unit prefix Name to the base unit. For example, the multiplier
in picomole is 10e-12.

Builtin An array of logical values. If Builtin is true for a unit prefix,
the unit prefix is built in. If Builtin is false for a unit prefix, the
unit prefix is user-defined.

Description
sbioshowunitprefixes returns information about unit prefixes in the SimBiology library.

UnitPrefixObjs = sbioshowunitprefixes returns the unit prefixes in the library as a vector of
unit prefix objects in UnitPrefixObjs.

[Name, Multiplier] = sbioshowunitprefixes returns the multiplier for each prefix in Name
to Multiplier as a cell array of character vectors.

[Name, Multiplier, Builtin] = sbioshowunitprefixes returns whether the unit prefix is
built in or user defined for each unit prefix in Name to Builtin.

[Name, Multiplier, Builtin] = sbioshowunitprefixes('Name') returns the name,
multiplier, and built-in status for the unit prefix with name Name. Name can be a string vector or cell
array of character vectors.

Examples
[name, multiplier] = sbioshowunitprefixes;
[name, multiplier] = sbioshowunitprefixes('nano');

See Also
sbioconvertunits | sbioshowunits | sbiounitprefix

1 Functions

1-254

Introduced in R2006a

 sbioshowunitprefixes

1-255

sbioshowunits
Show units in library

Note If you specify four output arguments when calling sbioshowunits, the function no longer
returns the offset information as the fourth output. The fourth output is now a logical vector that is
true for each built-in unit.

You can no longer specify five output arguments when you call sbioshowunits. For details, see
“Compatibility Considerations”.

Syntax
unitObjs = sbioshowunits
[Name, Composition] = sbioshowunits
[Name, Composition, Multiplier] = sbioshowunits
[Name, Composition, Multiplier, Builtin] = sbioshowunits
[___] = sbioshowunits(UnitNames)

Arguments

unitObjs Vector of unit objects from the BuiltInLibrary and
UserDefinedLibrary properties of the Root.

UnitNames Names of the built-in or user-defined units, specified as a
character vector, string, string vector, or cell array of character
vectors.

Composition Shows the combination of base and derived units that defines the
unit Name. For example, molarity is mole/liter.

Multiplier The numerical value that defines the relationship between the
unit Name and the base or derived unit as a product of the
Multiplier and the base unit or derived unit. For example, 1
mole is 6.0221e23*molecule. The Multiplier is
6.0221e23.

Builtin An array of logical values. If Builtin is true for a unit, the unit
is built in. If Builtin is false for a unit, the unit is user-defined.

Description
unitObjs = sbioshowunits returns the units in the library to unitObjs as a vector of unit
objects.

[Name, Composition] = sbioshowunits returns the composition for each unit in Name to
Composition as a cell array of character vectors.

[Name, Composition, Multiplier] = sbioshowunits returns the multiplier for the unit with
name Name to Multiplier.

1 Functions

1-256

[Name, Composition, Multiplier, Builtin] = sbioshowunits returns whether the unit is
built in or user defined for each unit in Name to Builtin.

[___] = sbioshowunits(UnitNames) returns information about the units matching any of the
names specified in UnitNames.

Examples
[name, composition] = sbioshowunits;
[name, composition] = sbioshowunits('molecule');

Compatibility Considerations
sbioshowunits no longer returns offset information
Behavior changed in R2021a

If you specify four output arguments when calling sbioshowunits, the function no longer returns
the offset information as the fourth output. The fourth output is now Builtin, that is, a logical vector
that is true for each built-in unit.

You can no longer specify five output arguments
Errors starting in R2021a

You can no longer specify five output arguments when you call sbioshowunits. Specify up to four
output arguments instead.

Celsius and Fahrenheit units have been removed
Errors starting in R2021a

Celsius, celsius, and fahrenheit units have been removed from the built-in units library. Use
kelvin units instead.

If you have a model containing Celsius, celsius, or fahrenheit units, change the units to
kelvin.

If you have a script that sets the Units property of a parameter to 'Celsius', 'celsius', or
'fahrenheit', set this property to 'kelvin' and adjust the Value property accordingly. Similarly,
if you have compound units, make appropriate changes. For example, change joule/Celsius to
joule/kevin.

See Also
sbioconvertunits | sbioshowunitprefixes | sbiounit

Introduced in R2006a

 sbioshowunits

1-257

sbiosimulate
Simulate SimBiology model

Syntax
[time,x,names] = sbiosimulate(modelObj)
[time,x,names] = sbiosimulate(modelObj,csObj)
[time,x,names] = sbiosimulate(modelObj,dvObj)
[time,x,names] = sbiosimulate(modelObj,csObj,dvObj)
[time,x,names] = sbiosimulate(modelObj,csObj,variantObj,doseObj)

simDataObj = sbiosimulate(___)

Description
[time,x,names] = sbiosimulate(modelObj) returns simulation results in three outputs, time,
vector of time samples, x, simulation data, and names, column labels of simulation data x. This
function simulates the SimBiology model modelObj while using the active configuration set along
with its active doses and active variants if any.

[time,x,names] = sbiosimulate(modelObj,csObj) returns simulation results using the
specified configset object csObj, any active variants, and any active doses. Any other configsets are
ignored. If you set csObj to empty [], the function uses the active configset.

[time,x,names] = sbiosimulate(modelObj,dvObj) returns simulation results using doses or
variants specified by dvObj and the active configset. dvObj can be one of the following:

• Variant object
• ScheduleDose object
• RepeatDose object
• Array of doses or variants

If you set dvObj to empty [], the function uses the active configset, active variants, and active doses.

If you specify dvObj as variants, the function uses the specified variants and active doses. Any other
variants are ignored.

If you specify dvObj as doses, the function uses the specified doses and active variants. Any other
doses are ignored.

[time,x,names] = sbiosimulate(modelObj,csObj,dvObj) returns simulation results using a
configset object csObj and dose, variant, or an array of doses or variants specified by dvObj.

If you set csObj to [], then the function uses the active configset object.

If you set dvObj to [], then the function uses no variants, but uses active doses.

If you specify dvObj as variants, the function uses the specified variants and active doses. Any other
variants are ignored.

1 Functions

1-258

If you specify dvObj as doses, the function uses the specified doses and active variants. Any other
doses are ignored.

[time,x,names] = sbiosimulate(modelObj,csObj,variantObj,doseObj) returns
simulation results using a configset object csObj, variant object or variant array specified by
variantObj, and dose object or dose array specified by doseObj.

If you set csObj to [], then the function uses the active configset object.

If you set variantObj to [], then the function uses no variants.

If you set doseObj to [], then the function uses no doses.

simDataObj = sbiosimulate(___) returns simulation results in a SimData object
simDataObj using any of the input arguments in the preceding syntaxes.

Examples

Simulate a SimBiology Model

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Change the simulation stop time to 15 seconds.

csObj = getconfigset(m1,'active');
set(csObj,'Stoptime',15);

Simulate the model and return outputs in an array.

[t,x,n] = sbiosimulate(m1);

Plot the simulated results for species x and z.

figure;
plot(t,x)
xlabel('Time')
ylabel('States')
title('States vs Time')
legend('species x','species z')

 sbiosimulate

1-259

You can also return the results to a SimData object .

simData = sbiosimulate(m1);

Plot the simulated results.

sbioplot(simData);

Simulate a SimBiology Model Using an Array of Dose Objects

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Add two doses of 100 molecules each for species x, scheduled at 2 and 4 seconds respectively.

dObj1 = adddose(m1,'d1','schedule');
dObj1.Amount = 100;
dObj1.AmountUnits = 'molecule';

1 Functions

1-260

dObj1.TimeUnits = 'second';
dObj1.Time = 2;
dObj1.TargetName = 'unnamed.x';

dObj2 = adddose(m1,'d2','schedule');
dObj2.Amount = 100;
dObj2.AmountUnits = 'molecule';
dObj2.TimeUnits = 'second';
dObj2.Time = 4;
dObj2.TargetName = 'unnamed.x';

Simulate the model using no dose or any subset of the dose array.

sim1 = sbiosimulate(m1);
sim2 = sbiosimulate(m1,dObj1);
sim3 = sbiosimulate(m1,dObj2);
sim4 = sbiosimulate(m1,[dObj1,dObj2]);

Plot the results.

sbioplot(sim1)

sbioplot(sim2)

 sbiosimulate

1-261

sbioplot(sim3)

1 Functions

1-262

sbioplot(sim4)

 sbiosimulate

1-263

Simulate a SimBiology Model Using Configset and Dose Objects

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Get the default configuration set from the model.

defaultConfigSet = getconfigset(m1,'default');

Add a scheduled dose of 100 molecules at 2 seconds for species x.

dObj = adddose(m1,'d1','schedule');
dObj.Amount = 100;
dObj.AmountUnits = 'molecule';
dObj.TimeUnits = 'second';
dObj.Time = 2;
dObj.TargetName = 'unnamed.x';

Simulate the model using configset and dose objects.

sim = sbiosimulate(m1,defaultConfigSet,dObj);

Plot the result.

sbioplot(sim);

1 Functions

1-264

Simulate a SimBiology Model Using Configset, Dose, and Variant Objects

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Add a new configuration set using a stop time of 15 seconds.

csObj = m1.addconfigset('newStopTimeConfigSet');
csObj.StopTime = 15;

Add a scheduled dose of 100 molecules at 2 seconds for species x.

dObj = adddose(m1,'d1','schedule');
dObj.Amount = 100;
dObj.AmountUnits = 'molecule';
dObj.TimeUnits = 'second';
dObj.Time = 2;
dObj.TargetName = 'unnamed.x';

Add a variant of species x using a different initial amount of 500 molecules.

vObj = addvariant(m1,'v1');
addcontent(vObj,{'species','x','InitialAmount',500});

 sbiosimulate

1-265

Simulate the model using the same configset, variant, and dose objects. Use the same order of input
arguments as shown next.

sim = sbiosimulate(m1,csObj,vObj,dObj);

Plot the result.

sbioplot(sim);

Input Arguments
modelObj — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object. The model minimally needs one reaction
or rate rule for simulations.

csObj — Configuration set object
configset object | []

Configuration set object, specified as a configset object that stores simulation-specific
information. When you specify csObj as [], sbiosimulate uses the currently active configset
object.

If your model contains events, the csObj object cannot specify 'expltau' or 'impltau' for the
SolverType property.

1 Functions

1-266

If your model contains doses, the csObj object cannot specify 'ssa', 'expltau', or 'impltau' for
the SolverType property.

dvObj — Dose or variant object
dose object or array of dose objects | variant object or array of variant objects | []

Dose or variant object, specified as a ScheduleDose object , RepeatDose object , an array of
dose objects, Variant object , or an array of variant objects.

• Use [] when you want to explicitly exclude any variant objects from the sbiosimulate function.
• When dvObj is a dose object, sbiosimulate uses the specified dose object as well as any active

variant objects if available.
• When dvObj is a variant object, sbiosimulate uses the specified variant object as well as any

active dose objects if available.

variantObj — Variant object
variant object or array of variant objects | []

Variant object, specified as a Variant object or an array of variant objects. Use [] when you want
to explicitly exclude any variant objects from sbiosimulate.

doseObj — Dose object
dose object or array of dose objects | []

Dose object, specified as a ScheduleDose object , RepeatDose object , or an array of dose
objects. A dose object defines additions that are made to species amounts or parameter values. Use
[] when you want to explicitly exclude any dose objects from sbiosimulate.

Output Arguments
time — Vector of time samples
vector

Vector of time samples, returned as an n-by-1 vector containing the simulation time steps. n is the
number of time samples.

x — Simulation data
array

Simulation data, returned as an n-by-m data array, where n is the number of time samples and m is
the number of states logged in the simulation. Each column of x describes the variation in the
quantity of a species, compartment, or parameter over time.

names — Names of species, compartments, or parameters
cell array of character vectors

Names of species, compartments, or parameters, returned as an m-by-1 cell array of character
vectors. In other words, names contains the column labels of the simulation data, x. If the species are
in multiple compartments, species names are qualified with the compartment name in the form
compartmentName.speciesName.

simDataObj — Simulation data
SimData object

 sbiosimulate

1-267

Simulation data, returned as a SimData object that holds time and state data as well as metadata,
such as the types and names for the logged states or the configuration set used during simulation.
You can access time, data, and names stored in a SimData object by using its properties.

See Also
addconfigset | sbioaccelerate | sbiomodel | SimData object | Configset object |
getconfigset | setactiveconfigset | Variant object | ScheduleDose object |
RepeatDose object | Model object

Topics
“Model Simulation”
“Deriving ODEs from Reactions”

Introduced before R2006a

1 Functions

1-268

sbiosobol
Perform global sensitivity analysis by computing first- and total-order Sobol indices (requires
Statistics and Machine Learning Toolbox)

Syntax
sobolResults = sbiosobol(modelObj,params,observables)
sobolResults = sbiosobol(modelObj,scenarios,observables)
sobolResults = sbiosobol(modelObj,params,observables,Name,Value)

Description
sobolResults = sbiosobol(modelObj,params,observables) performs global sensitivity
analysis [1] on a SimBiology model modelObj by decomposing the variances of observables with
respect to the sensitivity inputs params.

sobolResults = sbiosobol(modelObj,scenarios,observables) uses samples from
scenarios, a SimBiology.Scenarios object, to perform the analysis.

sobolResults = sbiosobol(modelObj,params,observables,Name,Value) uses additional
options specified by one or more name-value pair arguments.

Examples

Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with the estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

 sbiosobol

1-269

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, retrieve model parameters of interest that are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1','k2'};
outputName = 'tumor_weight';

Then perform GSA by computing the first- and total-order Sobol indices using sbiosobol. Set
'ShowWaitBar' to true to show the simulation progress. By default, the function uses 1000
parameter samples to compute the Sobol indices [1].

rng('default');
sobolResults = sbiosobol(m1,modelParamNames,outputName,Variants=v,Doses=d,ShowWaitBar=true)

sobolResults =
 Sobol with properties:

 Time: [444x1 double]
 SobolIndices: [5x1 struct]
 Variance: [444x1 table]
 ParameterSamples: [1000x5 table]
 Observables: {'[Tumor Growth Model].tumor_weight'}
 SimulationInfo: [1x1 struct]

1 Functions

1-270

You can change the number of samples by specifying the 'NumberSamples' name-value pair
argument. The function requires a total of (number of input parameters + 2) *
NumberSamples model simulations.

Show the mean model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(sobolResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying 'Alphas' for the lower
and upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100 * alpha and 100 * (1 - alpha) quantiles of all simulated model responses.

plotData(sobolResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

 sbiosobol

1-271

Plot the time course of the first- and total-order Sobol indices.

h = plot(sobolResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

1 Functions

1-272

The first-order Sobol index of an input parameter gives the fraction of the overall response variance
that can be attributed to variations in the input parameter alone. The total-order index gives the
fraction of the overall response variance that can be attributed to any joint parameter variations that
include variations of the input parameter.

From the Sobol indices plots, parameters L1 and w0 seem to be the most sensitive parameters to the
tumor weight before the dose was applied at t = 7. But after the dose is applied, k1 and k2 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
total variance plot also shows a larger variance for the after-dose stage at t > 35 than for the before-
dose stage of the tumor growth, indicating that k1 and k2 might be more important parameters to
investigate further. The fraction of unexplained variance shows some variance at around t = 33, but
the total variance plot shows little variance at t = 33, meaning the unexplained variance could be
insignificant. The fraction of unexplained variance is calculated as 1 - (sum of all the first-order Sobol
indices), and the total variance is calculated using var(response), where response is the model
response at every time point.

You can also display the magnitudes of the sensitivities in a bar plot. Darker colors mean that those
values occur more often over the whole time course.

bar(sobolResults);

 sbiosobol

1-273

You can specify more samples to increase the accuracy of the Sobol indices, but the simulation can
take longer to finish. Use addsamples to add more samples. For example, if you specify 1500
samples, the function performs 1500 * (2 + number of input parameters) simulations.

gsaMoreSamples = addsamples(gsaResults,1500)

The “SimulationInfo” on page 2-0 property of the result object contains various information for
computing the Sobol indices. For instance, the model simulation data (SimData) for each simulation
using a set of parameter samples is stored in the SimData field of the property. This field is an array
of SimData objects.

sobolResults.SimulationInfo.SimData

 SimBiology SimData Array : 1000-by-7

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 7000 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(sobolResults.SimulationInfo.ValidSample)

1 Functions

1-274

ans = 1x7 logical array

 1 1 1 1 1 1 1

SimulationInfo.ValidSample is a table of logical values. It has the same size as
SimulationInfo.SimData. If ValidSample indicates that any simulations failed, you can get more
information about those simulation runs and the samples used for those runs by extracting
information from the corresponding column of SimulationInfo.SimData. Suppose that the fourth
column contains one or more failed simulation runs. Get the simulation data and sample values used
for that simulation using getSimulationResults.

[samplesUsed,sd,validruns] = getSimulationResults(sobolResults,4);

You can add custom expressions as observables and compute Sobol indices for the added observables.
For example, you can compute the Sobol indices for the maximum tumor weight by defining a custom
expression as follows.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
sobolObs = addobservable(sobolResults,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(sobolObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1280 800];

 sbiosobol

1-275

You can also remove the observable by specifying its name.

gsaNoObs = removeobservable(sobolObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Input Arguments
modelObj — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object.

params — Names of model parameters, species, or compartments
character vector | string | string vector | cell array of character vectors

Names of model parameters, species, or compartments, specified as a character vector, string, string
vector, or cell array of character vectors.
Example: ["k1","k2"]
Data Types: char | string | cell

observables — Model responses
character vector | string | string vector | cell array of character vectors

Model responses, specified as a character vector, string, string vector, or cell array of character
vectors. Specify the names of species, parameters, compartments, or observables.
Example: ["tumor_growth"]
Data Types: char | string | cell

scenarios — Source for drawing samples
SimBiology.Scenarios object

Source for drawing samples, specified as a SimBiology.Scenarios object.

• You must combine entries of the object elementwise.
• Entries must be independent random variables. If there are multiple entries, they must be

uncorrelated.
• SamplingMethod of any entry must not be copula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: sobolResults =
sbiosobol(modelObj,params,observables,'ShowWaitbar',true) specifies to show a
simulation progress bar.

1 Functions

1-276

Bounds — Parameter bounds
numeric matrix

Parameter bounds, specified as a numeric matrix with two columns. The first column contains the
lower bounds and the second column contains the upper bounds. The number of rows must be equal
to the number of parameters in params.

If a parameter has a nonzero value, the default bounds are ±10% of the value. If the parameter value
is zero, the default bounds are [0 1].
Example: [0.5 5]
Data Types: double

Doses — Doses to use during simulations
ScheduleDose object | RepeatDose object | vector of dose objects

Doses to use during model simulations, specified as a ScheduleDose or RepeatDose object or a
vector of dose objects.

Variants — Variants to apply before simulations
variant object | vector of variant objects

Variants to apply before model simulations, specified as a variant object or vector of variant objects.

When you specify multiple variants with duplicate specifications for a property's value, the last
occurrence for the property value in the array of variants is used during simulation.

NumberSamples — Number of samples to compute Sobol indices
1000 (default) | positive integer

Number of samples to compute Sobol indices, specified as the comma-separated pair consisting of
'NumberSamples' and a positive integer. The function requires (number of input params + 2)
* NumberSamples model simulations to compute the first- and total-order Sobol indices.
Data Types: double

Distributions — Probability distributions
prob.UniformDistribution (default) | prob.ProbabilityDistribution object | vector of
prob.ProbabilityDistribution objects

Probability distributions used to draw samples, specified as a prob.ProbabilityDistribution
object or vector of these objects. Specify a scalar prob.ProbabilityDistribution or vector of
length N, where N is the number of input parameters. You can create distribution objects to sample
from various distributions, such as uniform, normal, or lognormal distributions, using makedist.

If you specify a scalar prob.ProbabilityDistribution object, and there are multiple input
parameters, sbiosobol uses the same distribution object to draw samples for each parameter.

You cannot specify this argument together with “Bounds” on page 1-0 .

You cannot specify this argument when a SimBiology.Scenarios object is an input.

SamplingMethod — Method to generate parameter samples
'Sobol' (default) | character vector | string

Method to generate parameter samples, specified as a character vector or string. Valid options are:

 sbiosobol

1-277

• 'Sobol' — Use the low-discrepancy Sobol sequence to generate samples.
• 'Halton' — Use the low-discrepancy Halton sequence to generate samples.
• 'lhs' — Use the low-discrepancy Latin hypercube samples.
• 'random' — Use uniformly distributed random samples.

Data Types: char | string

SamplingOptions — Options for sampling method
struct

Options for the sampling method, specified as a scalar struct. The options differ depending on the
sampling method: sobol, halton, or lhs.

For sobol and halton, specify each field name and value of the structure according to each name-
value argument of the sobolset or haltonset function. SimBiology uses the default value of 1 for
the Skip argument for both methods. For all other name-value arguments, the software uses the
same default values of sobolset or haltonset. For instance, set up a structure for the Leap and
Skip options with nondefault values as follows.

s1.Leap = 50;
s1.Skip = 0;

For lhs, there are three samplers that support different sampling options.

• If you specify a covariance matrix, SimBiology uses lhsnorm for sampling. SamplingOptions
argument is not allowed.

• Otherwise, use the field name UseLhsdesign to select a sampler.

• If the value is true, SimBiology uses lhsdesign. You can use the name-value arguments of
lhsdesign to specify the field names and values.

• If the value is false (default), SimBiology uses a nonconfigurable Latin hypercube sampler
that is different from lhsdesign. This sampler does not require Statistics and Machine
Learning Toolbox. SamplingOptions cannot contain any other options, except
UseLhsdesign.

For instance, set up a structure to use lhsdesign with the Criterion and Iterations options.

s2.UseLhsdesign = true;
s2.Criterion = "correlation";
s2.Iterations = 10;

You cannot specify this argument when a SimBiology.Scenarios object is an input.

StopTime — Simulation stop time
nonnegative scalar

Simulation stop time, specified as a nonnegative scalar. If you specify neither StopTime nor
OutputTimes, the function uses the stop time from the active configuration set of the model. You
cannot specify both StopTime and OutputTimes.
Data Types: double

OutputTimes — Simulation output times
numeric vector

1 Functions

1-278

Simulation output times, specified as the comma-separated pair consisting of 'OutputTimes' and a
numeric vector. The function computes the Sobol indices at these output time points. You cannot
specify both StopTime and OutputTimes. By default, the function uses the output times of the first
model simulation.
Example: [0 1 2 3.5 4 5 5.5]
Data Types: double

UseParallel — Flag to run model simulations in parallel
false (default) | true

Flag to run model simulations in parallel, specified as true or false. When the value is true and
Parallel Computing Toolbox is available, the function runs simulations in parallel.
Data Types: logical

Accelerate — Flag to turn on model acceleration
true (default) | false

Flag to turn on model acceleration, specified as true or false.
Data Types: logical

InterpolationMethod — Method for interpolation of model simulations
"interp1q" (default) | character vector | string

Method for interpolation of model responses to a common set of output times, specified as a
character vector or string. The valid options follow.

• "interp1q" — Use the interp1q function.
• Use the interp1 function by specifying one of the following methods:

• "nearest"
• "linear"
• "spline"
• "pchip"
• "v5cubic"

• "zoh" — Specify zero-order hold.

Data Types: char | string

ShowWaitbar — Flag to show progress of model simulations
false (default) | true

Flag to show the progress of model simulations by displaying a progress bar, specified as the comma-
separated pair consisting of 'ShowWaitbar' and true or false. By default, no wait bar is
displayed.
Data Types: logical

Output Arguments
sobolResults — Results containing Sobol indices
SimBiology.gsa.Sobol object

 sbiosobol

1-279

Results containing the first- and total-order Sobol indices, returned as a SimBiology.gsa.Sobol
object. The object also contains the parameter sample values and model simulation data used to
compute the Sobol indices.

The results object can contain a significant amount of simulation data (SimData). The size of the
object exceeds (1 + number of observables) * number of output time points * (2 +
number of parameters) * number of samples * 8 bytes. For example, if you have one
observable, 500 output time points, 8 parameters, and 100,000 samples, the object size is (1 + 1)
* 500 * (2 + 8) * 100000 * 8 bytes = 8 GB. If you need to save such large objects, use this
syntax:

save(fileName,variableName,'-v7.3');

For details, see MAT-file version.

More About
Saltelli Method to Compute Sobol Indices

sbiosobol implements the Saltelli method [1] to compute Sobol indices.

Consider a SimBiology model response Y expressed as a mathematical model Y = f X1, X2, X3, ..., Xk ,
where Xi is a model parameter and i = 1,…,k.

The first-order Sobol index (Si) gives the fraction of the overall response variance V(Y) that can be
attributed to variations in Xi alone. Si is defined as follows.

Si =
VXi EX ∼ i Y Xi

V Y

The total-order Sobol index (STi) gives the fraction of the overall response variance V(Y) that can be
attributed to any joint parameter variations that include variations of Xi. STi is defined as follows.

STi = 1−
VX ∼ i EXi Y X ∼ i

V Y =
EX ∼ i VXi Y X ∼ i

V Y

To compute individual values for Y corresponding to samples of parameters X1, X1, …, Xk, consider
two independent sampling matrices A and B.

A =

X11 X12 ... X1k
X21 X22 ... X2k
...

Xn1 Xn2 ... Xnk

B =

X11′ X12′ ... X1k′
X21′ X22′ ... X2k′
...

Xn1′ Xn2′ ... Xnk′

n is the sample size. Each row of the matrices A and B corresponds to one parameter sample set,
which is a single realization of model parameter values.

1 Functions

1-280

Estimates for Si and STi are obtained from model simulation results using sample values from the

matrices A, B, and AB
i
, which is a matrix where all columns are from A except the ith column, which

is from B for i = 1, 2, …, params.

AB
i

=

X11 X12 ... X1i′ ... X1k
X21 X22 ... X2i′ ... X2k
...

Xn1 Xn2 ... Xni′ ... Xnk

The formulas to approximate the first- and total-order Sobol indices are as follows.

S i =

1
n ∑j = 1

n
f (B) j f AB

i

j− f (A) j

V(Y)

S Ti =

1
2n ∑j = 1

n
f (A) j− f AB

i

j

2

V(Y)

f(A), f(B), and f AB
i

j are the model simulation results using the parameter sample values from

matrices A, B, and AB
i
.

The matrix A corresponds to the ParameterSamples property of the Sobol results object
(resultsObj.ParameterSamples). The matrix B corresponds to the SupportSamples property
(resultsObj.SimulationInfo.SupportSamples).

The AB
i
 matrices are stored in the SimData structure of the SimulationInfo on page 2-0

property (resultsObj.SimulationInfo.SimData). The size of SimulationInfo.SimData is
NumberSamples-by-params + 2, where NumberSamples on page 1-0 is the number of samples
and param on page 1-0 is the number of input parameters. The number of columns is 2 + params
because the first column of SimulationInfo.SimData contains the model simulation results using
the sample matrix A. The second column contains simulation results using SupportSamples, which

is another sample matrix B. The rest of the columns contain simulation results using AB
1
, AB

2
, …,

AB
i
, …, AB

params
. See getSimulationResults to retrieve the model simulation results and

samples for a specified ith index (AB
i
) from the SimulationInfo.SimData array.

References
[1] Saltelli, Andrea, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano

Tarantola. “Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the
Total Sensitivity Index.” Computer Physics Communications 181, no. 2 (February 2010): 259–
70. https://doi.org/10.1016/j.cpc.2009.09.018.

 sbiosobol

1-281

See Also
SimBiology.gsa.Sobol | sbiompgsa | sbioelementaryeffects | Observable

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2020a

1 Functions

1-282

sbiosteadystate
Find steady state of SimBiology model

Syntax
[success, variant_out] = sbiosteadystate(model)
[success, variant_out] = sbiosteadystate(model, variant_in)
[success, variant_out] = sbiosteadystate(model, variant_in, scheduleDose)
[success, variant_out, model_out] = sbiosteadystate(model, ___)
[success, variant_out, model_out, exitInfo] = sbiosteadystate(model, ___)
[___] = sbiosteadystate(___ , Name,Value)

Description
[success, variant_out] = sbiosteadystate(model) attempts to find a steady state of a
SimBiology model, model. The function returns success, which is true if a steady state was found,
and a SimBiology Variant object, variant_out, with all nonconstant species, compartments,
and parameters of the model having the steady-state values. If a steady state was not found, then the
success is false and variant_out contains the last values found by the algorithm.

[success, variant_out] = sbiosteadystate(model, variant_in) applies the alternate
quantity values stored in a variant object or vector of objects, variant_in, to the model before
trying to find the steady-state values.

[success, variant_out] = sbiosteadystate(model, variant_in, scheduleDose) also
applies a ScheduleDose on page 2-747 object or vector of schedule doses scheduleDose to the
corresponding model quantities before trying to find the steady state values. Only doses at time = 0
are allowed, that is, the dose time of each dose object must be 0. To specify a dose without specifying
a variant, set variant_in to an empty array, [].

[success, variant_out, model_out] = sbiosteadystate(model, ___) also returns a
SimBiology model, model_out that is a copy of the input model with the states set to the steady-
state solution that was found. Also, model_out has all initial assignment rules disabled.

[success, variant_out, model_out, exitInfo] = sbiosteadystate(model, ___) also
returns the exit information about the steady state computation.

[___] = sbiosteadystate(___ , Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Find a Steady State of a Simple Gene Regulation Model

This example shows how to find a steady state of a simple gene regulation model, where the protein
product from translation controls transcription.

Load the sample SimBiology project containing the model, m1. The model has five reactions and four
species.

 sbiosteadystate

1-283

sbioloadproject('gene_reg.sbproj','m1')

Display the model reactions.

m1.Reactions

ans =
 SimBiology Reaction Array

 Index: Reaction:
 1 DNA -> DNA + mRNA
 2 mRNA -> mRNA + protein
 3 DNA + protein <-> DNA_protein
 4 mRNA -> null
 5 protein -> null

A steady state calculation attempts to find the steady state values of non-constant quantities. To find
out which model quantities are non-constant in this model, use sbioselect.

sbioselect(m1,'Where','Constant*','==',false)

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed DNA 50 molecule
 2 unnamed DNA_protein 0 molecule
 3 unnamed mRNA 0 molecule
 4 unnamed protein 0 molecule

There are four species that are not constant, and the initial amounts of three of them are set to zero.

Use sbiosteadystate to find the steady state values for those non-constant species.

[success,variantOut] = sbiosteadystate(m1)

success = logical
 1

variantOut =
 SimBiology Variant - SteadyState (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 compartment unnamed Capacity 1
 2 species DNA InitialAmount 8.79024
 3 species DNA_protein InitialAmount 41.2098
 4 species mRNA InitialAmount 1.17203
 5 species protein InitialAmount 23.4406
 6 parameter Transcription.k1 Value 0.2
 7 parameter Translation.k2 Value 20
 8 parameter [Binding/Unbin... Value 0.2
 9 parameter [Binding/Unbin... Value 1
 10 parameter [mRNA Degradat... Value 1.5
 11 parameter [Protein Degra... Value 1

1 Functions

1-284

The initial amounts of all species of the model have been set to the steady-state values. DNA is a
conserved species since the total of DNA and DNA_protein is equal to 50.

You can also use a variant to store alternate initial amounts and use them during the steady state
calculation. For instance, you could set the initial amount of DNA to 100 molecules instead of 50.

variantIn = sbiovariant('v1');
addcontent(variantIn,{'species','DNA','InitialAmount',100});
[success2,variantOut2,m2] = sbiosteadystate(m1,variantIn)

success2 = logical
 1

variantOut2 =
 SimBiology Variant - SteadyState (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 compartment unnamed Capacity 1
 2 species DNA InitialAmount 12.7876
 3 species DNA_protein InitialAmount 87.2124
 4 species mRNA InitialAmount 1.70502
 5 species protein InitialAmount 34.1003
 6 parameter Transcription.k1 Value 0.2
 7 parameter Translation.k2 Value 20
 8 parameter [Binding/Unbin... Value 0.2
 9 parameter [Binding/Unbin... Value 1
 10 parameter [mRNA Degradat... Value 1.5
 11 parameter [Protein Degra... Value 1

m2 =
 SimBiology Model - cell

 Model Components:
 Compartments: 1
 Events: 0
 Parameters: 6
 Reactions: 5
 Rules: 0
 Species: 4
 Observables: 0

Since the algorithm has found a steady state, the third output m2 is the steady state model, where the
values of non-constant quantities have been set to steady state values. In this example, the initial
amounts of all four species have been updated to steady state values.

m2.Species

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed DNA 12.7876 molecule
 2 unnamed DNA_protein 87.2124 molecule
 3 unnamed mRNA 1.70502 molecule
 4 unnamed protein 34.1003 molecule

 sbiosteadystate

1-285

Input Arguments
model — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology Model object.

variant_in — SimBiology variant
[] | variant object | vector of variant objects

SimBiology variant, specified as an empty array [], a Variant object or vector of variant objects.
The alternate quantity values stored in the variants are applied to the model before finding the steady
state. If there are duplicate specifications for a property value, the last occurrence for the property
value in the array of variants is used.

scheduleDose — Dosing information
[] | ScheduleDose object | vector of ScheduleDose objects

Dosing information, specified as an empty array [], a ScheduleDose on page 2-747 object or vector
of ScheduleDose objects. The dose must be bolus, that is, there must be no time lag or
administration time for the dose. In other words, its LagParameterName and
DurationParameterName properties must be empty, and the dose time (the Time property) must be
0. For details on how to create a bolus dose, see “Creating Doses Programmatically”.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'AbsTol',1e-6 specifies to use the absolute tolerance value of 10–6.

Method — Method to compute steady state
'auto' (default) | 'simulation' | 'algebraic'

Method to compute the steady state of model, specified as the comma-separated pair consisting of
'Method' and a character vector 'auto', 'simulation', or 'algebraic'. The default ('auto')
behavior is to use the 'algebraic' method first. If that method is unsuccessful, the function uses
the 'simulation' method.

For the simulation method, the function simulates the model and uses finite differencing to detect a
steady state. For details, see “Simulation Method” on page 1-288.

For the algebraic method, the function computes a steady state by finding a root of the flux function
algebraically. For nonlinear models, this method requires Optimization Toolbox. For details, see
“Algebraic Method” on page 1-288.

Note The steady state returned by the algebraic method is not guaranteed to be the same as the one
found by the simulation method. The algebraic method is faster since it involves no simulation, but
the simulation method might be able to find a steady state when the algebraic method could not.

1 Functions

1-286

Example: 'Method','algebraic'

AbsTol — Absolute tolerance to detect convergence
1e-8 (default) | positive, real scalar

Absolute tolerance to detect convergence, specified as the comma-separated pair consisting of
'AbsTol' and a positive, real scalar.

When you use the algebraic method, the absolute tolerance is used to specify optimization settings
and detect convergence. For details, see “Algebraic Method” on page 1-288.

When you use the simulation method, the absolute tolerance is used to determine convergence when
finding a steady state solution by forward integration as follows:

dS
dt < AbsTol or dS

dt < RelTol ∗ S , where S is a vector of nonconstant species, parameters,

and compartments.

RelTol — Relative tolerance to detect convergence
1e-6 (default) | positive, real scalar

Relative tolerance to detect convergence, specified as the comma-separated pair consisting of
'RelTol' and a positive, real scalar. This name-value pair argument is used for the simulation
method only. The algorithm converges and reports a steady state if the algorithm finds model states

by forward integration, such that dS
dt < AbsTol or dS

dt < RelTol ∗ S , where S is a vector of

non-constant species, parameters, and compartments.

MaxStopTime — Maximum amount of simulation time to take before terminating without a
steady state
100000 (default) | positive integer

Maximum amount of simulation time to take before terminating without a steady state, specified as
the comma-separated pair consisting of 'MaxStopTime' and a positive integer. This name-value pair
argument is used for the simulation method only.

MinStopTime — Minimum amount of simulation time to take before searching for a steady
state
1 (default) | positive integer

Minimum amount of simulation time to take before searching for a steady state, specified as the
comma-separated pair consisting of 'MinStopTime' and a positive integer. This name-value pair
argument is used for the simulation method only.

Output Arguments
success — Flag to indicate if a steady state of the model is found
true | false

Flag to indicate if a steady state of the model is found, returned as true or false.

variant_out — SimBiology variant
variant object

 sbiosteadystate

1-287

SimBiology variant, returned as a variant object. The variant includes all species, parameters, and
compartments of the model with the non-constant quantities having the steady-state values.

model_out — SimBiology model at the steady state
model object

SimBiology model at the steady state, returned as a model object. model_out is a copy of the input
model, with the non-constant species, parameters, and compartments set to the steady-state values.
Also, model_out has all initial assignment rules disabled. Simulating the model at steady state
requires that initial assignment rules be inactive, since these rules can modify the values in
variant_out.

Note

• If you decide to commit the variant_out to the input model that has initial assignment rules,
then model is not expected to be at the steady state because the rules perturb the system when
you simulate the model.

• model_out is at steady state only if simulated without any doses.

exitInfo — Exit information about steady state computation
character vector

Exit information about the steady state computation, returned as a character vector. The information
contains different messages for corresponding exit conditions.

• Steady state found (simulation) – A steady state is found using the simulation method.
• Steady state found (algebraic) – A steady state is found using the algebraic method.
• Steady state found (unstable) – An unstable steady state is found using the algebraic

method.
• Steady state found (possibly underdetermined) – A steady state that is, possibly, not

asymptotically stable is found using the algebraic method.
• No Steady state found – No steady state is found.
• Optimization Toolbox (TM) is missing – The method is set to 'algebraic' for nonlinear

models and Optimization Toolbox is missing.

More About
Simulation Method

sbiosteadystate simulates the model until MaxStopTime on page 1-0 . During the simulation,
the function approximates the gradient using finite differencing (forward difference) over time to
detect a steady state.

Algebraic Method

sbiosteadystate tries to find a steady state of the model algebraically by finding a root of the flux
function v. The flux function includes reaction equations, rate rules, and algebraic equations, that is,
v(X,P) = 0, where X and P are nonconstant quantities and parameters of the model. Thereby the
mass conservation imposed by the reaction equations is respected.

1 Functions

1-288

For nonlinear models, sbiosteadystate uses fmincon to get an initial guess for the root. The
solution found by fmincon is then improved by fsolve. To detect convergence, sbiosteadystate
uses the absolute tolerance ('AbsTol'). In other words, OptimalityTolerance,
FunctionTolerance, and StepTolerance options of the corresponding optimization function are
set to the 'AbsTol' value.

For linear models, sbiosteadystate finds the roots of the flux function v by solving a linear system
defined by the reaction and conservation equations. For linear models, there are no rate or algebraic
equations.

See Also
sbiosimulate | sbiovariant | sbiomodel | sbioaccelerate | Model object | ScheduleDose
object | Variant object | commit

Introduced in R2016a

 sbiosteadystate

1-289

sbiosubplot
Plot simulation results in subplots

Syntax
sbiosubplot(sd)
sbiosubplot(sd,fcnHandle,xArgs,yArgs)
sbiosubplot(sd,fcnHandle,xArgs,yArgs,showLegend)
sbiosubplot(sd,fcnHandle,xArgs,yArgs,showLegend,Name,Value)

Description
sbiosubplot(sd) plots each simulation run from sd, a SimData object or array of objects, into its
own subplot. The subplot is a time plot of each state in sd.

sbiosubplot(sd,fcnHandle,xArgs,yArgs) plots simulation results by calling the function
handle fcnHandle with inputs sd, xArgs, and yArgs. The inputs xArgs and yArgs must be cell
arrays of the names of the states to plot.

sbiosubplot(sd,fcnHandle,xArgs,yArgs,showLegend) also specifies whether to show the
legend in the plot. If true, the function shows yArgs as the legend.

sbiosubplot(sd,fcnHandle,xArgs,yArgs,showLegend,Name,Value) also uses additional
options specified by one or more name-value pair arguments. For example, you can specify the x-label
and y-label of the plot.

Examples

Plot Selected States from Simulation Data in Subplots

Plot the prey versus predator data from the stochastically simulated lotka model in separate subplots
by using a custom function (plotXY).

Load the model. Set the solver type to SSA to perform stochastic simulations, and set the stop time to
3.

sbioloadproject lotka;
cs = getconfigset(m1);
cs.SolverType = 'SSA';
cs.StopTime = 3;
rng('default') % For reproducibility

Set the number of runs and use sbioensemblerun for simulation.

numRuns = 4;
sd = sbioensemblerun(m1,numRuns);

Plot each simulation run in a separate subplot. By default, sbiosubplot shows the time plot of each
species for each run per subplot.

1 Functions

1-290

sbiosubplot(sd);

Plot selected states against each other; in this case, plot the prey population versus the predator
population in separate subplots for each run. Use the function plotXY (shown at the end of this
example) to plot the simulated y1 (prey) data versus the y2 (predator). Specify the function as a
function handle in the sbiosubplot call to plot each run in its own subplot. In this case, the fifth
input argument (showLegend) is set to true, which means the fourth input argument (yArgs) is
shown as the legend.

If you use the live script file for this example, the plotXY function is already included at the end of
the file. Otherwise, you must define the plotXY function at the end of your .m or .mlx file or add it as
a file on the MATLAB path.

sbiosubplot(sd,@plotXY,{'y1'},{'y2'},true,'xlabel','y1','ylabel','y2')

 sbiosubplot

1-291

Define plotXY Function

sbiosubplot accepts a function handle of a function with the signature:

function functionName(sd,xArgs,yArgs).

The plotXY function plots two selected states against each other. The first input sd is the simulation
data (SimBiology SimData object or vector of objects). In this example, xArgs is a cell array
containing the name of the species to be plotted on the x-axis, and yArgs is a cell array containing the
name of the species to be plotted on the y-axis. However, you can use the inputs xArgs and yArgs in
any way in your custom plotting function. No output from the function is necessary.

function plotXY(sd,xArgs,yArgs)
% Select simulation data for each state from each run.
xData = selectbyname(sd,xArgs);
yData = selectbyname(sd,yArgs);
% Plot the species against each other.
plot(xData.Data,yData.Data);
end

Input Arguments
sd — Simulation results
SimData object

Simulation results, specified as a SimData object or vector of SimData objects.

1 Functions

1-292

This argument corresponds to the first input of the function referenced by fcnHandle.
Example: simdata

fcnHandle — Function to generate line plots
function handle

Function to generate line plots, specified as a function handle. For an example of a custom function to
plot selected species from simulation data, see Plot Selected States from Simulation Data in Subplots
on page 1-290.

The function must have the signature:

function functionName(sd,xArgs,yArgs).

The inputs sd, xArgs, and yArgs are the same inputs that you pass in when you call sbiosubplot.
No output from the function is necessary.
Example: @plotXY
Data Types: function_handle

xArgs — State names
string vector | cell array of character vectors

State names to plot, specified as a string vector or cell array of character vectors. For instance, you
can use xArgs to represent the states to be plotted on the x-axis of your custom plot.

This argument corresponds to the second input of the function referenced by fcnHandle.
Example: {'y1'}
Data Types: cell

yArgs — State names
string vector | cell array of character vectors

State names to plot, specified as a string vector or cell array of character vectors. For instance, you
can use yArgs to represent the states to be plotted on the y-axis of your custom plot.

This argument corresponds to the third input of the function referenced by fcnHandle.
Example: {'y2','z'}
Data Types: cell

showLegend — Logical flag to show plot legend
false (default) | true

Logical flag to show the plot legend, specified as true or false. If true, the function shows yArgs
as the legend.
Example: true
Data Types: logical

 sbiosubplot

1-293

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'xlabel','Species A' specifies the x-label of the plot.

xlabel — Label for x-axis
character vector | string

Label for the x-axis of the plot, specified as the comma-separated pair consisting of 'xlabel' and a
character vector or string.
Example: 'xlabel','y1'
Data Types: char | string

ylabel — Label for y-axis
character vector | string

Label for the y-axis of the plot, specified as the comma-separated pair consisting of 'ylabel' and a
character vector or string.
Example: 'ylabel','y2'
Data Types: char | string

See Also
sbioplot | SimData

Introduced in R2008a

1 Functions

1-294

sbiotrellis
Plot data or simulation results in trellis plot

Syntax
trellisplot = sbiotrellis(data,groupCol,xCol,yCol)
trellisplot = sbiotrellis(data,groupCol,xCol,yCol,Name,Value)
trellisplot = sbiotrellis(data,fcnHandle,groupCol,xCol,yCol)
trellisplot = sbiotrellis(simData,fcnHandle,xCol,yCol)

Description
trellisplot = sbiotrellis(data,groupCol,xCol,yCol) plots each group in data as
defined by the group column variable groupCol into its own subplot. The data defined by column
xCol is plotted against the data defined by column(s) yCol.

trellisplot = sbiotrellis(data,groupCol,xCol,yCol,Name,Value) uses additional
options specified by one or more Name,Value pair arguments that are supported by the plot
command.

trellisplot = sbiotrellis(data,fcnHandle,groupCol,xCol,yCol) plots each group in
data as defined by the group column variable groupCol into its own subplot. sbiotrellis creates
the subplot by calling the function handle, fcnHandle, with input arguments defined by the data
columns xCol and yCol. The fcnHandle cannot be empty and must be specified.

The fcnHandle must have the signature fcnHandle(x,y), where x is a numeric column vector, and
y is a matrix with the same number of rows as x.

For instance, if you want to create a trellis plot with a logarithmic y-axis, use @semilogy as the
function handle, where semilogy is the function that plots data with logarithmic scale for the y-axis.

trellisplot = sbiotrellis(simData,fcnHandle,xCol,yCol) plots each group in simData
into its own subplot. sbiotrellis creates the subplot by calling the function handle, fcnHandle
with input arguments defined by the columns xCol and yCol. The fcnHandle can be empty ('' or
[]). If empty, the default time plot is created using the handle @plot.

The fcnHandle must have the signature fcnHandle(simDataI,xCol,yCol), where simDataI is
a single SimData object, and xCol and yCol are the corresponding input arguments to
sbiotrellis.

Tip Use the plot method of a sbiotrellis object to overlay a SimData object or a dataset on an
existing sbiotrellis plot. For example, plot(trellisplot,...) adds a plot to the object
trellisplot. The SimData or dataset that is being plotted must have the same number of
elements or groups as the trellisplot object. The plot method has the same input arguments as
sbiotrellis.

Examples

 sbiotrellis

1-295

Create a Trellis Plot for Grouped Data

Load a sample dataset. The data contains measurements of drug concentration in the central and
peripheral compartments for 30 subjects.

load('sd5_302RAgeSex.mat');

Create a trellis plot of the Central concentrations for each subject.

t = sbiotrellis(data, 'ID', 'Time', 'CentralConc',...
 'Marker', 'o','LineStyle','--','MarkerFaceColor','b');
% Resize the figure.
t.hFig.Position(:) = [100 100 1200 800];

Use the plot method of the sbiotrellis object to overlay the peripheral concentration data on the
same plot.

plot(t,data,'ID','Time','PeripheralConc','Marker','d',...
 'LineStyle',':','MarkerFaceColor','r');

1 Functions

1-296

Specify the function handle @semilogy to change the y-axis to log scale.

t2 = sbiotrellis(data,@semilogy,'ID','Time','CentralConc');
%Resize the figure
t2.hFig.Position(:) = [100 100 1200 800];

 sbiotrellis

1-297

plot(t2,data,@semilogy,'ID','Time','PeripheralConc');

1 Functions

1-298

Input Arguments
data — Data
dataset | groupedData object | table

Data, specified as a dataset containing grouped data, a groupedData object, or a table.

groupCol — Group column name
character vector | string

Group column name, specified as a character vector or string which is the name of a column in data
that contains grouping information or an empty name '' or ""which implies there is only one group
in data.

xCol — Name of a column to plot on the x-axis
character vector | string

Name of a column to plot on the x-axis, specified as a character vector or string.

If data is groupedData, then xCol can also be an empty name '' or "", and the x-coordinates of
the data are determined by the variable specified in
DATA.Properties.IndependentVariableName.

 sbiotrellis

1-299

If data is dataset or table, then xCol cannot be empty.

yCol — Name of a column to plot on the y-axis
character vector | string | string vector | cell array of character vectors

Name of a column to plot on the y-axis, specified as a character vector, string, string vector, or cell
array of character vectors.

fcnHandle — Handle to a function
function handle

Handle to a function, specified as a function handle.

If the first argument is a dataset or groupedData object, the fcnHandle must have the
signature fcnHandle(x,y), where x is a numeric column vector, and y is a matrix with the same
number of rows as x.

If it is a SimData object, the fcnHandle must have the signature
fcnHandle(simDataI,xCol,yCol), where simDataI is a single SimData object, and xCol and
yCol are the corresponding input arguments to sbiotrellis.

simData — Simulation data
SimData object

Simulation data, specified as a SimData object.

Output Arguments
trellisplot — Plot object
sbiotrellis object

Plot object, specified as a sbiotrellis object. The object has the following properties.

• hFig – This is a MATLAB figure object. Use this object to control the appearance and behavior of
the figure. For instance, to change the figure window background color to white, enter
trellisplot.hFig.Color = 'white'. For the list of properties, see the Figure properties.

• nPlots – This property tells you the total number of plots in the figure.
• plots – This is a vector of axes objects with length equal to nPlots. Use this property to control

the appearance and behavior of axes objects. For example, if you want to change the y-axis to a
log scale, enter set(trellisplot.plots,'YScale','log'). For the list of properties, see the
Axes properties.

See Also
sbioplot | sbiosubplot

Introduced in R2009a

1 Functions

1-300

sbiounit
Create user-defined unit

Note You can no longer specify an offset as an input when you call sbiounit. Use an absolute unit
that does not require an offset. For details, see “Compatibility Considerations”.

Syntax
unitObject = sbiounit('NameValue')
unitObject = sbiounit('NameValue', 'CompositionValue')
unitObject = sbiounit('NameValue','CompositionValue',MultiplierValue)
unitObject = sbiounit('NameValue','CompositionValue',...'PropertyName',
PropertyValue...)

Arguments

NameValue Name of the user-defined unit. NameValue must begin with
characters and can contain characters, underscores, or numbers.
NameValue can be any valid MATLAB variable name.

CompositionValue Shows the combination of base and derived units that defines the
unit NameValue. For example molarity is mole/liter. Base units
are the set of units used to define all unit quantity equations. Derived
units are defined using base units or mixtures of base and derived
units.

MultiplierValue Numerical value that defines the relationship between the user-
defined unit NameValue and the base unit as a product of the
MultiplierValue and the base unit. For example, 1 mole is
6.0221e23*molecule. The MultiplierValue is 6.0221e23.

PropertyName Name of the unit object property, for example,'Notes'.
PropertyValue Value of the unit object property, for example, 'New unit for

GPCR model'.

Description
unitObject = sbiounit('NameValue') constructs a SimBiology unit object named NameValue.
Valid names must begin with a letter, and be followed by letters, underscores, or numbers.

unitObject = sbiounit('NameValue', 'CompositionValue') allows you to specify the
name and the composition of the unit.

unitObject = sbiounit('NameValue','CompositionValue',MultiplierValue) creates a
unit with the name NameValue where the unit is defined as
MultiplierValue*CompositionValue.

 sbiounit

1-301

unitObject = sbiounit('NameValue','CompositionValue',...'PropertyName',
PropertyValue...) defines optional properties. The name-value pairs can be in any format
supported by the function set.

In order to use unitObject, you must add it to the user-defined library with the
sbioaddtolibrary function. To get the unit object into the user-defined library, use the following
command:

sbioaddtolibrary(unitObject);

You can view additional unitObject properties with the get command. You can modify additional
properties with the set command. For more information about unit object properties and methods,
see Unit object.

Use the sbiowhos function to list the units available in the user-defined library.

Examples
This example shows you how to create a user-defined unit, add it to the user-defined library, and
query the library.

1 Create units for the rate constants of a first-order and a second-order reaction.

unitObj1 = sbiounit('firstconstant', '1/second', 1);
unitObj2 = sbiounit('secondconstant', '1/molarity*second', 1);

2 Add the unit to the user-defined library.

sbioaddtolibrary(unitObj1);
sbioaddtolibrary(unitObj2);

3 Query the user-defined library in the root object.
rootObj = sbioroot;
rootObj.UserDefinedLibrary.Units

ans =

 SimBiology Unit Array

 Index: Library: Name: Composition: Multiplier:
 1 UserDefined firstconstant 1/second 1
 2 UserDefined secondconstant 1/molarity*second 1

Alternatively, use the sbiowhos command.
sbiowhos -userdefined -unit

 SimBiology UserDefined Units

 Index: Name: Composition: Multiplier:
 1 firstconstant 1/second 1.000000
 2 secondconstant 1/molarity*second 1.000000

Compatibility Considerations
sbiounits no longer accepts offset as an input
Behavior changed in R2021a

1 Functions

1-302

You can no longer specify an offset information as an input when you call sbiounits. The Offset
property of a unit object has been removed. Use an absolute unit that does not require an offset, such
as kelvin instead of Celsius.

Celsius and Fahrenheit units have been removed
Errors starting in R2021a

Celsius, celsius, and fahrenheit units have been removed from the built-in units library. Use
kelvin units instead.

If you have a model containing Celsius, celsius, or fahrenheit units, change the units to
kelvin.

If you have a script that sets the Units property of a parameter to 'Celsius', 'celsius', or
'fahrenheit', set this property to 'kelvin' and adjust the Value property accordingly. Similarly,
if you have compound units, make appropriate changes. For example, change joule/Celsius to
joule/kevin.

See Also
sbioaddtolibrary | sbioshowunits | sbiounitprefix | sbiowhos

Introduced in R2008a

 sbiounit

1-303

sbiounitcalculator
Convert value between units

Syntax
result = sbiounitcalculator('fromUnits', 'toUnits', Value)

Description
result = sbiounitcalculator('fromUnits', 'toUnits', Value) converts the value,
Value, which is defined in the units, fromUnits, to the value, result, which is defined in the units,
toUnits.

Examples
result = sbiounitcalculator('mile/hour','meter/second',1)

See Also
sbioshowunits

Introduced in R2006a

1 Functions

1-304

sbiounitprefix
Create user-defined unit prefix

Syntax
unitprefixObject = sbiounitprefix('NameValue')
unitprefixObject = sbiounitprefix('NameValue', ExponentValue)
unitprefixObject = sbiounitprefix('NameValue', ...'PropertyName',
PropertyValue ...)

Arguments

NameValue Name of the user-defined unit prefix. NameValue must begin with
characters and can contain characters, underscores, or numbers.
NameValue can be any valid MATLAB variable name.

ExponentValue Shows the value of 10^ExponentValue that defines the relationship of
the unit Name to the base unit. Specify an integer. For example, for the unit
picomole, ExponentValue is –12.

PropertyName Name of the unit prefix object property. For example, 'Notes'.
PropertyValue Value of the unit prefix object property. For example, 'New unitprefix

for GPCR model'.

Description
unitprefixObject = sbiounitprefix('NameValue') constructs a SimBiology unit prefix
object with the name NameValue. Valid names must begin with a letter, and be followed by letters,
underscores, or numbers.

unitprefixObject = sbiounitprefix('NameValue', ExponentValue) creates a unit-prefix
object with a multiplicative factor of 10^ExponentValue.

unitprefixObject = sbiounitprefix('NameValue', ...'PropertyName',
PropertyValue ...) defines optional properties. The property name/property value pairs can be in
any format supported by the function set.

In order to use unitprefixObject, you must add it to the user-defined library with the
sbioaddtolibrary function. To get the unit-prefix object into the user-defined library, use the
following command:

sbioaddtolibrary(unitprefixObject);

You can view additional unitprefixObject properties with the get command. You can modify
additional properties with the set command.

Use the sbioshowunitprefixes function to list the units available in the user-defined library.

 sbiounitprefix

1-305

Examples
This example shows how to create a user-defined unit prefix, add it to the user-defined library, and
query the library.

1 Create a unit prefix.

unitprefixObj1 = sbiounitprefix('peta', 15);
2 Add the unit prefix to the user-defined library.

sbioaddtolibrary(unitprefixObj1);
3 Query the user-defined library in the root object.

rootObj = sbioroot;

rootObj.UserDefinedLibrary.UnitPrefixes

Unit Prefix Array

 Index: Library: Name: Exponent:

 1 UserDefined peta 15

Alternatively, use the sbiowhos command.
sbiowhos -userdefined -unitprefix

SimBiology UserDefined Unit Prefixes

 Index: Name: Multiplier:
 1 peta 1.000000e+015

See Also
sbioaddtolibrary | sbioshowunits | sbiounit | sbiowhos

Topics
sbioshowunits on page 1-256

Introduced in R2008a

1 Functions

1-306

sbiovariant
Construct variant object

Syntax
variantObj = sbiovariant(vName)
variantObj = sbiovariant(vName,vContent)
variantObj = sbiovariant(___ ,Name,Value)

Description
variantObj = sbiovariant(vName) creates a variant object named vName.

variantObj = sbiovariant(vName,vContent) creates a variant object and sets its Content
property to the cell array of data, vContent.

variantObj = sbiovariant(___ ,Name,Value) uses any of the input arguments in the previous
syntaxes and additional options specified by one or more Name,Value pair arguments. Each name-
value pair represents a property and corresponding value of a variant object. To view all the
properties for a variant object, use the get function.

To append more data to an existing content of a variant, use addcontent. To replace existing data in
the Content property, use the set function or dot notation.

Examples

Create Variant with Alternate Model Values

Load the G protein model.

sbioloadproject gprotein

The model already has a variant for a mutant strain.

getvariant(m1)

ans =
 SimBiology Variant - mutant (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter kGd Value 0.004

Create another variant with the kGd value of 0.5, and initial amount of 5000 for the G species.

v2 = sbiovariant('v2');
v2.Content = {{'parameter','kGd','Value',0.5},...
 {'species','G','InitialAmount',5000}}

v2 =
 SimBiology Variant - v2 (inactive)

 sbiovariant

1-307

 ContentIndex: Type: Name: Property: Value:
 1 parameter kGd Value 0.5
 2 species G InitialAmount 5000

Simulate the model using the initial conditions specified in v2.

sbioplot(sbiosimulate(m1,v2));

Simulate the wild-type (original) model to compare.

sbioplot(sbiosimulate(m1));

1 Functions

1-308

Input Arguments
vName — Name of variant object
character vector

Name of a variant object, specified as a character vector.
Example: 'cancerPatient'

vContent — Variant content
cell array | cell array of cell arrays

Variant content, specified as a cell array or cell array of cell arrays. Each cell array must have four
values in this order: the type of model element, its name, its property name, and the alternate value
of the property. For instance, {'species','A','InitialAmount',5} specifies to store an
alternate initial amount of 5 for the species A.
Example: {'parameter','ka','Value',0.3}

Output Arguments
variantObj — Variant with alternate model values
variant object

Variant with alternate model values, specified as a Variant object.

 sbiovariant

1-309

See Also
addvariant | getvariant | delete | get | set

Topics
“Simulate Biological Variability of the Yeast G Protein Cycle Using the Wild-Type and Mutant Strains”
“Simulate Model of Glucose-Insulin Response with Different Initial Conditions”
“Variants in SimBiology Models”

Introduced in R2008a

1 Functions

1-310

sbiowhos
Show contents of project file, library file, or SimBiology root object

Syntax
sbiowhos flag
sbiowhos ('flag')
sbiowhos flag1 flag2...
sbiowhos FileName

Description
sbiowhos shows contents of the SimBiology root object. This includes the built-in and user-defined
kinetic laws, units, and unit prefixes.

sbiowhos flag shows specific information about the SimBiology root object as defined by flag.
Valid flags are described in this table.

Flag Description
-builtin Built-in kinetic laws, units, and unit prefixes
-data Data saved in file
-kineticlaw Built-in and user-defined kinetic laws
-unit Built-in and user-defined units
-unitprefix Built-in and user-defined unit prefixes
-userdefined User-defined kinetic laws, units, and unit prefixes

You can also specify the functional form sbiowhos ('flag').

sbiowhos flag1 flag2... shows information about the SimBiology root object as defined by
flag1, flag2,... .

sbiowhos FileName shows the contents of the SimBiology project or library defined by Name.

Examples
% Show contents of the SimBiology root object
 sbiowhos

% Show kinetic laws on the SimBiology root object
 sbiowhos -kineticlaw

% Show the builtin units of the SimBiology root object.
 sbiowhos -builtin -unit

% Show all contents of project file.
 sbiowhos myprojectfile

% Show kinetic laws from a library file.

 sbiowhos

1-311

 sbiowhos -kineticlaw mylibraryfile

% Show all contents of multiple files.
 sbiowhos myfile1 myfile2

See Also
whos

Introduced in R2006a

1 Functions

1-312

sbmlexport
Export SimBiology model to SBML file

Syntax
sbmlexport(modelObj)
sbmlexport(modelObj, 'FileName')

Arguments
modelObj Model object. Enter a variable name for a model object.
FileName XML file with a Systems Biology Markup Language (SBML) format. Enter either

a file name or a path and file name supported by your operating system. If the file
name does not have the extension .xml, then .xml is appended to end of the file
name.

Description
sbmlexport(modelObj) exports a SimBiology model object (modelObj) to a file with a Systems
Biology Markup Language (SBML) Level 2 Version 4 format. The default file extension is .xml and
the file name matches the model name.

sbmlexport(modelObj, 'FileName') exports a SimBiology model object (modelObj) to an
SBML file named FileName. The default file extension is .xml.

A SimBiology model can also be written to a SimBiology project with the sbiosaveproject function
to save features not supported by SBML.

For more information about features that are supported by SimBiology but not by SBML or vice visa,
see “SBML Support”.

Examples
Export a model (modelObj) to a file (gene_regulation.xml) in the current working directory.

sbmlexport(modelObj,'gene_regulation.xml');

References
Finney, A., Hucka, M., (2003), Systems Biology Markup Language (SBML) Level 2: Structures and
facilities for model definitions.

See Also
sbiomodel | sbiosaveproject | sbmlimport

Topics
“Exporting a SimBiology Model to SBML Format”

 sbmlexport

1-313

“SBML Support”
sbiomodel on page 1-133
sbiosaveproject on page 1-245

Introduced before R2006a

1 Functions

1-314

sbmlimport
Import SBML-formatted file

Syntax
modelObj = sbmlimport(File)

Description
modelObj = sbmlimport(File) imports File, a Systems Biology Markup Language (SBML)-
formatted file, into MATLAB and creates a model object modelObj.

File is a character vector or string specifying a file name or a path and file name supported by your
operating system. File extensions are .sbml or .xml.File can also be a URL, if you have the Java®

programming language.

sbmlimport supports SBML Level 3 Version 1 and earlier.

For functional characteristics and limitations, see “SBML Support”.

Input Arguments
File

Character vector or string specifying either of the following:

• File name or path and file name supported by your operating system
• URL

Examples
Import SBML model:

sbmlobj = sbmlimport('oscillator.xml');

Compatibility Considerations
sbmlimport adds initial assignment rule when importing some SBML models
Behavior changed in R2017b

• sbmlimport adds an initial assignment rule when importing SBML models with the following
conditions.

• If an SBML model has a species s initialized to X using initialAmount and has the attribute
setting hasOnlySubstanceUnits = false:

• SimBiology sets the initial amount of s to X.

 sbmlimport

1-315

• If the model does not already have an initial assignment or repeated assignment rule for s,
SimBiology adds an initial assignment rule s = X / V, where V is the compartment
volume (capacity). This rule ensures that the initial amount of s is a concentration unit.

• If the model already has an initial assignment or repeated assignment rule for s, then
SimBiology does not use the value X. Instead, SimBiology evaluates the rule and sets the
appropriate initial amount.

• If an SBML model has a species s initialized to X using initialConcentration and has the
attribute setting hasOnlySubstanceUnits = true:

• SimBiology sets the initial amount of s to X.
• If the model does not already have an initial assignment or repeated assignment rule for s,

SimBiology adds an initial assignment rule s = X * V, where V is the compartment
volume (capacity). This rule ensures that the initial amount of s is an amount unit.

• If the model already has an initial assignment or repeated assignment rule for s, then
SimBiology does not use the value X. Instead, SimBiology evaluates the rule and sets the
appropriate initial amount.

• If a species s in an SBML model has the attribute setting hasOnlySubstanceUnits = true
without any units defined, SimBiology issues a warning and sets the species amount unit to a
default unit (mole) to ensure it is interpreted as an amount, not a concentration. The imported
SimBiology model has the DimensionalAnalysis property set to false to prevent dimensional
analysis errors.

Support for URL schemes other than HTTP and HTTPS has been removed
Errors starting in R2022a

Support for passing in a URL that is not HTTP and HTTPS has been removed in a future release.
Download the file locally first and then use the file name as an input to sbmlimport instead.

References
Finney, A., Hucka, M., (2003). Systems Biology Markup Language (SBML) Level 2: Structures and
facilities for model definitions.

See Also
get | sbiosimulate | sbmlexport | set | DimensionalAnalysis

Topics
“SBML Support”
“Importing from SBML Files”

Introduced before R2006a

1 Functions

1-316

simbiology
Open SimBiology Model Builder

Syntax
simbiology
simbiology(m1)
simbiology(prjFile)

Description
simbiology opens the SimBiology Model Builder app.

simbiology(m1) opens the SimBiology model m1 in the SimBiology Model Builder app.

If the SimBiology Model Builder or SimBiology Model Analyzer app is already open, you cannot
load a model or project from the command line. Load the model from the app directly.

simbiology(prjFile) opens the project file prjFile in the SimBiology Model Builder app.

If the SimBiology Model Builder or SimBiology Model Analyzer app is already open, you cannot
load a model or project from the command line. Load the model from the app directly.

Examples

Open SimBiology Model Builder

Open the PK/PD model for an antibacterial agent as described in “PK/PD Modeling and Simulation to
Guide Dosing Strategy for Antibiotics”.

simbiology('AntibacterialPKPD.sbproj');

Input Arguments
m1 — SimBiology model
model object

SimBiology model, specified as a SimBiology Model object.

prjFile — SimBiology project file name
character vector | string

SimBiology project file name, specified as a character vector or string. Specify a file name or path
and file name of a SimBiology project (SBPROJ) file. If you specify only a file name, the file must be on
the MATLAB search path or in the current folder.
Data Types: char | string

 simbiology

1-317

Compatibility Considerations
Load a project or model from the command line when the app is open
Behavior changed in R2020b

If the SimBiology Model Builder or SimBiology Model Analyzer app is open, you cannot load a
project or model from the command line using simbiology. Load the project or model from the app
directly.

See Also
SimBiology Model Builder | SimBiology Model Analyzer | sbioreset | sbioroot | Model

Introduced in R2009a

1 Functions

1-318

SimBiology.export.Dose class
Superclasses: matlab.mixin.Heterogeneous

Exported SimBiology model dose object

Description
SimBiology.export.Dose is the superclass for modifiable export dose objects. An export dose is
either of subclass SimBiology.export.RepeatDose or SimBiology.export.ScheduleDose.

Construction
Export dose objects are created by the export method for SimBiology models. By default, all active
doses are export doses, but you can specify which doses to export using the optional editdoses
input argument to export.

export (model) Export SimBiology models for deployment and standalone applications

Properties
Amount

Amount of dose, a nonnegative scalar value. This property is read-only if it is parameterized in the
export model.

AmountUnits

Dose amount units. This property is read-only.

DurationParameterName

Parameter specifying length of time to administer a dose. This property is read-only.

EventMode

Determine how events that change dose parameters affect in-progress dosing. This property is read-
only.

LagParameterName

Parameter specifying time lag for the dose. This property is read-only.

Name

Name of dose object. This property is read-only.

Notes

Text describing dose object. This property is read-only.

 SimBiology.export.Dose class

1-319

Parent

Name of the parent export model. This property is read-only.

Rate

Rate of dose, a nonnegative scalar value. The default value is 0 (RepeatDose) or []
(ScheduleDose), that is, the dose is interpreted as a bolus (instantaneous) dose. This property is
read-only if it is parameterized in the export model.

RateUnits

Units for dose rate. This property is read-only.

TargetName

Species receiving dose. This property is read-only.

TimeUnits

Time units for dosing. This property is read-only.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Exported SimBiology Model Dose Objects

Open a sample SimBiology model project, and export the included model object.

sbioloadproject('AntibacterialPKPD')
em = export(m1);

Get the editable doses from the exported model object.

doses = getdose(em)

doses=1×4 object
 1x4 RepeatDose array with properties:

 Interval
 RepeatCount
 StartTime
 TimeUnits
 Amount
 AmountUnits
 DurationParameterName
 LagParameterName
 Name
 Notes
 Parent
 Rate
 RateUnits

1 Functions

1-320

 TargetName

The exported model has 4 repeated dose objects.

Display the 3rd dose object from the exported model object.

doses(3)

ans =
 RepeatDose with properties:

 Interval: 12
 RepeatCount: 27
 StartTime: 0
 TimeUnits: 'hour'
 Amount: 500
 AmountUnits: 'milligram'
 DurationParameterName: 'TDose'
 LagParameterName: ''
 Name: '500 mg bid'
 Notes: ''
 Parent: 'Antibacterial'
 Rate: 0
 RateUnits: ''
 TargetName: 'Central.Drug'

Change the dosing amount for this dose object.

doses(3).Amount = 600;

doses(3)

ans =
 RepeatDose with properties:

 Interval: 12
 RepeatCount: 27
 StartTime: 0
 TimeUnits: 'hour'
 Amount: 600
 AmountUnits: 'milligram'
 DurationParameterName: 'TDose'
 LagParameterName: ''
 Name: '500 mg bid'
 Notes: ''
 Parent: 'Antibacterial'
 Rate: 0
 RateUnits: ''
 TargetName: 'Central.Drug'

See Also
SimBiology.export.RepeatDose | SimBiology.export.ScheduleDose | export

 SimBiology.export.Dose class

1-321

Topics
“PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
“Deploy a SimBiology Exported Model”

1 Functions

1-322

SimBiology.export.ExplicitTauSimulationOptions
class
Superclasses: SimBiology.export.StochasticSimulationOptions

Settings for explicit tau-leaping solver of exported SimBiology model

Description
SimBiology.export.ExplicitTauSimulationOptions is the class of simulation options
associated with the explicit tau-leaping solver of an export model.

Construction
Explicit tau simulation options are created by the export method for SimBiology models with a
stochastic SolverType set to 'expltau'.

export (model) Export SimBiology models for deployment and standalone applications

Properties
ErrorTolerance

Error tolerance, a scalar value in the range (0,1).

LogDecimation

Frequency to log stochastic simulation output, a positive integer value.

MaximumNumberofLogs

Maximum number of logs criterion to stop simulation, a positive scalar value.

MaximumWallClock

Maximum elapsed wall clock time criterion to stop simulation, a positive scalar value.

RandomState

Random number generator, a positive integer value.

SolverType

Character vector indicating solver type to use for simulation, 'expltau'. This property is read only.

StopTime

Simulation time criterion to stop simulation, a nonnegative scalar value.

 SimBiology.export.ExplicitTauSimulationOptions class

1-323

TimeUnits

Time units for simulation. This property is read only.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
SimBiology.export.StochasticSimulationOptions |
SimBiology.export.ImplicitTauSimulationOptions |
SimBiology.export.SimulationOptions | SimBiology.export.ODESimulationOptions |
export

1 Functions

1-324

SimBiology.export.ImplicitTauSimulationOptions
class
Superclasses: SimBiology.export.StochasticSimulationOptions

Settings for implicit tau-leaping stochastic simulation of exported SimBiology model

Description
SimBiology.export.ImplicitTauSimulationOptions is the class of simulation options
associated with the implicit tau-leaping solver of an export model.

Construction
Implicit tau-leaping simulation options are created by the export method for SimBiology models
with a stochastic SolverType set to 'impltau'.

export (model) Export SimBiology models for deployment and standalone applications

Properties
ErrorTolerance

Error tolerance, a scalar value in the range (0,1).

LogDecimation

Frequency to log stochastic simulation output, a positive integer value.

MaxIterations

Nonlinear solver maximum number of iterations, a positive integer value.

MaximumNumberofLogs

Maximum number of logs criterion to stop simulation, a positive scalar value.

MaximumWallClock

Maximum elapsed wall clock time criterion to stop simulation, a positive scalar value.

RandomState

Random number generator, a positive integer value.

SolverType

Character vector indicating solver type to use for simulation, 'impltau'. This property is read only.

 SimBiology.export.ImplicitTauSimulationOptions class

1-325

StopTime

Simulation time criterion to stop simulation, a nonnegative scalar value.

TimeUnits

Time units for simulation. This property is read only.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
SimBiology.export.StochasticSimulationOptions |
SimBiology.export.ExplicitTauSimulationOptions |
SimBiology.export.SimulationOptions | SimBiology.export.ODESimulationOptions |
export

1 Functions

1-326

SimBiology.export.Model class
Exported SimBiology model object

Description
Exported SimBiology models are limited-access models that can be simulated and accelerated. You
can speedup simulation of exported models using Parallel Computing Toolbox, and deploy exported
models using MATLAB Compiler™.

By default, all active dose objects, species, parameters, and compartments export with a SimBiology
model, and are editable in the exported model object. You can limit which doses, species, parameters,
and compartments are editable using additional options during export. Reactions, rules, and events
are never editable in an exported model.

Construction
Use the export method to export a SimBiology model.

export (model) Export SimBiology models for deployment and standalone applications

Properties
DependentFiles

Function files the model depends on. This property is read only.

ExportNotes

Text with additional information associated with the exported model. This property is read only.

ExportTime

Creation time of the exported model. This property is read only.

InitialValues

Vector of initial values for modifiable species, compartments, and parameters.

Name

Name of the exported model. This property is read only.

Notes

HTML text describing the exported model object. This property is read only.

SimulationOptions

SimBiology.export.SimulationOptions object specifying simulation options.

 SimBiology.export.Model class

1-327

ValueInfo

Array of SimBiology.export.ValueInfo objects of modifiable species, parameters, and
compartments.

Methods
accelerate Prepare exported SimBiology model for acceleration
getdose Return exported SimBiology model dose object
getIndex Get indices into ValueInfo and InitialValues properties
isAccelerated Determine whether an exported SimBiology model is accelerated
simulate Simulate exported SimBiology model

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Export SimBiology Model Object

Load a sample SimBiology model object, and export.

modelObj = sbmlimport('lotka');
em = export(modelObj)

em =
 Model with properties:

 Name: 'lotka'
 ExportTime: '26-Feb-2022 14:47:46'
 ExportNotes: ''

Display the editable values (compartments, species, and parameters) information.

em.ValueInfo

ans=8×1 object
 8x1 ValueInfo array with properties:

 Constant
 InitialValue
 Name
 Parent
 QualifiedName
 Tag
 Type
 Units

There are 8 editable values. Display the names of the editable values.

1 Functions

1-328

{em.ValueInfo.Name}

ans = 1x8 cell
 Columns 1 through 7

 {'unnamed'} {'x'} {'y1'} {'y2'} {'z'} {'c1'} {'c2'}

 Column 8

 {'c3'}

Display the exported model simulation options.

em.SimulationOptions

ans =
 ODESimulationOptions with properties:

 AbsoluteTolerance: 1.0000e-06
 AbsoluteToleranceScaling: 1
 AbsoluteToleranceStepSize: [0x1 double]
 MaxStep: [0x1 double]
 OutputTimes: [0x1 double]
 RelativeTolerance: 1.0000e-03
 SolverType: 'ode15s'
 MaximumNumberOfLogs: Inf
 MaximumWallClock: Inf
 StopTime: 10
 TimeUnits: 'second'

See Also
SimBiology.export.Dose | SimBiology.export.SimulationOptions |
SimBiology.export.ValueInfo | export

Topics
“PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
“Deploy a SimBiology Exported Model”
Class Attributes
Property Attributes

 SimBiology.export.Model class

1-329

SimBiology.export.ODESimulationOptions class
Superclasses: SimBiology.export.SimulationOptions

Settings for deterministic, ordinary differential equation simulation of exported SimBiology model

Description
SimBiology.export.ODESimulationOptions is the class of simulation options associated with
determinist, ordinary differential equation (ODE) solvers.

Construction
Deterministic simulation options are created by the export method for SimBiology models with a
deterministic SolverType (for example, sundials or ode15s).

export (model) Export SimBiology models for deployment and standalone applications

Properties
AbsoluteTolerance

Absolute error tolerance applied to state value during simulation, a positive scalar value.

AbsoluteToleranceScaling

Control scaling of absolute error tolerance, a logical value.

AbsoluteToleranceStepSize

Initial guess for time step size for scaling of absolute error tolerance, [] or a scalar value.

MaximumNumberofLogs

Maximum number of logs criterion to stop simulation, a positive scalar value.

MaximumWallClock

Maximum elapsed wall clock time criterion to stop simulation, a positive scalar value.

MaxStep

Upper bound on ODE solver step size, [] or a positive scalar value.

OutputTimes

Times to log in simulation output, a vector of sorted nonnegative values.

RelativeTolerance

Allowable error tolerance relative to state value during simulation, a scalar value in the range (0,1).

1 Functions

1-330

SolverType

Character vector indicating solver type to use for simulation. Possible deterministic solver types are:

• 'sundials'
• 'ode15s'
• 'ode23t'
• 'ode45'

StopTime

Simulation time criterion to stop simulation, a nonnegative scalar value.

TimeUnits

Time units for simulation. This property is read only.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
SimBiology.export.SimulationOptions |
SimBiology.export.StochasticSimulationOptions | export

 SimBiology.export.ODESimulationOptions class

1-331

SimBiology.export.RepeatDose class
Superclasses: SimBiology.export.Dose

Repeated doses for exported SimBiology model

Description
SimBiology.export.RepeatDose is the class for export repeat doses.

Construction
Export repeat dose objects are created by the export method for SimBiology models. By default, all
active repeat doses are export repeat doses, but you can specify which repeat doses to export using
the optional editdoses input argument to export.

export (model) Export SimBiology models for deployment and standalone applications

Properties
Amount

Amount of dose, a nonnegative scalar value or the name (character vector) of a model-scoped
parameter. This property is read-only if it is parameterized in the export model.

AmountUnits

Dose amount units. This property is read-only.

DurationParameterName

Parameter specifying length of time to administer a dose. This property is read-only.

EventMode

Determine how events that change dose parameters affect in-progress dosing. This property is read-
only.

Interval

Time between doses, a nonnegative scalar value or the name of a model-scoped parameter. This
property is read-only if it is parameterized in the export model.

LagParameterName

Parameter specifying time lag for the dose. This property is read-only.

Name

Name of dose object. This property is read-only.

1 Functions

1-332

Notes

Text describing dose object. This property is read-only.

Parent

Name of the parent export model. This property is read-only.

Rate

Rate of dose, a nonnegative scalar value or the name (string or character vector) of a model-scoped
parameter. This property is read-only if it is parameterized in the export model. The default value is 0,
that is, the dose is interpreted as a bolus (instantaneous) dose.

RateUnits

Units for dose rate. This property is read-only.

RepeatCount

Dose repetitions, a nonnegative integer value or the name (string or character vector) of a model-
scoped parameter. This property is read-only if it is parameterized in the export model.

StartTime

Start time for initial dose, a nonnegative scalar value or the name (string or character vector) of a
model-scoped parameter. This property is read-only if it is parameterized in the export model.

TargetName

Species receiving dose. This property is read-only.

TimeUnits

Time units for dosing. This property is read-only.

Note You cannot change the Rate property of RepeatDose for exported SimBiology model if all of
the following conditions are true:

• The UnitConversion property of the model is already set to true.
• The Rate property is empty or set to zero.
• The RateUnits is set to empty.

To change the Rate, do one of the following:

• Set the UnitConversion property of the original model to false. Then export the model again.
• Set the RateUnits appropriately.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

 SimBiology.export.RepeatDose class

1-333

See Also
SimBiology.export.Dose | SimBiology.export.ScheduleDose | export

1 Functions

1-334

SimBiology.export.ScheduleDose class
Superclasses: SimBiology.export.Dose

Schedule dose for exported SimBiology model

Description
SimBiology.export.ScheduleDose is the class for export schedule doses.

Construction
Export schedule dose objects are created by the export method for SimBiology models. By default,
all active schedule doses are export schedule doses, but you can specify which schedule doses to
export using the optional editdoses input argument to export.

export (model) Export SimBiology models for deployment and standalone applications

Properties
Amount

Amount of dose, a nonnegative scalar value.

AmountUnits

Dose amount units. This property is read-only.

DurationParameterName

Parameter specifying length of time to administer a dose. This property is read-only.

EventMode

Determine how events that change dose parameters affect in-progress dosing. This property is read-
only.

LagParameterName

Parameter specifying time lag for the dose. This property is read-only.

Name

Name of dose object. This property is read-only.

Notes

Text describing dose object. This property is read-only.

Parent

Name of the parent export model. This property is read-only.

 SimBiology.export.ScheduleDose class

1-335

Rate

Rate of dose, a nonnegative scalar value. Default is [], that is, the dose is interpreted as a bolus
(instantaneous) dose. For a schedule dose, you can create a combination of bolus and infusion doses
by setting the rate property to a vector containing zeros and non-zeros.

RateUnits

Units for dose rate. This property is read-only.

TargetName

Species receiving dose. This property is read-only.

Time

Schedule dose times, a vector of nonnegative values.

TimeUnits

Time units for dosing. This property is read-only.

Note You cannot change the Rate property of ScheduleDose for exported SimBiology model if all
of the following conditions are true:

• The UnitConversion property of the model is already set to true.
• The Rate property is empty or set to zero.
• The RateUnits is set to empty.

To change the Rate, do one of the following:

• Set the UnitConversion property of the original model to false. Then export the model again.
• Set the RateUnits appropriately.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
SimBiology.export.Dose | SimBiology.export.RepeatDose | export

1 Functions

1-336

SimBiology.export.SimulationOptions class

Simulation settings for exported SimBiology model

Description
SimBiology.export.SimulationOptions is the superclass of simulation options for exported
models. Simulation options are either of subclass SimBiology.export.ODESimulationOptions
for deterministic solvers, or SimBiology.export.StochasticSimulationOptions for stochastic
solvers.

Construction
Simulation options are created by the export method for SimBiology models.

export (model) Export SimBiology models for deployment and standalone applications

Properties
MaximumNumberofLogs

Maximum number of logs criterion to stop simulation, a positive scalar value.

MaximumWallClock

Maximum elapsed wall clock time criterion to stop simulation, a positive scalar value.

StopTime

Simulation time criterion to stop simulation, a nonnegative scalar value.

TimeUnits

Time units for simulation. This property is read only.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
SimBiology.export.ODESimulationOptions |
SimBiology.export.StochasticSimulationOptions | export

 SimBiology.export.SimulationOptions class

1-337

SimBiology.export.StochasticSimulationOptions
class
Superclasses: SimBiology.export.SimulationOptions

Settings for stochastic simulation of exported SimBiology model

Description
SimBiology.export.StochasticSimulationOptions is the superclass of simulation options
associated with stochastic solvers. The subclasses of
SimBiology.export.StochasticSimulationOptions are
SimBiology.export.ExplicitTauSimulationOptions and
SimBiology.export.ImplicitTauSimulationOptions.

Construction
Stochastic simulation options are created by the export method for SimBiology models with a
stochastic SolverType (ssa, expltau, or impltau).

export (model) Export SimBiology models for deployment and standalone applications

Properties
LogDecimation

Frequency to log stochastic simulation output, a positive integer value.

MaximumNumberofLogs

Maximum number of logs criterion to stop simulation, a positive scalar value.

MaximumWallClock

Maximum elapsed wall clock time criterion to stop simulation, a positive scalar value.

RandomState

Random number generator, a positive integer value.

SolverType

Character vector indicating solver type to use for simulation. This property is read only. The
stochastic solver type is one of:

• 'ssa'
• 'expltau'
• 'impltau'

1 Functions

1-338

StopTime

Simulation time criterion to stop simulation, a nonnegative scalar value.

TimeUnits

Time units for simulation. This property is read only.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
SimBiology.export.SimulationOptions | SimBiology.export.ODESimulationOptions |
SimBiology.export.ExplicitTauSimulationOptions |
SimBiology.export.ImplicitTauSimulationOptions | export

 SimBiology.export.StochasticSimulationOptions class

1-339

updateInitialAssignments
Update initial assignment rules to remove order dependencies

Syntax
updateInitialAssignments(model)
[tfUpdated, ruleChanges, newParameters, modelBackup] =
updateInitialAssignments(model)

Description
updateInitialAssignments(model) updates the active initial assignment rules in a SimBiology
model to recover the same simulation results at time = 0, as in R2017a or earlier when the initial
assignment rules were evaluated according to the order appeared in the model. As of R2017b, the
order in which the initial assignment rules appear in the model has no effect on the simulation
results. For details, see “Evaluation Order of Rules”.

[tfUpdated, ruleChanges, newParameters, modelBackup] =
updateInitialAssignments(model) returns a boolean indicating whether the model is updated,
tfUpdated, a table of changes made to the rules, ruleChanges, a vector of newly added
parameters, newParameters, and a backup copy of the original model, appending the text
" (copy)" to the original model name.

Examples

Remove Rule Order Dependencies in SimBiology Model

Load a sample model.

sbioloadproject lotka

Show the list of species and their initial amounts.

m1.Species

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed x 1
 2 unnamed y1 900
 3 unnamed y2 900
 4 unnamed z 0

Add two initial assignment rules that can result in different outcomes depending on the order of the
rules that appear in the model.

addrule(m1,'x = z','initialAssignment');
addrule(m1,'z = 100','initialAssignment');

1 Functions

1-340

Display the rules.

m1.Rules

ans =
 SimBiology Rule Array

 Index: RuleType: Rule:
 1 initialAssignment x = z
 2 initialAssignment z = 100

Remove the rule order dependencies from the model. tf is a boolean indicating whether the model
was updated, ruleChanges is a summary table of changes made to the rules, and newParas is a
vector of newly added parameter objects. backup is the copy of the original (unchanged) model.

[tf,ruleChanges,newParas,backup] = updateInitialAssignments(m1)

tf = logical
 1

ruleChanges=1×3 table
 UpdatedRule OldAssignment NewAssignment
 ___________________ _____________ _____________

 1x1 SimBiology.Rule "x = z" "x = z0"

newParas =
 SimBiology Parameter Array

 Index: Name: Value: Units:
 1 z0 0

backup =
 SimBiology Model - lotka (copy)

 Model Components:
 Compartments: 1
 Events: 0
 Parameters: 3
 Reactions: 3
 Rules: 2
 Species: 4
 Observables: 0

In order to remove order dependencies, SimBiology updated the initial assignment expression x = z
to x = z0, where z0 is a newly added parameter.

Input Arguments
model — SimBiology model
model object (default)

 updateInitialAssignments

1-341

SimBiology model, specified as a Model on page 2-404 object.
Example: m1

Output Arguments
tfUpdated — Whether model is updated
true | false

Whether the model is updated, returned as true or false.

ruleChanges — Table of changes made to rules
table

Table of changes made to initial assignment rules, returned as a table with one row per rule. The
table contains the following columns.

Column Description
UpdatedRule Vector of the updated rule objects in the model.
OldAssignment String vector of the original Rule property values

in the model.
NewAssignment String vector of the new Rule property values in

the model.

newParameters — Newly added parameters
vector

Newly added parameters, returned as a vector of Parameter on page 2-433 objects that are
referenced in the updated rules.

modelBackup — Backup copy of original model
model object

Backup copy of the original model, returned as a model object.

See Also
Model on page 2-404 | Parameter on page 2-433

Topics
“Evaluation Order of Rules”

Introduced in R2017b

1 Functions

1-342

SimBiology.export.ValueInfo class
Modifiable species, compartments, or parameters in exported SimBiology model

Description
SimBiology.export.ValueInfo is the class that describes the modifiable value components in a
SimBiology.export.Model, including species, parameters, and compartments.

Construction
ValueInfo objects are created by the export method for SimBiology models. By default, all model
species, parameters, and compartments are ValueInfo objects, but you can specify which value
components to export using the optional editvals input argument to export.

export (model) Export SimBiology models for deployment and standalone applications

Properties
Constant

Display whether value is constant or time-varying. This property is read only.

InitialValue

Initial value for the component, a scalar value.

Name

Name of species, compartment, or parameter. This property is read only.

Parent

Name of parent model, compartment, or reaction. This property is read only.

QualifiedName

Qualified name of species, compartment, or parameter. This property is read only.

• For compartments and model-scoped parameters, the qualified name is the same as the name.
• For species, the qualified name is CompartmentName.SpeciesName.
• For reaction-scoped parameters, the qualified name is ReactionName.ParameterName.

Tag

Label for species, compartment, or parameter. This property is read only.

Type

Type of value (species, parameter, or compartment). This property is read only.

 SimBiology.export.ValueInfo class

1-343

Units

Value units. This property is read only

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

See Also
SimBiology.export.Model | export

1 Functions

1-344

simbio.diagram.getBlock
Package: simbio.diagram

Get SimBiology diagram block properties

Syntax
SV = simbio.diagram.getBlock(sObj)
SV = simbio.diagram.getBlock(speciesObj,exprObj)
QV = simbio.diagram.getBlock(sObj,propertyNames)
QV = simbio.diagram.getBlock(speciesObj,exprObj,propertyNames)
simbio.diagram.getBlock(___)

Description
simbio.diagram.getBlock returns properties of diagram blocks shown in SimBiology Model
Builder.

Before you run the function at the command line:

1 Open the corresponding SimBiology model in the SimBiology Model Builder app.
2 Export the model from the app to MATLAB workspace by selecting Export > Export Model to

MATLAB Workspace on the Home tab of the app.

You can query and configure only the properties of the objects shown in the Diagram tab of the app.
The objects shown in the diagram are compartments, species, reactions, rate rules, repeated
assignment rules, and parameters that are on the left-hand side of a rate rule, a repeated assignment
rule, or an event function.

SV = simbio.diagram.getBlock(sObj) returns the names and current values of the block
properties of a SimBiology object sObj as a structure SV.

SV = simbio.diagram.getBlock(speciesObj,exprObj) returns the names and current values
of the block properties of the species object speciesObj that is connected to an expression
(reaction, rate rule, or repeated assignment rule) object exprObj. You can use this syntax to
configure the Position, Pin, and Visible properties of a specific cloned block when you have
multiple clones of the same species. Clones have the same values for all the other properties.

QV = simbio.diagram.getBlock(sObj,propertyNames) returns the values of the specified
block properties propertyNames of a SimBiology object sObj.

QV = simbio.diagram.getBlock(speciesObj,exprObj,propertyNames) returns the names
and current values of the specified block properties propertyNames of the species object
speciesObj that is connected to an expression object exprObj.

simbio.diagram.getBlock(___) displays the names and values of block properties. Use this
syntax with any of the input arguments in the previous syntaxes.

Examples

 simbio.diagram.getBlock

1-345

Configure SimBiology Diagram Block Properties

You can programmatically adjust the appearances and locations of diagram blocks of a SimBiology
model.

Open the lotka model in the SimBiology Model Builder app.

simBiologyModelBuilder('lotka')

The app opens and shows the model in the Diagram tab.

On the Home tab of the app, select Export > Export Model to MATLAB Workspace.

In the SimBiology Model Export dialog, click OK to export the model with the variable name m1.

Go to the MATLAB command line and confirm that the model m1 is in the workspace. Get a list of
species of the model.

m1.Species

ans =

 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed x 1
 2 unnamed y1 900
 3 unnamed y2 900
 4 unnamed z 0

Get the current block shape of species x.

x = m1.Species(1);
v = simbio.diagram.getBlock(x,'Shape')

v =

 'rounded rectangle'

Get a list of all possible shapes for the species block.

simbio.diagram.setBlock(x,'Shape')

ans =

 8×1 cell array

 {'rounded rectangle'}
 {'rectangle' }
 {'oval' }
 {'triangle' }
 {'hexagon' }
 {'chevron' }
 {'parallelogram' }
 {'diamond' }

Set the shape of the species block to an oval.

simbio.diagram.setBlock(x,'Shape','oval')

1 Functions

1-346

Get the current position of the block. The first two numbers represent the x and y coordinates with
respect to the top left corner (x = 0, y = 0) of the diagram. The last two numbers represent the width
and height of the block.

simbio.diagram.getBlock(x,'Position')

ans =

 223 137 30 15

Set the position to a new location.

simbio.diagram.setBlock(x,'Position',[260 130 30 15])

You can also configure multiple properties.

simbio.diagram.setBlock(x,'FaceColor','yellow','FontSize',20,'TextLocation','center')

Configure Cloned Species Block Properties

When you have multiple cloned blocks for the same species in a SimBiology diagram, you can
programmatically adjust the position and visibility of a specific clone by specifying the expression
block that the cloned species is connected to. In other words, you can change the Position, Pin,
and Visible properties specific to an individual clone. All the other properties have the same values
across all clones of the same species.

Open the gprotein model in the SimBiology Model Builder app.

simBiologyModelBuilder('gprotein');

The app opens and shows the model in the Diagram tab.

On the Home tab of the app, select Export > Export Model to MATLAB Workspace.

In the SimBiology Model Export dialog, click OK to export the model with the variable name m1.

Go to the MATLAB command line and confirm that the model m1 is in the workspace. Get a list of
species of the model.

m1.Species

ans =

 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed G 7000
 2 unnamed Gd 3000
 3 unnamed Ga 0
 4 unnamed RL 0
 5 unnamed L 6.022e+17
 6 unnamed R 10000
 7 unnamed Gbg 3000

 simbio.diagram.getBlock

1-347

The species block Gbg is cloned and connected to two reactions: G protein activation and G
protein complex formation. Get the current position of the cloned block connected to the
second reaction.

Gbg = m1.Species(7);
r2 = m1.Reaction(2);
simbio.diagram.getBlock(Gbg,r2,'Position')

ans =

 393 307 30 15

Unpin the cloned block and move it to another position.

simbio.diagram.setBlock(Gbg,r2,'Pin',false,'Position',[391 340 30 15])

Input Arguments
sObj — SimBiology object
Compartment object | Species object | Reaction object | Rule object | Parameter object | array
of objects

SimBiology object, specified as a Compartment, Species, Reaction, Rule, or Parameter object,
or as an array of objects.

propertyNames — Names of block properties
character vector | string | string vector | cell array of character vectors

Names of block properties, specified as a character vector, string, string vector, or cell array of
character vectors. You can specify multiple property names as an 1-by-N or N-by-1 cell array of
names.

Available block properties follow.

Property
Name

Description

Connection
s

Read-only property that lists the objects connected to the input block

Cloned Read-only flag indicating if more than one block exists for the input object. You can
clone only species blocks.

EdgeColor Block edge color, specified as one of these values:

• RGB triplet, such as [1 1 0]
• Character vector or string representing the color name, such as 'y' or 'yellow'

Expression
Lines

Flag to show lines from the expression block to other model components referenced
by the expression, specified as 'show' or 'hide'. You can set this property for
reactions or rules.

FaceColor Block face color, specified as one of these values:

• RGB triplet, such as [1 1 0]
• Character vector or string representing the color name, such as 'y' or 'yellow'

1 Functions

1-348

Property
Name

Description

FontName Block text font, specified as a character vector or string. Valid options are:

• 'Arial'
• 'Arial Black'
• 'Arial Narrow'
• 'Comic Sans MS'
• 'Courier'
• 'Courier New'
• 'Georgia'
• 'Helvetica'
• 'Impact'
• 'Times New Roman'
• 'Trebuchet MS'
• 'Verdana'

FontSize Block text font size, specified as a positive scalar
FontWeight Block text font thickness, specified as 'plain', 'bold', 'italic', or 'bold

italic'
Object Read-only property that lists the corresponding SimBiology object of the block
Pin Flag to indicate if a block can be moved or not. Set the property to false to allow

moving the block in the diagram.
Position Position and size of the block, specified as a four-element vector

[x,y,width,height]. The position of the upper-left corner of the diagram is equal
to x = 0 and y = 0. SimBiology configures all block positions relative to that corner.
You can configure block positions to negative positions.

Rotate Block rotation, specified as a scalar between 0 and 360. You cannot rotate
compartment blocks.

Shape Block shape, specified as a character vector or string. Valid options are:

• 'rounded rectangle'
• 'rectangle'
• 'oval'
• 'triangle'
• 'hexagon'
• 'chevron'
• 'parallelogram'
• 'diamond'

Compartment blocks must be 'rounded rectangle' or 'rectangle'.

 simbio.diagram.getBlock

1-349

Property
Name

Description

TextColor Block text color, specified as one of these values:

• RGB triplet, such as [1 1 0]
• Character vector or string representing the color name, such as 'y' or 'yellow'

TextLocati
on

Block text location relative to the block, specified as one of the following: 'top',
'left', 'bottom', 'right', 'center', or 'none'

Visible Flag to indicate if the block is visible in the diagram. Set the property to false to hide
the block.

Warning Starting in R2022a, this property for all compartment blocks is always set
to 1 and you can no longer hide compartments.

Example: 'Position'
Data Types: double | char | string | cell

speciesObj — Species object
Species object

Species object, specified as a SimBiology Species object. speciesObj must be scalar.

exprObj — Expression object
Reaction object | Rule object

Expression object, specified as a Reaction or Rule object. The rule object can be a rate rule or
repeated assignment rule. exprObj must be a scalar.

Output Arguments
QV — Values of queried properties
numeric vector | character vector | logical scalar | object | cell array

Values of queried properties, returned as a numeric vector, character vector, logical scalar,
SimBiology object, or cell array.

If sObj is an array of objects, QV is an M-by-1 cell array of values where M equals to the length of
sObj.

If you also specify an N-by-1 or 1-by-N cell array for propertyNames, QV is an M-by-N cell array of
values, where N is the number of properties.

SV — Structure of property names and values
structure | structure array

Structure of property names and values, returned as a structure or structure array. The field names
are the object property names and values are the current values of the corresponding properties.

If sObj is an array of objects, SV is an array of structures. The function returns one structure per
block. If sObj has multiple cloned blocks, SV contains a structure for each cloned block.

1 Functions

1-350

See Also
SimBiology Model Builder | simbio.diagram.setBlock | simbio.diagram.getLine |
simbio.diagram.setLine | simbio.diagram.splitBlock | simbio.diagram.joinBlock

Topics
“Create Model of Receptor-Ligand Kinetics”
“Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology
Model Builder”

Introduced in R2021a

 simbio.diagram.getBlock

1-351

simbio.diagram.getLine
Package: simbio.diagram

Get SimBiology diagram line properties

Syntax
SV = simbio.diagram.getLine(sObj)
SV = simbio.diagram.getLine(obj1,obj2)
QV = simbio.diagram.getLine(sObj,propertyNames)
QV = simbio.diagram.getLine(obj1,obj2,propertyNames)
simbio.diagram.getLine(___)

Description
simbio.diagram.getLine returns properties of diagram lines shown in SimBiology Model
Builder.

Before you run the function at the command line:

1 Open the corresponding SimBiology model in the SimBiology Model Builder app.
2 Export the model from the app to MATLAB workspace by selecting Export > Export Model to

MATLAB Workspace on the Home tab of the app.

You can query and configure only the properties of the objects shown in the Diagram tab of the app.
The objects shown in the diagram are compartments, species, reactions, rate rules, repeated
assignment rules, and parameters that are on the left-hand side of a rate rule, a repeated assignment
rule, or an event function.

SV = simbio.diagram.getLine(sObj) returns the names and current values of all properties of
all lines connected to a SimBiology object sObj as a structure SV.

SV = simbio.diagram.getLine(obj1,obj2) returns all the properties of a line that connects
two SimBiology objects obj1 and obj2 as a structure SV. obj1 and obj2 must be scalar.

QV = simbio.diagram.getLine(sObj,propertyNames) returns the values of the specified
properties propertyNames of the lines connected to a SimBiology object sObj.

QV = simbio.diagram.getLine(obj1,obj2,propertyNames) returns the values of the
specified properties of a line that connects two SimBiology objects obj1 and obj2. obj1 and obj2
must be scalar.

simbio.diagram.getLine(___) displays the names and values of all line properties. Use this
syntax with any of the input arguments in the previous syntaxes.

Examples

1 Functions

1-352

Configure SimBiology Diagram Line Properties

You can programmatically adjust the appearance of lines connected to blocks in a diagram.

Open the lotka model in the SimBiology Model Builder app.

simBiologyModelBuilder('lotka');

The app opens and shows the model in the Diagram tab.

On the Home tab of the app, select Export > Export Model to MATLAB Workspace.

In the SimBiology Model Export dialog, click OK to export the model with the variable name m1.

Go to the MATLAB command line and confirm that the model m1 is in the workspace. Get a list of
species of the model.

m1.Species

ans =

 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed x 1
 2 unnamed y1 900
 3 unnamed y2 900
 4 unnamed z 0

Get the current property values of the line connected to species x. If multiple lines are connected to
the species, the function returns an array of structures containing one structure per line.

x = m1.Species(1);
sv = simbio.diagram.getLine(x)

sv =

 struct with fields:

 Color: [66 66 66]
 Connections: [1×2 SimBiology.ModelComponent]
 Width: 1

Change the line color to red and increase the line width.

simbio.diagram.setLine(x,'Color','red','Width',2)

You can also query properties of a line that connects two objects. For example, get the property
values of the line that connects species y1 and Reaction1.

y1 = m1.Species(2);
r1 = m1.Reactions(1);
simbio.diagram.getLine(y1,r1)

ans =

 struct with fields:

 Color: [66 66 66]

 simbio.diagram.getLine

1-353

 Connections: [1×2 SimBiology.ModelComponent]
 Width: 1

Change the line color to a new RGB value and increase the line width.

simbio.diagram.setLine(y1,r1,'Color',[0.6 0.2 0.6],'Width',3)

Input Arguments
sObj — SimBiology object
Compartment object | Species object | Reaction object | Rule object | Parameter object | array
of objects

SimBiology object, specified as a Compartment, Species, Reaction, Rule, or Parameter object,
or as an array of objects.

propertyNames — Names of line properties
character vector | string | string vector | cell array of character vectors

Names of line properties, specified as a character vector, string, string vector, or cell array of
character vectors. You can specify multiple property names as a 1-by-N or N-by-1 cell array of names.

Available line properties follow.

Property
Name

Description

Color Line color, specified as one of these values:

• RGB triplet, such as [1 1 0]
• Character vector or string representing the color name, such as 'y' or 'yellow'

Connection
s

Read-only property that lists the objects connected by the line

Width Line width, specified as a positive scalar

Example: 'Width'
Data Types: char | string | cell

obj1 — SimBiology object
Compartment object | Species object | Reaction object | Rule object | Parameter object

SimBiology object, specified as a Compartment, Species, Reaction, Rule, or Parameter object.

obj2 — SimBiology object
Compartment object | Species object | Reaction object | Rule object | Parameter object

SimBiology object, specified as a Compartment, Species, Reaction, Rule, or Parameter object.

Output Arguments
QV — Values of queried properties
numeric vector | character vector | object | cell array

1 Functions

1-354

Values of queried properties, returned as a numeric vector, character vector, SimBiology object, or
cell array.

If multiple lines are connected to the SimBiology object sObj or if sObj is an array of objects, QV is
an M-by-1 cell array of values where M equals the total number of lines connected to each object in
sObj.

If you also specify an N-by-1 or 1-by-N cell array for propertyNames, QV is an M-by-N cell array of
values, where N is the number of properties.

SV — Structure of property names and values
structure | structure array

Structure of property names and values, returned as a structure or structure array. The field names
are the object property names and the values are the current values of the corresponding properties.

If multiple lines are connected to the SimBiology object sObj or if sObj is an array of objects, SV is
an array of structures. The function returns one structure per line.

See Also
SimBiology Model Builder | simbio.diagram.getBlock | simbio.diagram.setBlock |
simbio.diagram.setLine | simbio.diagram.splitBlock | simbio.diagram.joinBlock

Topics
“Create Model of Receptor-Ligand Kinetics”
“Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology
Model Builder”

Introduced in R2021a

 simbio.diagram.getLine

1-355

simbio.diagram.joinBlock
Package: simbio.diagram

Combine copies of SimBiology species block in diagram

Syntax
simbio.diagram.joinBlock(speciesObj)
simbio.diagram.joinBlock(speciesObj,exprObj)
simbio.diagram.joinBlock(speciesObj,exprObj1,exprObj2)

Description
simbio.diagram.joinBlock combines cloned blocks of a species block into one block in
SimBiology Model Builder.

Before you run the function at the command line:

1 Open the corresponding SimBiology model in the SimBiology Model Builder app.
2 Export the model from the app to MATLAB workspace by selecting Export > Export Model to

MATLAB Workspace on the Home tab of the app.

You can query and configure only the properties of the objects shown in the Diagram tab of the app.
The objects shown in the diagram are compartments, species, reactions, rate rules, repeated
assignment rules, and parameters that are on the left-hand side of a rate rule, a repeated assignment
rule, or an event function.

simbio.diagram.joinBlock(speciesObj) combines all copies of the SimBiology species
speciesObj block into one block in the model diagram. speciesObj must be scalar.

simbio.diagram.joinBlock(speciesObj,exprObj) combines all copies of the species
speciesObj block into one block and keeps the block that is connected to the expression object
exprObj in the diagram. Both speciesObj and exprObj must be scalar.

simbio.diagram.joinBlock(speciesObj,exprObj1,exprObj2) combines cloned species
blocks connected to the expression objects exprObj1 and exprObj2 into one block. speciesObj,
exprObj1, and exprObj2 must be scalar.

Examples

Join and Split Species Blocks

Open the gprotein model in the SimBiology Model Builder app.

simBiologyModelBuilder('gprotein');

The app opens and shows the model in the Diagram tab.

On the Home tab of the app, select Export > Export Model to MATLAB Workspace.

1 Functions

1-356

In the SimBiology Model Export dialog, click OK to export the model with the variable name m1.

Go to the MATLAB command line and confirm that the model m1 is in the workspace. Get a list of
species of the model.

m1.Species

ans =

 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed G 7000
 2 unnamed Gd 3000
 3 unnamed Ga 0
 4 unnamed RL 0
 5 unnamed L 6.022e+17
 6 unnamed R 10000
 7 unnamed Gbg 3000

The model diagram already has a copy for each expression that references the species Gbg. In this
case, calling simbio.diagram.splitBlock does not split the block again, but returns the list of
expressions that the species is connected to. In this case, Gbg is used in two reactions.

Gbg = m1.Species(7);
expr = simbio.diagram.splitBlock(Gbg)

expr =

 SimBiology Reaction Array

 Index: Reaction:
 1 Gd + Gbg -> G
 2 G + RL -> Ga + Gbg + RL

Join all the cloned blocks so that there is only one block for Gbg. In this case, keep the copy of the
block that is connected to the G protein activation reaction (G + RL -> Ga + Gbg + RL). Note that
the order of reactions returned in expr can change.

simbio.diagram.joinBlock(Gbg,expr(2));

Input Arguments
speciesObj — Species object
Species object

Species object, specified as a SimBiology Species object. speciesObj must be scalar.

exprObj — Expression object
Reaction object | Rule object

Expression object, specified as a Reaction or Rule object. The rule object can be a rate rule or
repeated assignment rule. exprObj must be a scalar.

exprObj1 — Expression object
Reaction object | Rule object

 simbio.diagram.joinBlock

1-357

Expression object, specified as a Reaction or Rule object. The rule object can be a rate rule or
repeated assignment rule. exprObj1 must be a scalar.

exprObj2 — Expression object
Reaction object | Rule object

Expression object, specified as a Reaction or Rule object. The rule object can be a rate rule or
repeated assignment rule. exprObj2 must be a scalar.

See Also
SimBiology Model Builder | simbio.diagram.getBlock | simbio.diagram.setBlock |
simbio.diagram.getLine | simbio.diagram.setLine | simbio.diagram.splitBlock

Topics
“Create Model of Receptor-Ligand Kinetics”
“Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology
Model Builder”

Introduced in R2021a

1 Functions

1-358

simbio.diagram.setBlock
Package: simbio.diagram

Set SimBiology diagram block properties

Syntax
simbio.diagram.setBlock(sObj,propertyNames,propertyValues)
simbio.diagram.setBlock(sObj,S)
simbio.diagram.setBlock(sObj,Name,Value)
simbio.diagram.setBlock(sObj)
outStruct = simbio.diagram.setBlock(sObj)
CV = simbio.diagram.setBlock(sObj,propertyName)
simbio.diagram.setBlock(speciesObj,exprObj, ___)
simbio.diagram.setBlock(speciesObj,exprObj)

Description
simbio.diagram.setBlock sets properties of diagram blocks shown in SimBiology Model
Builder. The changes are instantly reflected in the app.

Before you run the function at the command line:

1 Open the corresponding SimBiology model in the SimBiology Model Builder app.
2 Export the model from the app to MATLAB workspace by selecting Export > Export Model to

MATLAB Workspace on the Home tab of the app.

You can query and configure only the properties of the objects shown in the Diagram tab of the app.
The objects shown in the diagram are compartments, species, reactions, rate rules, repeated
assignment rules, and parameters that are on the left-hand side of a rate rule, a repeated assignment
rule, or an event function.

simbio.diagram.setBlock(sObj,propertyNames,propertyValues) sets the values of
specified block properties of a SimBiology object or array of objects sObj.

simbio.diagram.setBlock(sObj,S) sets the property values of sObj using a structure S. The
field names of S are the property names and the field values are the property values.

simbio.diagram.setBlock(sObj,Name,Value) sets the property values specified by one or
more name-value arguments.

Name is the property name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

You can specify a mixture of name-value arguments, structures, and cell array pairs of property
names and values in the same function call.

simbio.diagram.setBlock(sObj) displays the names and possible values of configurable block
properties of a SimBiology object sObj. sObj must be scalar.

 simbio.diagram.setBlock

1-359

outStruct = simbio.diagram.setBlock(sObj) returns a structure outStruct containing the
names and possible values of configurable block properties of a SimBiology object sObj. sObj must
be scalar.

CV = simbio.diagram.setBlock(sObj,propertyName) returns a cell array of possible values
CV for the block property propertyName. sObj must be scalar.

simbio.diagram.setBlock(speciesObj,exprObj, ___) sets the values of the specified block
properties of a species object speciesObj that is connected to an expression object exprObj. You
can specify any combination of Name,Value pairs, structures, and cell array pairs of property names
and values as shown in previous syntaxes.

Use this syntax to configure the Position, Pin, and Visible properties of a specific cloned block
when you have multiple clones of the same species. Clones have the same values for all the other
properties.

simbio.diagram.setBlock(speciesObj,exprObj) displays the names of configurable block
properties of a species object speciesObj that is connected to an expression (reaction, rate rule, or
repeated assignment rule) object exprObj.

Use this syntax to check the properties of a specific cloned block when you have multiple clones of
the same species.

Examples

Configure SimBiology Diagram Block Properties

You can programmatically adjust the appearance and locations of diagram blocks of a SimBiology
model.

Open the lotka model in the SimBiology Model Builder app.

simBiologyModelBuilder('lotka')

The app opens and shows the model in the Diagram tab.

On the Home tab of the app, select Export > Export Model to MATLAB Workspace.

In the SimBiology Model Export dialog, click OK to export the model with the variable name m1.

Go to the MATLAB command line and confirm that the model m1 is in the workspace. Get a list of
species of the model.

m1.Species

ans =

 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed x 1
 2 unnamed y1 900
 3 unnamed y2 900
 4 unnamed z 0

1 Functions

1-360

Get the current block shape of species x.

x = m1.Species(1);
v = simbio.diagram.getBlock(x,'Shape')

v =

 'rounded rectangle'

Get a list of all possible shapes for the species block.

simbio.diagram.setBlock(x,'Shape')

ans =

 8×1 cell array

 {'rounded rectangle'}
 {'rectangle' }
 {'oval' }
 {'triangle' }
 {'hexagon' }
 {'chevron' }
 {'parallelogram' }
 {'diamond' }

Set the shape of the species block to an oval.

simbio.diagram.setBlock(x,'Shape','oval')

Get the current position of the block. The first two numbers represent the x and y coordinates with
respect to the top left corner (x = 0, y = 0) of the diagram. The last two numbers represent the width
and height of the block.

simbio.diagram.getBlock(x,'Position')

ans =

 223 137 30 15

Set the position to a new location.

simbio.diagram.setBlock(x,'Position',[260 130 30 15])

You can also configure multiple properties.

simbio.diagram.setBlock(x,'FaceColor','yellow','FontSize',20,'TextLocation','center')

Configure Cloned Species Block Properties

When you have multiple cloned blocks for the same species in a SimBiology diagram, you can
programmatically adjust the position and visibility of a specific clone by specifying the expression
block that the cloned species is connected to. In other words, you can change the Position, Pin,
and Visible properties specific to an individual clone. All the other properties have the same values
across all clones of the same species.

Open the gprotein model in the SimBiology Model Builder app.

 simbio.diagram.setBlock

1-361

simBiologyModelBuilder('gprotein');

The app opens and shows the model in the Diagram tab.

On the Home tab of the app, select Export > Export Model to MATLAB Workspace.

In the SimBiology Model Export dialog, click OK to export the model with the variable name m1.

Go to the MATLAB command line and confirm that the model m1 is in the workspace. Get a list of
species of the model.

m1.Species

ans =

 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed G 7000
 2 unnamed Gd 3000
 3 unnamed Ga 0
 4 unnamed RL 0
 5 unnamed L 6.022e+17
 6 unnamed R 10000
 7 unnamed Gbg 3000

The species block Gbg is cloned and connected to two reactions: G protein activation and G
protein complex formation. Get the current position of the cloned block connected to the
second reaction.

Gbg = m1.Species(7);
r2 = m1.Reaction(2);
simbio.diagram.getBlock(Gbg,r2,'Position')

ans =

 393 307 30 15

Unpin the cloned block and move it to another position.

simbio.diagram.setBlock(Gbg,r2,'Pin',false,'Position',[391 340 30 15])

Input Arguments
sObj — SimBiology object
Compartment object | Species object | Reaction object | Rule object | Parameter object | array
of objects

SimBiology object, specified as a Compartment, Species, Reaction, Rule, or Parameter object,
or as an array of objects.

propertyName — Property name
character vector | string

Property name of the block, specified as a character vector or string. You can specify only one
property name.

1 Functions

1-362

Example: 'FontName'
Data Types: char | string

propertyNames — Names of block properties
character vector | string | string vector | cell array of character vectors

Names of block properties, specified as a character vector, string, string vector, or cell array of
character vectors. You can specify multiple property names as an 1-by-N or N-by-1 cell array of
names.

Available block properties follow.

Property
Name

Description

Connection
s

Read-only property that lists the objects connected to the input block

Cloned Read-only flag indicating if more than one block exists for the input object. You can
clone only species blocks.

EdgeColor Block edge color, specified as one of these values:

• RGB triplet, such as [1 1 0]
• Character vector or string representing the color name, such as 'y' or 'yellow'

Expression
Lines

Flag to show lines from the expression block to other model components referenced
by the expression, specified as 'show' or 'hide'. You can set this property for
reactions or rules.

FaceColor Block face color, specified as one of these values:

• RGB triplet, such as [1 1 0]
• Character vector or string representing the color name, such as 'y' or 'yellow'

FontName Block text font, specified as a character vector or string. Valid options are:

• 'Arial'
• 'Arial Black'
• 'Arial Narrow'
• 'Comic Sans MS'
• 'Courier'
• 'Courier New'
• 'Georgia'
• 'Helvetica'
• 'Impact'
• 'Times New Roman'
• 'Trebuchet MS'
• 'Verdana'

FontSize Block text font size, specified as a positive scalar

 simbio.diagram.setBlock

1-363

Property
Name

Description

FontWeight Block text font thickness, specified as 'plain', 'bold', 'italic', or 'bold
italic'

Object Read-only property that lists the corresponding SimBiology object of the block
Pin Flag to indicate if a block can be moved or not. Set the property to false to allow

moving the block in the diagram.
Position Position and size of the block, specified as a four-element vector

[x,y,width,height]. The position of the upper-left corner of the diagram is equal
to x = 0 and y = 0. SimBiology configures all block positions relative to that corner.
You can configure block positions to negative positions.

Rotate Block rotation, specified as a scalar between 0 and 360. You cannot rotate
compartment blocks.

Shape Block shape, specified as a character vector or string. Valid options are:

• 'rounded rectangle'
• 'rectangle'
• 'oval'
• 'triangle'
• 'hexagon'
• 'chevron'
• 'parallelogram'
• 'diamond'

Compartment blocks must be 'rounded rectangle' or 'rectangle'.
TextColor Block text color, specified as one of these values:

• RGB triplet, such as [1 1 0]
• Character vector or string representing the color name, such as 'y' or 'yellow'

TextLocati
on

Block text location relative to the block, specified as one of the following: 'top',
'left', 'bottom', 'right', 'center', or 'none'

Visible Flag to indicate if the block is visible in the diagram. Set the property to false to hide
the block.

Warning Starting in R2022a, this property for all compartment blocks is always set
to 1 and you can no longer hide compartments.

Example: 'Position'
Data Types: double | char | string | cell

propertyValues — Property values
character vector | string | string vector | numeric vector | logical scalar | cell array

Property values to set, specified as a character vector, string, string vector, numeric vector, logical
scalar, or cell array.

1 Functions

1-364

If propertyNames is a cell array of 1-by-N or N-by-1, propertyValues can be a cell array of the
same length containing the corresponding values for each property in propertyNames.

If sObj is a vector and propertyNames contains a single property name and propertyValues
contains a single value, the function updates the specified property of all objects to the specified
value.

If sObj is a vector containing M objects, and propertyNames is a cell array of 1-by-N or N-by-1,
propertyValues can be a cell array of M-by-N such that each object is updated with a different set
of values for the list of properties in propertyNames.
Example: [140 210 30 15]
Data Types: double | logical | char | string | cell

S — Property names and corresponding values
structure | structure array

Property names and corresponding values to set, specified as a structure or structure array. Each
field name corresponds to a property name, and the field value is the property value.

If sObj is a vector and S is a scalar structure, the function configures all objects to have the same
property values.

You can specify a different set of property values for each object. To do so, specify S as an array of the
same length as sObj.
Data Types: structure

speciesObj — Species object
Species object

Species object, specified as a SimBiology Species object. speciesObj must be scalar.

exprObj — Expression object
Reaction object | Rule object

Expression object, specified as a Reaction or Rule object. The rule object can be a rate rule or
repeated assignment rule. exprObj must be a scalar.

Output Arguments
CV — Possible property values
cell array

Possible property values, returned as a cell array of values. CV is an empty cell array if the property
does not have a finite set of possible values.

outStruct — Configurable property names and their possible values
structure

Configurable property names and their possible values, returned as a structure. Each field name is a
property name and the value is a cell array of possible values or an empty cell array if the property
does not have a finite set of possible values.

 simbio.diagram.setBlock

1-365

See Also
SimBiology Model Builder | simbio.diagram.getBlock | simbio.diagram.getLine |
simbio.diagram.setLine | simbio.diagram.splitBlock | simbio.diagram.joinBlock

Topics
“Create Model of Receptor-Ligand Kinetics”
“Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology
Model Builder”

Introduced in R2021a

1 Functions

1-366

simbio.diagram.setLine
Package: simbio.diagram

Set SimBiology diagram line properties

Syntax
simbio.diagram.setLine(sObj,propertyNames,propertyValues)
simbio.diagram.setLine(sObj,S)
simbio.diagram.setLine(sObj,Name,Value)
simbio.diagram.setLine(sObj)
outStruct = simbio.diagram.setLine(sObj)
CV = simbio.diagram.setLine(sObj,propertyName)
simbio.diagram.setLine(obj1,obj2, ___)
simbio.diagram.setLine(obj1,obj2)

Description
simbio.diagram.setLine sets properties of diagram lines shown in SimBiology Model Builder.
The changes are instantly reflected in the app.

Before you run the function at the command line:

1 Open the corresponding SimBiology model in the SimBiology Model Builder app.
2 Export the model from the app to MATLAB workspace by selecting Export > Export Model to

MATLAB Workspace on the Home tab of the app.

You can query and configure only the properties of the objects shown in the Diagram tab of the app.
The objects shown in the diagram are compartments, species, reactions, rate rules, repeated
assignment rules, and parameters that are on the left-hand side of a rate rule, a repeated assignment
rule, or an event function.

simbio.diagram.setLine(sObj,propertyNames,propertyValues) sets the values of
specified properties for the lines connected to a SimBiology object or array of objects sObj.

simbio.diagram.setLine(sObj,S) sets the property values of sObj using a structure S. The field
names of S are the property names and the field values are the property values.

simbio.diagram.setLine(sObj,Name,Value) sets the property values specified by one or more
name-value arguments.

Name is the property name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

You can specify a mixture of name-value arguments, structures, and cell array pairs of property
names and values in the same function call.

simbio.diagram.setLine(sObj) displays the names and possible values of configurable
properties of a line connected to a SimBiology object sObj. This syntax requires that only one line is

 simbio.diagram.setLine

1-367

connected to sObj. If there are multiple lines connected to sObj, specify the line by providing two
objects as inputs that are connected by the line. The functions returns an empty cell array when the
property does not have a finite set of possible values. sObj must be scalar.

outStruct = simbio.diagram.setLine(sObj) returns a structure outStruct containing the
names and possible values of configurable properties of a line connected to a SimBiology object
sObj. sObj must be scalar.

CV = simbio.diagram.setLine(sObj,propertyName) returns a cell array of possible values CV
for the line property propertyName. sObj must be scalar.

simbio.diagram.setLine(obj1,obj2, ___) sets the properties of the line that connects the
SimBiology objects obj1 and obj2 using any of the previous input arguments. obj1 and obj2 must
be scalar.

simbio.diagram.setLine(obj1,obj2) displays the configurable properties of the line that
connects the SimBiology objects obj1 and obj2. obj1 and obj2 must be scalar.

Examples

Configure SimBiology Diagram Line Properties

You can programmatically adjust the appearance of lines connected to blocks in a diagram.

Open the lotka model in the SimBiology Model Builder app.

simBiologyModelBuilder('lotka');

The app opens and shows the model in the Diagram tab.

On the Home tab of the app, select Export > Export Model to MATLAB Workspace.

In the SimBiology Model Export dialog, click OK to export the model with the variable name m1.

Go to the MATLAB command line and confirm that the model m1 is in the workspace. Get a list of
species of the model.

m1.Species

ans =

 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed x 1
 2 unnamed y1 900
 3 unnamed y2 900
 4 unnamed z 0

Get the current property values of the line connected to species x. If multiple lines are connected to
the species, the function returns an array of structures containing one structure per line.

x = m1.Species(1);
sv = simbio.diagram.getLine(x)

1 Functions

1-368

sv =

 struct with fields:

 Color: [66 66 66]
 Connections: [1×2 SimBiology.ModelComponent]
 Width: 1

Change the line color to red and increase the line width.

simbio.diagram.setLine(x,'Color','red','Width',2)

You can also query properties of a line that connects two objects. For example, get the property
values of the line that connects species y1 and Reaction1.

y1 = m1.Species(2);
r1 = m1.Reactions(1);
simbio.diagram.getLine(y1,r1)

ans =

 struct with fields:

 Color: [66 66 66]
 Connections: [1×2 SimBiology.ModelComponent]
 Width: 1

Change the line color to a new RGB value and increase the line width.

simbio.diagram.setLine(y1,r1,'Color',[0.6 0.2 0.6],'Width',3)

Input Arguments
sObj — SimBiology object
Compartment object | Species object | Reaction object | Rule object | Parameter object | array
of objects

SimBiology object, specified as a Compartment, Species, Reaction, Rule, or Parameter object,
or as an array of objects.

propertyName — Property name
character vector | string

Property name of the line, specified as a character vector or string. You can specify only one property
name.
Example: 'Color'
Data Types: char | string

propertyNames — Names of line properties
character vector | string | string vector | cell array of character vectors

Names of line properties, specified as a character vector, string, string vector, or cell array of
character vectors. You can specify multiple property names as a 1-by-N or N-by-1 cell array of names.

Available line properties follow.

 simbio.diagram.setLine

1-369

Property
Name

Description

Color Line color, specified as one of these values:

• RGB triplet, such as [1 1 0]
• Character vector or string representing the color name, such as 'y' or 'yellow'

Connection
s

Read-only property that lists the objects connected by the line

Width Line width, specified as a positive scalar

Example: 'Width'
Data Types: char | string | cell

propertyValues — Property values
character vector | string | string vector | numeric vector | cell array

Property values to set, specified as a character vector, string, string vector, numeric vector, or cell
array.

If propertyNames is a cell array of 1-by-N or N-by-1, propertyValues can be a cell array of the
same length containing the corresponding values for each property in propertyNames.

If sObj is a vector and propertyNames contains a single property name and propertyValues
contains a single value, the function updates the property of all lines connected to sObj to the
specified value.

If sObj is a vector containing M objects, and propertyNames is a cell array of 1-by-N or N-by-1,
propertyValues can be a cell array of M-by-N so that each object is updated with a different set of
values for the list of properties in propertyNames.
Example: 'green'
Data Types: double | char | string | cell

S — Property names and corresponding values
structure | structure array

Property names and corresponding values to set, specified as a structure or structure array. Each
field name corresponds to a property name, and the field value is the property value.

If sObj is a vector and S is a scalar structure, the function configures all objects to have the same
property values.

You can specify a different set of property values for each object. To do so, specify S as an array of the
same length as sObj.
Data Types: structure

obj1 — SimBiology object
Compartment object | Species object | Reaction object | Rule object | Parameter object

SimBiology object, specified as a Compartment, Species, Reaction, Rule, or Parameter object.

1 Functions

1-370

obj2 — SimBiology object
Compartment object | Species object | Reaction object | Rule object | Parameter object

SimBiology object, specified as a Compartment, Species, Reaction, Rule, or Parameter object.

Output Arguments
CV — Possible property values
cell array

Possible property values, returned as a cell array of values. CV is an empty cell array if the property
does not have a finite set of possible values.

outStruct — Configurable property names and their possible values
structure

Configurable property names and their possible values, returned as a structure. Each field name is a
property name and the value is a cell array of possible values or an empty cell array if the property
does not have a finite set of possible values.

See Also
SimBiology Model Builder | simbio.diagram.getBlock | simbio.diagram.setBlock |
simbio.diagram.getLine | simbio.diagram.splitBlock | simbio.diagram.joinBlock

Topics
“Create Model of Receptor-Ligand Kinetics”
“Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology
Model Builder”

Introduced in R2021a

 simbio.diagram.setLine

1-371

simbio.diagram.splitBlock
Package: simbio.diagram

Split SimBiology species block in diagram

Syntax
expr = simbio.diagram.splitBlock(speciesObj)

Description
simbio.diagram.splitBlock splits a species block so that each expression that references the
species is connected to a different copy of the species block in SimBiology Model Builder. The
changes are instantly reflected in the app.

Before you run the function at the command line:

1 Open the corresponding SimBiology model in the SimBiology Model Builder app.
2 Export the model from the app to MATLAB workspace by selecting Export > Export Model to

MATLAB Workspace on the Home tab of the app.

You can query and configure only the properties of the objects shown in the Diagram tab of the app.
The objects shown in the diagram are compartments, species, reactions, rate rules, repeated
assignment rules, and parameters that are on the left-hand side of a rate rule, a repeated assignment
rule, or an event function.

expr = simbio.diagram.splitBlock(speciesObj) makes copies of a SimBiology species
speciesObj block so that each expression that references speciesObj is connected to a different
copy of the species block and returns a list of expression objects expr that are connected to
speciesObj. Use this function to make the diagram look less cluttered and clearer.

Examples

Create Copies of Species Block

Open the gprotein model in the SimBiology Model Builder app.

simBiologyModelBuilder('gprotein');

The app opens and shows the model in the Diagram tab.

On the Home tab of the app, select Export > Export Model to MATLAB Workspace.

In the SimBiology Model Export dialog, click OK to export the model with the variable name m1.

Go to the MATLAB command line and confirm that the model m1 is in the workspace. Get a list of
species of the model.

m1.Species

1 Functions

1-372

ans =

 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed G 7000
 2 unnamed Gd 3000
 3 unnamed Ga 0
 4 unnamed RL 0
 5 unnamed L 6.022e+17
 6 unnamed R 10000
 7 unnamed Gbg 3000

The model diagram already has a copy for each expression that the species Gbg is being referenced.
In this case, calling simbio.diagram.splitBlock does not split the block again, but returns the
list of expressions that the species is connected to. In this case, Gbg is used in two reactions.

Gbg = m1.Species(7);
expr = simbio.diagram.splitBlock(Gbg)

expr =

 SimBiology Reaction Array

 Index: Reaction:
 1 Gd + Gbg -> G
 2 G + RL -> Ga + Gbg + RL

Join all the cloned blocks so that there is only one block for Gbg. In this case, keep the copy of the
block that is connected to the G Protein activation reaction (G + RL -> Ga + Gbg + RL). Note that
the order of reactions returned in expr can change.

simbio.diagram.joinBlock(Gbg,expr(2))

Input Arguments
speciesObj — Species object
Species object

Species object, specified as a SimBiology Species object. speciesObj must be scalar.

Output Arguments
expr — List of expressions
Reaction object | Rule object | array of objects

List of expressions that species is connected to, returned as a Reaction, Rule object or array of
objects. The rule object can be a rate rule or repeated assignment rule.

See Also
SimBiology Model Builder | simbio.diagram.getBlock | simbio.diagram.setBlock |
simbio.diagram.getLine | simbio.diagram.setLine | simbio.diagram.joinBlock

Topics
“Create Model of Receptor-Ligand Kinetics”

 simbio.diagram.splitBlock

1-373

“Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology
Model Builder”

Introduced in R2021a

1 Functions

1-374

SimBiology Model Analyzer
Analyze QSP, PK/PD, and mechanistic systems biology models

Description
The SimBiology Model Analyzer app lets you analyze models of dynamic systems such as metabolic
networks, signaling pathways, quantitative systems pharmacology (QSP) models, and
pharmacokinetic/pharmacodynamic (PK/PD) models of drugs. It provides several methods to analyze
models and various plots to visualize the results.

Using the app, you can:

• Simulate a model to see its dynamic behavior over time.
• Explore biological variability by simulating alternate scenarios such as virtual patients.
• Estimate model parameters using nonlinear regression and nonlinear mixed-effects methods.
• Perform parameter scans and sensitivity analysis to investigate the influence of model parameters

and initial conditions on model behavior.
• Specify units and let the app automatically convert the matching physical quantities to one

consistent unit system.
• Explore various dosing regimens.
• Perform noncompartmental analysis (NCA) to compute PK parameters of a drug from its PK data.
• View analysis results in various plots.

Available Plots

The app lets you visualize the analysis results using various plots, including:

• Time course of model quantities
• Sensitivity matrix
• Overlay of estimated results on experimental data
• Plots to measure fit quality, such as confidence interval plots, residuals plots, residual distribution

plots, actual-versus-predicted plots, and box plots
• Scatter plot matrix
• Percentile plot

 SimBiology Model Analyzer

1-375

Open the SimBiology Model Analyzer App
• MATLAB toolstrip: On the Apps tab, under Computational Biology, click the app icon.
• MATLAB command prompt: Enter simBiologyModelAnalyzer.

Examples
• “Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer

App”
• “Find Important Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer

App”
• “Model Biological Variability with Virtual Patients Using SimBiology Model Analyzer App”
• “Scan Dosing Regimens Using SimBiology Model Analyzer App”
• “Generate Report for SimBiology Program Results”
• “View and Run Program Code Generated by SimBiology Model Analyzer”
• “Simulate Groups Using Doses and Variants from Data Set”
• “Percentile Plot”
• “Keyboard Shortcuts for SimBiology Model Analyzer”

1 Functions

1-376

Programmatic Use
simBiologyModelAnalyzer opens the SimBiology Model Analyzer app.

simBiologyModelAnalyzer(m1) opens the SimBiology model m1 in the SimBiology Model
Analyzer app. If you also have the SimBiology Model Builder app open at the same time, both
apps share the same model.

If the SimBiology Model Builder or SimBiology Model Analyzer app is already open, you cannot
load a model or project from the command line. Load the model from the app directly.

simBiologyModelAnalyzer(prjFile) opens the project file prjFile in the SimBiology Model
Analyzer app. file is a string or character vector specifying a file name or path and file name of a
SimBiology project SBPROJ file. If you specify only a file name, the file must be on the MATLAB
search path or in the current folder. If you also have the SimBiology Model Builder app open at the
same time, both apps share the same project.

If the SimBiology Model Builder or SimBiology Model Analyzer app is already open, you cannot
load a model or project from the command line. Load the model from the app directly.

Compatibility Considerations
Load a project or model from the command line when the app is open
Behavior changed in R2020b

If the SimBiology Model Builder or SimBiology Model Analyzer app is open, you cannot load a
project or model from the command line using the simBiologyModelBuilder or
simBiologyModelAnalyzer functions. Load the project or model from the app directly.

See Also
Apps
SimBiology Model Builder

Functions
sbiosimulate | sbionca | sbiosteadystate | sbiofit | sbioparameterci |
sbiopredictionci

Topics
“Calculate NCA Parameters and Fit Model to PK/PD Data Using SimBiology Model Analyzer App”
“Find Important Parameters with Local Sensitivity Analysis Using SimBiology Model Analyzer App”
“Model Biological Variability with Virtual Patients Using SimBiology Model Analyzer App”
“Scan Dosing Regimens Using SimBiology Model Analyzer App”
“Generate Report for SimBiology Program Results”
“View and Run Program Code Generated by SimBiology Model Analyzer”
“Simulate Groups Using Doses and Variants from Data Set”
“Percentile Plot”
“Keyboard Shortcuts for SimBiology Model Analyzer”
“Model Simulation”
“Noncompartmental Analysis”
“Sensitivity Analysis in SimBiology”
“Nonlinear Regression”

 SimBiology Model Analyzer

1-377

“Nonlinear Mixed-Effects Modeling”

Introduced in R2019b

1 Functions

1-378

SimBiology Model Builder
Build QSP, PK/PD, and mechanistic systems biology models interactively

Description
The SimBiology Model Builder app lets you build models of dynamic systems such as quantitative
systems pharmacology (QSP) models, pharmacokinetic/pharmacodynamic (PK/PD) models, and
systems biology models interactively. It provides a block diagram editor to build the model reaction
schematic by using built-in blocks.

Using the app, you can:

• Build a variety of dynamic systems such as metabolic networks, signaling pathways, QSP models,
PBPK models, and PK/PD models.

• Create standard compartmental PK models from the built-in library.
• View your model as a graphical representation or as mathematical equations.
• Use variants to store a set of parameter values or initial conditions that are different from the

base model configuration.
• Create an array of doses to explore different dosing regimens.
• Import or export SimBiology models to and from the MATLAB workspace or from a Systems

Biology Markup Language (SBML) file.

 SimBiology Model Builder

1-379

Open the SimBiology Model Builder App
• MATLAB toolstrip: On the Apps tab, under Computational Biology, click the app icon.
• MATLAB command prompt: Enter simBiologyModelBuilder.

Examples
• “Create Model of Receptor-Ligand Kinetics”
• “Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using

SimBiology Model Builder”
• “Generate SimBiology Model Report”

Programmatic Use
simBiologyModelBuilder opens the app.

simBiologyModelBuilder(m1) opens the SimBiology model m1 in the SimBiology Model
Builder app. If you also have the SimBiology Model Analyzer app open at the same time, both
apps share the same model.

If the SimBiology Model Builder or SimBiology Model Analyzer app is already open, you cannot
load a model or project from the command line. Load the model from the app directly.

simBiologyModelBuilder(prjFile) opens the project file prjFile in the SimBiology Model
Builder app. prjFile is a string or character vector specifying a file name or path and file name of a
SimBiology project SBPROJ file. If you specify only a file name, the file must be on the MATLAB
search path or in the current folder. If you also have the SimBiology Model Analyzer app open at
the same time, both apps share the same project.

If the SimBiology Model Builder or SimBiology Model Analyzer app is already open, you cannot
load a model or project from the command line. Load the model from the app directly.

Compatibility Considerations
Load a project or model from the command line when the app is open
Behavior changed in R2020b

If the SimBiology Model Builder or SimBiology Model Analyzer app is open, you cannot load a
project or model from the command line using the simBiologyModelBuilder or
simBiologyModelAnalyzer functions. Load the project or model from the app directly.

See Also
Apps
SimBiology Model Analyzer

Functions
sbioloadproject | sbmlimport | sbiomodel | sbiodose | sbiovariant | sbioreset

1 Functions

1-380

Topics
“Create Model of Receptor-Ligand Kinetics”
“Incorporate SGLT2 Inhibition into Physiologically Based Glucose-Insulin Model Using SimBiology
Model Builder”
“Generate SimBiology Model Report”
“Copy SimBiology Blocks”
“Keyboard Shortcuts for SimBiology Model Builder”
“Message Indicator Icons in SimBiology Model Builder”
“What is a SimBiology Model?”
“Doses in SimBiology Models”
“Variants in SimBiology Models”

Introduced in R2020b

 SimBiology Model Builder

1-381

Methods

The object that the methods apply to are listed in parenthesis after the method name.

2

accelerate(SimFunction)
Prepare SimFunction object for accelerated simulations

Syntax
accelerate(F)

Input Arguments
F SimFunction object created by the createSimFunction

method of a SimBiology model.

Description
accelerate(F) prepares SimFunction object F for accelerated simulations.

Note F is automatically accelerated at the first function execution. However, manually accelerate the
object if you want it accelerated in your deployment applications.

Examples

Simulate SimFunction Object

This example uses the Lotka-Volterra (predator-prey) model described by Gillespie [1].

Load the sample project containing the lotka model.

sbioloadproject lotka;

Create a SimFunction object f with c1 and c2 as input parameters to be scanned, and y1 and y2 as
the output of the function with no dose.

f = createSimFunction(m1,{'Reaction1.c1', 'Reaction2.c2'},{'y1', 'y2'}, [])

f =

SimFunction

Parameters:

 Name Value Type
 ______________ _____ ___________

 'Reaction1.c1' 10 'parameter'
 'Reaction2.c2' 0.01 'parameter'

Observables:

2 Methods

2-2

 Name Type
 ____ _________

 'y1' 'species'
 'y2' 'species'

Dosed: None

The SimFunction object f is not set for acceleration at the time of creation. But it will be
automatically accelerated when executed.

f.isAccelerated

ans =

 0

Define an input matrix that contains parameter values for c1 and c2.

phi = [10 0.01];

Run simulations until the stop time is 5 and plot the simulation results.

sbioplot(f(phi,5))

Confirm the SimFunction object f was accelerated during execution.

f.isAccelerated

 accelerate(SimFunction)

2-3

ans =

 1

See Also
createSimFunction, SimFunction object

References
[1] Gillespie D.T. "Exact Stochatic Simulation of Coupled Chemical Reactions," (1977) The Journal of

Physical Chemistry, 81(25), 2340-2361.

Introduced in R2014a

2 Methods

2-4

accelerate
Class: SimBiology.export.Model

Prepare exported SimBiology model for acceleration

Syntax
accelerate(model)

Description
accelerate(model) prepares the exported model for acceleration on the current type of computer.

Note Microsoft® Visual Studio® 2010 run-time libraries must be available on any computer running
accelerated models generated using Microsoft Windows® SDK. If you plan to redistribute your
accelerated models to other MATLAB users, be sure they have the run-time libraries.

Input Arguments
model

SimBiology.export.Model object.

Examples

Accelerate Exported SimBiology Model

Load a sample SimBiology model object, and export.

modelObj = sbmlimport('lotka');
em = export(modelObj)

em =
 Model with properties:

 Name: 'lotka'
 ExportTime: '26-Feb-2022 14:38:22'
 ExportNotes: ''

Accelerate the exported model.

accelerate(em);
em.isAccelerated

ans = logical
 1

 accelerate

2-5

The logical value 1 indicates that the exported model is accelerated.

See Also
SimBiology.export.Model | isAccelerated | export

Topics
“PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
“Deploy a SimBiology Exported Model”

2 Methods

2-6

AbstractKineticLaw object
Kinetic law information in library

Description
The abstract kinetic law object represents a kinetic law definition, which provides a mechanism for
applying a rate law to multiple reactions. The information in this object acts as a mapping template
for the reaction rate. The kinetic law definition specifies a mathematical relationship that defines the
rate at which reactant species are produced and product species are consumed in the reaction. The
expression is shown in the Expression property. The species variables are defined in the
SpeciesVariables property, and the parameter variables are defined in the ParameterVariables
property of the abstract kinetic law object. For an explanation of how the kinetic law definition
relates to the kinetic law object, see KineticLaw object.

Create your own kinetic law definition and add it to the kinetic law library with the
sbioaddtolibrary function. You can then use the kinetic law to define a reaction rate. To retrieve a
kinetic law definition from the user-defined library, first create a root object using sbioroot, then
use the command get(rootObj.UserDefinedLibrary, 'KineticLaws').

See “Property Summary” on page 2-8 for links to abstract kinetic law object property reference
pages.

Properties define the characteristics of an object. For example, an abstract kinetic law object includes
properties for the expression, the name of the law, parameter variables, and species variables. Use
the get and set commands to list object properties and change their values at the command line.
You can graphically change object properties in the SimBiology Model Builder app.

Constructor Summary
sbioabstractkineticlaw Create kinetic law definition

Method Summary
delete Delete SimBiology object
display Display summary of SimBiology object
findUsages Find out how an AbstractKineticLaw object is used
get Get SimBiology object properties
rename Rename object and update expressions
set Set SimBiology object properties

 AbstractKineticLaw object

2-7

Property Summary
Expression Expression to determine reaction rate equation or expression of observable

object
Name Specify name of object
Notes HTML text describing SimBiology object
ParameterVariables Parameters in kinetic law definition
Parent Indicate parent object
SpeciesVariables Species in abstract kinetic law
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

See Also
Configset object, KineticLaw object, Model object, Parameter object, Reaction
object, Root object, Rule object, Species object

Introduced in R2006b

2 Methods

2-8

add
Add quantity values, doses, or variants to SimBiology.Scenarios object

Syntax
sObj = add(sObj,combination,name,content)
sObj = add(sObj,combination,quantityNames,probDist,Name,Value)
sObj = add(sObj,combination,sObj2)

Description
sObj = add(sObj,combination,name,content) adds an entry on page 2-744 to the
SimBiology.Scenarios object sObj. The input argument name is the entry name and content is
the entry content. combination specifies how to combine the new entry with the existing entries of
sObj.

sObj = add(sObj,combination,quantityNames,probDist,Name,Value) specifies to
generate the sample values for one or more model quantities quantityNames from the joint
probability distribution probDist. Specify additional options for the probability distributions and
sampling method using one or more name-value pair arguments. To use probability distributions, you
must have Statistics and Machine Learning Toolbox.

sObj = add(sObj,combination,sObj2) adds entries from the SimBiology.Scenarios object
sObj2 to sObj. The function combines the entries from sObj2 with the existing entries from sObj
using the specified combination method.

Examples

Generate Different Simulation Scenarios for Glucose-Insulin Response

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo','m1');

The model contains different parameter values and initial conditions that represents different insulin
impairments (such as Type 2 diabetes, low insulin sensitivity, and so on) stored in five variants.

variants = getvariant(m1)

variants =
 SimBiology Variant Array

 Index: Name: Active:
 1 Type 2 diabetic false
 2 Low insulin se... false
 3 High beta cell... false
 4 Low beta cell ... false
 5 High insulin s... false

 add

2-9

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Select a dose that represents a single meal of 78 grams of glucose.

singleMeal = sbioselect(m1,'Name','Single Meal');

Create a Scenarios object to represent different initial conditions combined with the dose. That is,
create a scenario object where each variant is paired (or combined) with the dose, for a total of five
simulation scenarios.

sObj = SimBiology.Scenarios;
add(sObj,'cartesian','variants',variants);
add(sObj,'cartesian','dose',singleMeal)

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ________ ___________________ ______

 Entry 1 variants SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

sObj contains two entries. Use the generate function to combine the entries and generate five
scenarios. The function returns a scenarios table, where each row represents a scenario and each
column represents an entry of the Scenarios object.

scenariosTbl = generate(sObj)

scenariosTbl=5×2 table
 variants dose
 ______________________ _________________________

 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose

Change the entry name of the first entry.

rename(sObj,1,'Insulin Impairements')

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ____________________ ___________________ ______

 Entry 1 Insulin Impairements SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

2 Methods

2-10

 See also Expression property.

Create a SimFunction object to simulate the generated scenarios. Use the Scenarios object as the
input and specify the plasma glucose and insulin concentrations as reponses (outputs of the function
to be plotted). Specify [] for the dose input argument since the Scenarios object already has the
dosing information.

f = createSimFunction(m1,sObj,{'[Plasma Glu Conc]','[Plasma Ins Conc]'},[])

f =
SimFunction

Parameters:

 Name Value Type Units
 _________________________ ______ _____________ ___

 {'Plasma Volume (Glu)' } 1.88 {'parameter'} {'deciliter' }
 {'k1' } 0.065 {'parameter'} {'1/minute' }
 {'k2' } 0.079 {'parameter'} {'1/minute' }
 {'Plasma Volume (Ins)' } 0.05 {'parameter'} {'liter' }
 {'m1' } 0.19 {'parameter'} {'1/minute' }
 {'m2' } 0.484 {'parameter'} {'1/minute' }
 {'m4' } 0.1936 {'parameter'} {'1/minute' }
 {'m5' } 0.0304 {'parameter'} {'minute/picomole' }
 {'m6' } 0.6469 {'parameter'} {'dimensionless' }
 {'Hepatic Extraction' } 0.6 {'parameter'} {'dimensionless' }
 {'kmax' } 0.0558 {'parameter'} {'1/minute' }
 {'kmin' } 0.008 {'parameter'} {'1/minute' }
 {'kabs' } 0.0568 {'parameter'} {'1/minute' }
 {'kgri' } 0 {'parameter'} {'1/minute' }
 {'f' } 0.9 {'parameter'} {'dimensionless' }
 {'a' } 0 {'parameter'} {'1/milligram' }
 {'b' } 0.82 {'parameter'} {'dimensionless' }
 {'c' } 0 {'parameter'} {'1/milligram' }
 {'d' } 0.01 {'parameter'} {'dimensionless' }
 {'kp1' } 2.7 {'parameter'} {'milligram/minute' }
 {'kp2' } 0.0021 {'parameter'} {'1/minute' }
 {'kp3' } 0.009 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'kp4' } 0.0618 {'parameter'} {'(milligram/minute)/picomole' }
 {'ki' } 0.0079 {'parameter'} {'1/minute' }
 {'[Ins Ind Glu Util]' } 1 {'parameter'} {'milligram/minute' }
 {'Vm0' } 2.5129 {'parameter'} {'milligram/minute' }
 {'Vmx' } 0.047 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'Km' } 225.59 {'parameter'} {'milligram' }
 {'p2U' } 0.0331 {'parameter'} {'1/minute' }
 {'K' } 2.28 {'parameter'} {'picomole/(milligram/deciliter)' }
 {'alpha' } 0.05 {'parameter'} {'1/minute' }
 {'beta' } 0.11 {'parameter'} {'(picomole/minute)/(milligram/deciliter)'}
 {'gamma' } 0.5 {'parameter'} {'1/minute' }
 {'ke1' } 0.0005 {'parameter'} {'1/minute' }
 {'ke2' } 339 {'parameter'} {'milligram' }
 {'Basal Plasma Glu Conc'} 91.76 {'parameter'} {'milligram/deciliter' }
 {'Basal Plasma Ins Conc'} 25.49 {'parameter'} {'picomole/liter' }

Observables:

 add

2-11

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

Simulate the model for 24 hours and plot the simulation data. The data contains five runs, where each
run represents a scenario in the Scenarios object.

sd = f(sObj,24);
sbioplot(sd)

ans =
 Axes (SbioPlot) with properties:

 XLim: [0 30]
 YLim: [0 450]
 XScale: 'linear'

2 Methods

2-12

 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.0920 0.1100 0.2956 0.8150]
 Units: 'normalized'

 Show all properties

If you have Statistics and Machine Learning Toolbox™, you can also draw sample values for model
quantities from various probability distributions. For instance, suppose that the parameters Vmx and
kp3, which are known for the low and high insulin sensitivity, follow the lognormal distribution. You
can generate sample values for these parameters from such a distribution, and perform a scan to
explore model behavior.

Define the lognormal probability distribution object for Vmx.

pd_Vmx = makedist('lognormal')

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = 0
 sigma = 1

By definition, the parameter mu is the mean of logarithmic values. To vary the parameter value
around the base (model) value of the parameter, set mu to log(model_value). Set the standard
deviation (sigma) to 0.2. For a small sigma value, the mean of a lognormal distribtion is
approximately equal to log(model_value). For details, see “Lognormal Distribution” (Statistics and
Machine Learning Toolbox).

Vmx = sbioselect(m1,'Name','Vmx');
pd_Vmx.mu = log(Vmx.Value);
pd_Vmx.sigma = 0.2

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = -3.05761
 sigma = 0.2

Similarly define the probability distribution for kp3.

pd_kp3 = makedist('lognormal');
kp3 = sbioselect(m1,'Name','kp3');
pd_kp3.mu = log(kp3.Value);
pd_kp3.sigma = 0.2

pd_kp3 =
 LognormalDistribution

 Lognormal distribution
 mu = -4.71053
 sigma = 0.2

 add

2-13

Now define a joint probability distribution to draw sample values for Vmx and kp3, with a rank
correlation to specify some correlation between these two parameters. Note that this correlation
assumption is for the illustration purposes of this example only and may not be biologically relevant.

First remove the variants entry (entry 1) from sObj.

remove(sObj,1)

ans =
 Scenarios (1 scenarios)

 Name Content Number
 ____ _______________ ______

 Entry 1 dose SimBiology dose 1

 See also Expression property.

Add an entry that defines the joint probability distribution with a rank correlation matrix.

add(sObj,'cartesian',["Vmx","kp3"],[pd_Vmx, pd_kp3],'RankCorrelation',[1,0.5;0.5,1])

ans =
 Scenarios (2 scenarios)

 Name Content Number
 ____ ______________________ ___________

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 2 (default)
 + Entry 2.2) kp3 Lognormal distribution 2 (default)

 See also Expression property.

By default, the number of samples to draw from the joint distribution is set to 2. Increase the number
of samples.

updateEntry(sObj,2,'Number',50)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Verify that the Scenarios object can be simulated with the model. The verify function throws an
error if any entry does not resolve uniquely to an object in the model or the entry contents have
inconsistent lengths (sample sizes). The function throws a warning if multiple entries resolve to the
same object in the model.

2 Methods

2-14

verify(sObj,m1)

Generate the simulation scenarios. Plot the sample values using plotmatrix. You can see the value
of Vmx is varied around its model value 0.047 and that of kp3 around 0.009.

sTbl = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl.Vmx,sTbl.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios using the same SimFunction you created previously. You do not need to create
a new SimFunction object even though the Scenarios object has been updated.

sd2 = f(sObj,24);
sbioplot(sd2);

 add

2-15

By default, SimBiology uses the random sampling method. You can change it to the Latin hypercube
sampling (or sobol or halton) for a more systematic space-filling approach.

entry2struct = getEntry(sObj,2)

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'random'
 SamplingOptions: [0x0 struct]

entry2struct.SamplingMethod = 'lhs'

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'lhs'
 SamplingOptions: [0x0 struct]

You can now use the updated structure to modify entry 2.

2 Methods

2-16

updateEntry(sObj,2,entry2struct)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Visualize the sample values.

sTbl2 = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl2.Vmx,sTbl2.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios.

sd3 = f(sObj,24);
sbioplot(sd3);

 add

2-17

Restore warning settings.

warning(warnSettings);

Input Arguments
sObj — Simulation scenarios
SimBiology.Scenarios object

Simulation scenarios, specified as a SimBiology.Scenarios object.

sObj2 — Simulation scenarios
SimBiology.Scenarios object

Simulation scenarios, specified as a SimBiology.Scenarios object.

name — Entry name
character vector | string

Entry name, specified as a character vector or string.

You can set the entry name to the name of a model quantity (species, parameter, or compartment).
Alternatively, you can define a name for a group of doses or variants to be included in the sample
(scenarios) generation.
Example: "k1"

2 Methods

2-18

Data Types: char | string

content — Model quantity values or vector of doses or variants
numeric vector | vector of RepeatDose or ScheduleDose objects | vector of variant objects

Model quantity values, or a vector of doses or variants, specified as a numeric vector, vector of
RepeatDose or ScheduleDose objects, or vector of variant objects.

If you specify a quantity name for the name input argument, set content to a numeric vector.

If you specify a name for a group of doses or variants, set content to a vector of dose objects or
vector of variant objects.
Example: [0.5,1,1.5]

combination — Method to combine entries
'cartesian' | 'elementwise'

Method to combine entries, specified as one of the following:

• 'cartesian' – Combine entries by taking the Cartesian product of the corresponding sample
values. This is denoted by the cross symbol x.

• 'elementwise' – Combine entries one to one (elementwise), that is, the first element from the
first entry is paired with the first element from the second entry and so on. This is denoted by the
plus symbol +. The entries must have the same number of sample values (elements) for this
method.

For details, see “Combine Simulation Scenarios in SimBiology”.

quantityNames — Names of model quantities
character vector | string | string vector | cell array of character vectors

Names of model quantities for the sample (scenario) generation, specified as a character vector,
string, string vector, or cell array of character vectors.
Example: ["k12","k21"]
Data Types: char | string | cell

probDist — Probability distributions
vector of probability distribution objects | character vector | string | string vector | cell array of
character vectors

Probability distributions to generate sample values for model quantities, specified as a vector of
probability distribution objects, character vector, string, string vector, or cell array of character
vectors containing the names of supported probability distributions. To specify the probability
distributions, you must have Statistics and Machine Learning Toolbox.

Use the makedist function to create distribution objects. For a list of supported distributions, see
“distname” (Statistics and Machine Learning Toolbox).
Example: [pd1,pd2]

 add

2-19

https://en.wikipedia.org/wiki/Cartesian_product

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Number',10 specifies to generate 10 samples.

Number — Number of samples
[] (default) | positive scalar

Number of samples to draw from probability distributions, specified as the comma-separated pair
consisting of 'Number' and a positive scalar. The default value [] means that the function infers the
number of samples from other entries. If the number cannot be inferred, the number is set to 2.
Example: 'Number',5

RankCorrelation — Rank correlation matrix
[] (default) | numeric matrix

Rank correlation matrix for the joint probability distribution, specified as the comma-separated pair
consisting of 'RankCorrelation' and a numeric matrix. The default behavior is that when both
'RankCorrelation' and 'Covariance' are set to [], SimBiology.Scenarios draws
uncorrelated samples from the joint probability distribution.

You cannot specify 'RankCorrelation' if 'Covariance' is set. The number of columns in the
matrix must match the number of specified distributions. The matrix must be symmetric with
diagonal values of 1. All of its eigenvalues must also be positive.
Example: 'RankCorrelation',[1 0.3;0.3 1]

Mean — Mean values
numeric vector

Mean values of quantities, specified as the comma-separated pair consisting of 'Mean' and a
numeric vector.

You can specify mean values for normal distributions only. The number of mean values must equal the
number of specified probability distributions.
Example: 'Mean',[0.5,1.5]

Covariance — Covariance matrix
[] (default) | numeric matrix

Covariance matrix for the joint probability distribution, specified as the comma-separated pair
consisting of 'Covariance' and a numeric matrix. The default behavior is that if both
'RankCorrelation' and 'Covariance' are set to [], SimBiology.Scenarios draws
uncorrelated samples from the joint probability distribution. You cannot specify 'Covariance' if you
specify 'RankCorrelation'.

You can specify the covariance matrix for normal distributions only. The number of columns in the
matrix must match the number of specified distributions. All of its eigenvalues must also be
nonnegative.

2 Methods

2-20

Example: 'Covariance',[0.25 0.15;0.15 0.25]

SamplingMethod — Sampling method
'random' (default) | 'lhs' | 'copula' | 'sobol' | 'halton'

Sampling method, specified as the comma-separated pair consisting of 'SamplingMethod' and a
character vector or string. Depending on whether probability distributions with
'RankCorrelation' or normal distributions with 'Covariance' are specified, the sampling
techniques differ.

If an entry contains a (joint) normal distribution with Covariance specified, the sampling methods
are:

• 'random' – Draw random samples from the specified normal distribution using mvnrnd.
• 'lhs' – Draw Latin hypercube samples from the specified normal distributions using lhsnorm.

For details, see “Generating Quasi-Random Numbers” (Statistics and Machine Learning Toolbox).

If an entry contains a (joint) distribution with no Covariance specified, the sampling methods are:

• 'random' – Draw random samples from the specified probability distributions using random.
• 'lhs' – Draw Latin hypercube samples from the specified probability distributions using an

algorithm similar to lhsdesign. This approach is a more systematic space-filling approach than
random sampling. For details, see “Generating Quasi-Random Numbers” (Statistics and Machine
Learning Toolbox).

• 'copula' – Draw random samples using a copula (Statistics and Machine Learning Toolbox). Use
this option to impose correlations between samples using copulas.

• 'sobol' – Use the sobol sequence (sobolset) which is transformed using the inverse cumulative
distribution function (icdf) of the specified probability distributions. Use this method for highly
systematic space-filling. For details, see “Generating Quasi-Random Numbers” (Statistics and
Machine Learning Toolbox).

• 'halton' – Use the halton sequence (haltonset) which is transformed using the inverse
cumulative distribution function (icdf) of the specified probability distributions. For details, see
“Generating Quasi-Random Numbers” (Statistics and Machine Learning Toolbox).

If no Covariance is specified, SimBiology.Scenarios essentially performs two steps. The first
step is to generate samples using one of the above sampling methods. For lhs, sobol, and halton
methods, the generated uniform samples are transformed to samples from the specified distribution
using the inverse cumulative distribution function icdf. Then, as the second step, the samples are
correlated using the Iman-Conover algorithm if RankCorrelation is specified. For random, the
samples are drawn directly from the specified distributions and the samples are then correlated using
the Iman-Conover algorithm.
Example: 'SamplingMethod','lhs'

SamplingOptions — Options for sampling method
struct

Options for the sampling method, specified as a scalar struct. The options differ depending on the
sampling method: sobol, halton, or lhs.

For sobol and halton, specify each field name and value of the structure according to each name-
value argument of the sobolset or haltonset function. SimBiology uses the default value of 1 for
the Skip argument for both methods. For all other name-value arguments, the software uses the

 add

2-21

same default values of sobolset or haltonset. For instance, set up a structure for the Leap and
Skip options with nondefault values as follows.

s1.Leap = 50;
s1.Skip = 0;

For lhs, there are three samplers that support different sampling options.

• If you specify a covariance matrix, SimBiology uses lhsnorm for sampling. SamplingOptions
argument is not allowed.

• Otherwise, use the field name UseLhsdesign to select a sampler.

• If the value is true, SimBiology uses lhsdesign. You can use the name-value arguments of
lhsdesign to specify the field names and values.

• If the value is false (default), SimBiology uses a nonconfigurable Latin hypercube sampler
that is different from lhsdesign. This sampler does not require Statistics and Machine
Learning Toolbox. SamplingOptions cannot contain any other options, except
UseLhsdesign.

For instance, set up a structure to use lhsdesign with the Criterion and Iterations options.

s2.UseLhsdesign = true;
s2.Criterion = "correlation";
s2.Iterations = 10;

Example: 'SamplingOptions',struct("Skip",5)
Data Types: struct

Output Arguments
sObj — Simulation scenarios
Scenarios object

Simulation scenarios, returned as a Scenarios object.

See Also
SimBiology.Scenarios | SimFunction object | createSimFunction (model)

Topics
“SimBiology.Scenarios Terminology” on page 2-744
“Combine Simulation Scenarios in SimBiology”

Introduced in R2019b

2 Methods

2-22

addcompartment (model, compartment)
Create compartment object

Syntax
compartmentObj = addcompartment(modelObj, 'NameValue')
compartmentObj = addcompartment(owningCompObj, 'NameValue')
compartmentObj = addcompartment(modelObj, 'NameValue', CapacityValue)

compartmentObj = addcompartment(...'PropertyName', PropertyValue...)

Arguments

modelObj Model object
owningCompObj Compartment object that contains the newly created compartment

object.
NameValue Name for a compartment object. Enter a character vector unique

to the model object.

For information on naming compartments, see Name.
CapacityValue Capacity value for the compartment object. Enter double. Positive

real number, default = 1.
PropertyName Enter the name of a valid property. Valid property names are listed

in “Property Summary” on page 2-24.
PropertyValue Enter the value for the property specified in PropertyName. Valid

property values are listed on each property reference page.

Description
compartmentObj = addcompartment(modelObj, 'NameValue') creates a compartment object
and returns the compartment object (compartmentObj). In the compartment object, this method
assigns a value (NameValue) to the property Name, and assigns the model object (modelObj) to
the property Parent. In the model object, this method assigns the compartment object to the
property Compartments.

compartmentObj = addcompartment(owningCompObj, 'NameValue') in addition to the
above, adds the newly created compartment within a compartment object (owningCompObj), and
assigns this compartment object (owningCompObj) to the Owner property of the newly created
compartment object (compartmentObj). The parent model is the model that contains the owning
compartment (owningCompObj).

compartmentObj = addcompartment(modelObj, 'NameValue', CapacityValue), in
addition to the above, this method assigns capacity (CapacityValue) for the compartment.

If you define a reaction within a model object (modelObj) that does not contain any compartments,
the process of adding a reaction generates a default compartment object and assigns the reaction

 addcompartment (model, compartment)

2-23

species to the compartment. If there is more than one compartment, you must specify which
compartment the species should be assigned to using the format CompartmentName.SpeciesName.

compartmentObj = addcompartment(...'PropertyName', PropertyValue...) defines
optional properties. “Property Summary” on page 2-24 lists the properties. The Owner property is
one exception; you cannot set the Owner property in the addcompartment syntax because,
addcompartment requires the owning model or compartment to be specified as the first argument
and uses this information to set the Owner property.

Method Summary
Methods for compartment objects

addcompartment (model,
compartment)

Create compartment object

addspecies (model,
compartment)

Create species object and add to compartment object within model
object

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
findUsages Find out how a species, parameter, or compartment is used in a

model
get Get SimBiology object properties
move Move SimBiology compartment object to new owner
rename Rename object and update expressions
reorder (model, compartment,
kinetic law)

Reorder component lists

set Set SimBiology object properties

Property Summary
Properties for compartment objects

2 Methods

2-24

Capacity Compartment capacity
CapacityUnits Compartment capacity units
Compartments Array of compartments in model or compartment
Constant Specify variable or constant species amount, parameter value, or compartment

capacity
ConstantCapacity Specify variable or constant compartment capacity
Name Specify name of object
Notes HTML text describing SimBiology object
Owner Owning compartment
Parent Indicate parent object
Species Array of species in compartment object
Tag Specify label for SimBiology object
Type Display SimBiology object type
Units Units for species amount, parameter value, compartment capacity, observable

expression
UserData Specify data to associate with object
Value Value of species, compartment, or parameter object

Examples

Add Compartments

This example shows how to add compartments to a SimBiology model.

Create a SimBiology model which is named m1.

model = sbiomodel('m1');

Add two compartments to the model, which are named as Central and Peripheral respectively.

comp1 = addcompartment(model,'Central');
comp2 = addcompartment(model,'Peripheral');

Change the compartment capacities and units.

comp1.Capacity = 2;
comp1.CapacityUnits = 'liter';
comp2.Capacity = 1;
comp2.CapacityUnits = 'liter';

Display all the compartments of the model.

model.Compartments

ans =
 SimBiology Compartment Array

 Index: Name: Value: Units:
 1 Central 2 liter

 addcompartment (model, compartment)

2-25

 2 Peripheral 1 liter

Version History
Component naming restriction
Behavior change in future release

In a future release, there will be a naming restriction on the following model component types:
model, compartment, species, parameter, reaction, rule, event, observable, dose, and variant. The
restriction is that within a single model, these components will be required to have unique names
even when they are of different types with the following two exceptions:

• Species in different parent compartments can have the same name.
• Parameters with different parents can have the same name. Specifically, you can use the same

name for a model-scoped parameter and reaction-scoped parameters, where each reaction-scoped
parameter belongs to a different reaction.

See Also
model object | addproduct | addreactant | addreaction | addspecies

Introduced in R2007b

2 Methods

2-26

addCompartment (PKModelDesign)
Add compartment to PKModelDesign object

Syntax
PKCompartmentObj = addCompartment(PKModelDesignObj, CompObjName)
PKCompartmentObj = addCompartment(PKModelDesignObj, CompObjName, Name, Value)

Description
PKCompartmentObj = addCompartment(PKModelDesignObj, CompObjName) constructs a PK
compartment with the specified name and adds it to PKModelDesignObj, a PKModelDesign object.

PKCompartmentObj = addCompartment(PKModelDesignObj, CompObjName, Name, Value)
constructs a PK compartment with the specified name, and with additional options specified by one or
more Name,Value pair arguments.

Input Arguments
PKModelDesignObj PKModelDesign object to which you want to add a

compartment
CompObjName Name of the PKCompartment object that is constructed, specified

as a character vector or string.

Name-Value Pair Arguments

Optional comma-separated pairs of Name, Value arguments, where Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

DosingType Character vector (or string) specifying the mechanism for drug
absorption. Choices are:

• 'Bolus'
• 'Infusion'
• 'ZeroOrder'
• 'FirstOrder'
• '' (default)

For more information, see “Dosing Types”.

 addCompartment (PKModelDesign)

2-27

EliminationType Character vector (or string) specifying the mechanism for drug
elimination. Choices are:

• 'Linear'
• 'Linear-Clearance'
• 'Enzymatic'
• '' (default)

For more information, see “Elimination Types”.
HasResponseVariable Logical indicating if the drug concentration in this compartment is

reported. Multiple compartments in a model can have this property
set to true. Default is false.

Note If you perform a parameter fit on a model, at least one
compartment in the model must have a HasResponseVariable
property set to true.

HasLag Logical indicating if any dose targeting this compartment have a
lag associated with them. Default is false.

These optional name-value pair arguments set the corresponding property of the PKCompartment
object. You can also set these properties after creating the PKCompartment object by using the
following syntax:

PKCompartmentObj.PropertyName = Value

For example:

PKCompartmentObj.DosingType = 'Bolus'

Output Arguments
PKCompartmentObj PKCompartment object

Method Summary
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
set Set SimBiology object properties

2 Methods

2-28

Property Summary
DosingType Drug dosing type in compartment
EliminationType Drug elimination type from compartment
HasLag Lag associated with dose targeting compartment
HasResponseVariable Compartment drug concentration reported
Name Specify name of object

See Also
“Create a Pharmacokinetic Model Using the Command Line”, HasLag, HasResponseVariable,
PKCompartment object, PKModelDesign object

Introduced in R2009a

 addCompartment (PKModelDesign)

2-29

addconfigset (model)
Create configuration set object and add to model object

Syntax
configsetObj = addconfigset(modelObj, 'NameValue')

configsetObj = addconfigset(..., 'PropertyName', PropertyValue, ...)

Arguments

modelObj Model object. Enter a variable name.
NameValue Descriptive name for a configuration set object. Reserved words 'active'

and 'default' are not allowed.
configsetObj Configset object.

Description

configsetObj = addconfigset(modelObj, 'NameValue') creates a configuration set object
and returns to configsetObj.

In the configuration set object, this method assigns a value (NameValue) to the property Name.

configsetObj = addconfigset(..., 'PropertyName', PropertyValue, ...) constructs
a configuration set object, configsetObj, and configures configsetObj with property value pairs.
The configsetObj properties are listed in “Property Summary” on page 2-31.

A configuration set stores simulation specific information. A model object can contain multiple
configuration sets, with one being active at any given time. The active configuration set contains the
settings that are used during a simulation. configsetObj is not automatically set to active. Use the
function setactiveconfigset to define the active configset for modelObj.

Use the method copyobj to copy a configset object and add it to the modelObj.

Method Summary
Methods for configuration set objects

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
set Set SimBiology object properties

2 Methods

2-30

Property Summary
Properties for configuration set objects

Active Indicate object in use during simulation
AmountUnits Amount unit used internally during simulation when UnitConversion is on
CompileOptions Dimensional analysis and unit conversion options
MassUnits Mass unit used internally during simulation when UnitConversion is on
MaximumNumberOfLogs Maximum number of logs criteria to stop simulation
MaximumWallClock Maximum elapsed wall clock time to stop simulation
Name Specify name of object
Notes HTML text describing SimBiology object
RuntimeOptions Options for logged species
SensitivityAnalysisOptions Specify sensitivity analysis options
SolverOptions Specify model solver options
SolverType Select solver type for simulation
StopTime Simulation time criteria to stop simulation
TimeUnits Show time units for dosing and simulation
Type Display SimBiology object type

Examples

Add a Configuration Set Object

This example shows how to add a configset object to a SimBiology model and set it up for simulation.

Load the sample radiodecay model m1, and add a Configset object to the model.

sbioloadproject radiodecay;
configsetObj = addconfigset(m1, 'myset');

Configure the simulation stop criteria by setting the StopTime property.

configsetObj.StopTime = 15;

Set the configset object to be active so that its settings are used during simulation.

setactiveconfigset(m1,configsetObj);

Simulate the model and plot results.

simdata = sbiosimulate(m1);
sbioplot(simdata);

 addconfigset (model)

2-31

See Also
model object, configset object, getconfigset, removeconfigset, setactiveconfigset

Introduced in R2006a

2 Methods

2-32

addcontent (variant)
Append content to variant object

Syntax
addcontent(variantObj, contents)

addcontent(variantObj1, variantObj2)

Arguments
variantObj Specify the variant object to which you want to append data. The

Content property is modified to add the new data.
contents Specify the data you want to add to a variant object. Contents can

either be a cell array or an array of cell arrays. A valid cell array
should have the form {'Type', 'Name', 'PropertyName',
PropertyValue}, where PropertyValue is the new value to be
applied for the PropertyName. Valid Type, Name, and
PropertyName values are as follows.

'Type' 'Name' 'PropertyName'
'species' Name of the species. If there are multiple

species in the model with the same name,
specify the species as
[compartmentName.speciesName], where
compartmentName is the name of the
compartment containing the species.

'InitialAmount'

'parameter' If the parameter scope is a model, specify the
parameter name. If the parameter scope is a
kinetic law, specify
[reactionName.parameterName].

'Value'

'compartment' Name of the compartment. 'Capacity'

Description
addcontent(variantObj, contents) adds the data stored in the variable contents to the
variant object (variantObj).

addcontent(variantObj1, variantObj2) appends the data in the Content property of the
variant object variantObj2 to the Content property of variant object variantObj1.

Note Remember to use the addcontent method instead of using the set method on the Content
property because the set method replaces the data in the Content property, whereas addcontent
appends the data.

 addcontent (variant)

2-33

Examples
1 Create a model containing one species.

modelObj = sbiomodel('mymodel');
compObj = addcompartment(modelObj, 'comp1');
speciesObj = addspecies(compObj, 'A');

2 Add a variant object that varies the InitialAmount property of a species named A.

variantObj = addvariant(modelObj, 'v1');
addcontent(variantObj, {'species', 'A', 'InitialAmount', 5});

See Also
addvariant, rmcontent, sbiovariant

Introduced in R2007b

2 Methods

2-34

adddose (model)
Add dose object to model

Syntax
doseObj2 = adddose(modelObj, 'DoseName')
doseObj2 = adddose(modelObj, 'DoseName', 'DoseType')
doseObj2 = adddose(modelObj, doseObj)

Arguments

modelObj Model object to which you add a dose object.
DoseName Name of a dose object to construct and add to a model object.

DoseName is the value of the dose object property Name.
DoseType Type of dose object to construct and add to a model object. Enter

either 'schedule' or 'repeat'.
doseObj Dose object to add to a model object. Created with the constructor

sbiodose.

Outputs

doseObj2 ScheduleDose object or RepeatDose object. A RepeatDose
or ScheduleDose object defines an increase (dose) to a species
amount during a simulation.

Description
Before using a dose object in a simulation, use the adddose method to add the dose object to a
SimBiology model object. Then, set the Active dose object property to true.

doseObj2 = adddose(modelObj, 'DoseName') constructs a SimBiology RepeatDose object
(doseObj2), assigns DoseName to the property Name, adds the dose object to a SimBiology model
object (modelObj), and assigns modelObj to the property Parent.

doseObj2 = adddose(modelObj, 'DoseName', 'DoseType') constructs either a SimBiology
ScheduleDose object or RepeatDose object (doseObj).

doseObj2 = adddose(modelObj, doseObj) adds a SimBiology dose object (doseObj) to a
SimBiology model object (modelObj), copies the dose object to a second dose object (doseObj2),
and assigns modelObj to the property Parent. The Active property of doseObj2 is set to false by
default.

Note Alternatively, you can create a dose object using sbiodose as a standalone dose object, which
you can apply to different models. For details, see “Creating Doses Programmatically”.

 adddose (model)

2-35

Examples

Add an Infusion Dose

This example shows how to add a constant-rate infusion dose to a one-compartment model.

Background

Suppose you have a one-compartment model with a species named drug that represents the total
amount of drug in the body. The drug is removed from the body via the first-order elimination
represented by the reaction drug -> null, with the elimination rate constant ke. In other words,
the drug concentration versus the time profile follows the monoexponential decline Ct = C0e−ket,
where Ct is the drug concentration at time t, C0 is the initial concentration, and ke is the elimination
rate constant. This example shows how to set up such a one-compartment model and add an infusion
dose at a constant rate of 10 mg/hour for the total dose amount of 250 mg.

Create a One-Compartment Model

Create a SimBiology model named onecomp.

m1 = sbiomodel('onecomp');

Define the elimination of the drug from the system by adding a reaction drug -> null to the model.

r1 = addreaction(m1,'drug -> null');

The species drug is automatically created and added to the compartment. The null species is a
reserved species that acts as a sink in this reaction.

Add a mass action kinetic law to the reaction. This kinetic law defines the drug elimination to follow
the first-order kinetics.

k1 = addkineticlaw(r1,'MassAction');

Define the elimination rate parameter ke and add it to the kinetic law.

p1 = addparameter(k1,'ke','Value',1.0,'ValueUnits','1/hour');

Specify the rate parameter ke as the forward rate parameter of the reaction by setting the
ParameterVariableNames property of kinetic law object k1. This allows SimBiology to determine
the reaction rate for drug -> null reaction.

k1.ParameterVariableNames = 'ke';

Set Up an Infusion Dose

Add a dose object to the model using the adddose method. Specify the amount of the dose (Amount),
the dose target (TargetName), and the infusion rate (Rate). You also need to set the Active
property of the dose object to true so that the dose is applied to the model during simulation.

d1 = adddose(m1,'InfusionDose');
d1.Amount = 250;
d1.TargetName = 'drug';
d1.Rate = 10;
d1.RateUnits = 'milligram/hour';
d1.Active = true;

2 Methods

2-36

Simulate the Model

Change the simulation stop time to 48 hours to see the complete time course.

cs = getconfigset(m1);
cs.StopTime = 48;
cs.TimeUnits = 'hour';
sd = sbiosimulate(m1);

Plot Results

Plot the concentration versus the time profile of the drug in the system.

sbioplot(sd);

Version History
Component naming restriction
Behavior change in future release

In a future release, there will be a naming restriction on the following model component types:
model, compartment, species, parameter, reaction, rule, event, observable, dose, and variant. The
restriction is that within a single model, these components will be required to have unique names
even when they are of different types with the following two exceptions:

• Species in different parent compartments can have the same name.

 adddose (model)

2-37

• Parameters with different parents can have the same name. Specifically, you can use the same
name for a model-scoped parameter and reaction-scoped parameters, where each reaction-scoped
parameter belongs to a different reaction.

See Also
model object | getdose | removedose | sbiodose | RepeatDose object | ScheduleDose
object

Topics
“Doses in SimBiology Models”

Introduced in R2010a

2 Methods

2-38

addevent (model)
Add event object to model object

Syntax
eventObj = addevent(modelObj, 'TriggerValue', 'EventFcnsValue')

eventObj = addevent(...'PropertyName', PropertyValue...)

Arguments
modelObj Model object.
TriggerValue Required property to specify a trigger condition. Must be a MATLAB

expression that evaluates to a logical value. Use the keyword
'time' to specify that an event occurs at a specific time during the
simulation. For more information, see Trigger.

EventFcnsValue Character vector or a cell array of character vectors, each of which
specifies an assignment of the form 'objectname =
expression', where objectname is the name of a valid object.
Defines what occurs when the event is triggered. For more
information, see EventFcns.

PropertyName Property name for an event object from “Property Summary” on
page 2-40.

PropertyValue Property value. For more information on property values, see the
property reference for each property listed in “Property Summary”
on page 2-40.

Description
eventObj = addevent(modelObj, 'TriggerValue', 'EventFcnsValue') creates an Event
object (eventObj) and adds the event to the model (modelObj). In the event object, this method
assigns a value (TriggerValue) to the property TriggerCondition, assigns a value
(EventFcnsValue) to the property EventFcns, and assigns the model object (modelObj) to the
property Parent. In the model object, this method appends the event object to the property Events.

When the trigger expression in the property Trigger changes from false to true, the assignments in
EventFcns are executed during simulation.

For details on how events are handled during a simulation, see “Events in SimBiology Models”.

eventObj = addevent(...'PropertyName', PropertyValue...) defines optional properties.
The property name and property value pairs can be any format supported by the function set.

 addevent (model)

2-39

Property Summary
Active Indicate object in use during simulation
EventFcns Event expression
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Tag Specify label for SimBiology object
Trigger Event trigger
Type Display SimBiology object type
UserData Specify data to associate with object

Examples

Add an Event

This example shows how to add an event to a SimBiology model.

Create a simple model with a mass action reaction A -> B, where A and B are species. Also add the
reaction rate parameter, p1, with the parameter value of 0.5.

model = sbiomodel('example');
r1 = addreaction(model,'A -> B');
kl = addkineticlaw(r1,'MassAction');
p1 = addparameter(model,'p1',0.5);
kl.ParameterVariableNames = 'p1';

Increase the amount of species A to 100 at time = 2. You can do this by adding an event object to the
model. You must specify the event trigger (time >= 2), and also the event function, which defines
what happens when the event is triggered. In this example, the event function is A = 100.

e1 = addevent(model,'time>=2','A = 100');

Simulate the model, and plot the result.

sd = sbiosimulate(model);
sbioplot(sd);

2 Methods

2-40

Version History
Component naming restriction
Behavior change in future release

In a future release, there will be a naming restriction on the following model component types:
model, compartment, species, parameter, reaction, rule, event, observable, dose, and variant. The
restriction is that within a single model, these components will be required to have unique names
even when they are of different types with the following two exceptions:

• Species in different parent compartments can have the same name.
• Parameters with different parents can have the same name. Specifically, you can use the same

name for a model-scoped parameter and reaction-scoped parameters, where each reaction-scoped
parameter belongs to a different reaction.

See Also
Topics
“Deterministic Simulation of a Model Containing a Discontinuity”
“Events in SimBiology Models”

Introduced in R2007b

 addevent (model)

2-41

addkineticlaw (reaction)
Create kinetic law object and add to reaction object

Syntax
kineticlawObj = addkineticlaw(reactionObj, 'KineticLawNameValue')

kineticlawObj= addkineticlaw(..., 'PropertyName', PropertyValue, ...)

Arguments
reactionObj Reaction object. Enter a variable name for a reaction object.
KineticLawNameValue Property to select the type of kinetic law object to create. For built-

in kinetic law, valid values are:

'Unknown', 'MassAction', 'Henri-Michaelis-Menten',
'Henri-Michaelis-Menten-Reversible', 'Hill-Kinetics',
'Iso-Uni-Uni', 'Ordered-Bi-Bi', 'Ping-Pong-Bi-Bi',
'Competitive-Inhibition', 'NonCompetitive-
Inhibition', and 'UnCompetitive-Inhibition'.

Find valid KineticLawNameValue by using sbioroot to create a
SimBiology root object, then query the object with the commands
rootObj.BuiltinLibrary.KineticLaws and
rootObj.UserDefinedLibrary.KineticLaws.

sbiowhos -kineticlaw lists kinetic laws in the SimBiology root,
which includes kinetic laws from both the BuiltInLibrary and
the UserDefinedLibrary.

Description
kineticlawObj = addkineticlaw(reactionObj, 'KineticLawNameValue') creates and
adds a KineticLaw object to the reactionObj.

In the kinetic law object, this method assigns a name (KineticLawNameValue) to the property
KineticLawName and assigns the reaction object to the property Parent. In the reaction object, this
method assigns the kinetic law object to the property KineticLaw.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'a -> b');
kineticlawObj = addkineticlaw(reactionObj, 'MassAction');
parameterObj = addparameter(kineticlawObj, 'K1_forward', 0.1);
set(kineticlawObj, ParameterVariableName, 'K1_forward');

2 Methods

2-42

KineticLawNameValue is any valid kinetic law definition. See “Kinetic Law Definition” on page 3-
70 for a definition of kinetic laws and more information about how they are used to get the reaction
rate expression.

kineticlawObj= addkineticlaw(..., 'PropertyName', PropertyValue, ...) constructs
a kinetic law object, kineticlawObj, and configures kineticlawObj with property value pairs.
The property name/property value pairs can be in any format supported by the function set. The
kineticlawObj properties are listed in “Property Summary” on page 2-43.

Note To define a Hill kinetic rate equation with a non-integer exponent that is compatible with
DimensionalAnalysis, see “Define a Custom Hill Kinetic Law that Works with Dimensional Analysis”
on page 3-140.

Property Summary
Properties for kinetic law objects

 addkineticlaw (reaction)

2-43

Expression Expression to determine reaction rate equation or expression of
observable object

KineticLawName Name of kinetic law applied to reaction
Name Specify name of object
Notes HTML text describing SimBiology object
Parameters Array of parameter objects
ParameterVariableNames Cell array of reaction rate parameters
ParameterVariables Parameters in kinetic law definition
Parent Indicate parent object
SpeciesVariableNames Cell array of species in reaction rate equation
SpeciesVariables Species in abstract kinetic law
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

Examples

Convert Substrate into Product Using Henri-Michaelis-Menten Kinetics

This example shows how to simulate the conversion of a substrate into a product using the Henri-
Michaelis-Menten enzyme kinetics.

Create a model named mymodel.

model = sbiomodel('mymodel');

Add a reaction that represents the conversion of a substrate to a product.

reaction = addreaction(model,'Substrate -> Product');

Add the built-in Henri-Michaelis-Menten kinetic law to the reaction.

kineticLaw = addkineticlaw(reaction,'Henri-Michaelis-Menten');
kineticLaw.Expression

ans =
'Vm*S/(Km + S)'

The kinetic law has two parameters and a species that you need to define. View these parameters.

kineticLaw.ParameterVariables

ans = 2x1 cell
 {'Vm'}
 {'Km'}

kineticLaw.SpeciesVariables

2 Methods

2-44

ans = 1x1 cell array
 {'S'}

To define the parameters, create two parameter objects and set parameter values.

Vm_param = addparameter(kineticLaw,'Vm_param','Value',6.0);
Km_param = addparameter(kineticLaw,'Km_param','Value',1.25);

Map the parameters accordingly by setting the ParameterVariableNames property. This associates
the parameters in the expression with the two parameters you just created using a one-to-one
mapping in the order given.

kineticLaw.ParameterVariableNames = {'Vm_param','Km_param'};

Also associate the Substrate species with the species S in the expression.

kineticLaw.SpeciesVariableNames = {'Substrate'};

Verify the mapping by looking at the reaction rate and checking the parameters and species are
correctly substituted according to the expression.

reaction.ReactionRate

ans =
'Vm_param*Substrate/(Km_param+Substrate)'

Enter the initial amount of the substrate species for simulation.

model.Species(1).InitialAmount = 8;

Simulate the model and plot results.

simdata = sbiosimulate(model);
sbioplot(simdata);

 addkineticlaw (reaction)

2-45

See Also
addreaction, setparameter

Introduced in R2006a

2 Methods

2-46

addobservable
Add observable object to SimBiology model

Syntax
obsObj = addobservable(modelObj,obsName,obsExpression)
obsObj = addobservable(modelObj,obsName,obsExpression,Name,Value)

Description
obsObj = addobservable(modelObj,obsName,obsExpression) adds an observable object
to a SimBiology model modelObj. The inputs obsName and obsExpression are the observable
object name and its expression, respectively.

obsObj = addobservable(modelObj,obsName,obsExpression,Name,Value) sets the
property values of obsObj using one or more name-value pair arguments. Name is the property name
and Value is the corresponding value Name must appear inside quotes. You can specify several name
and value pair arguments in any order as Name1,Value1,...,NameN,ValueN. For a list of
properties, see observable object properties on page 2-425.

Examples

Calculate Statistics After Model Simulation Using Observables

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Set the target occupancy (TO) as a response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Get the dosing information.

d = getdose(m1,'Daily Dose');

Scan over different dose amounts using a SimBiology.Scenarios object. To do so, first
parameterize the Amount property of the dose. Then vary the corresponding parameter value using
the Scenarios object.

amountParam = addparameter(m1,'AmountParam','Units',d.AmountUnits);
d.Amount = 'AmountParam';
d.Active = 1;
doseSamples = SimBiology.Scenarios('AmountParam',linspace(0,300,31));

Create a SimFunction to simulate the model. Set TO as the simulation output.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:SimFunction:DOSES_NOT_EMPTY');
f = createSimFunction(m1,doseSamples,'TO',d)

 addobservable

2-47

f =
SimFunction

Parameters:

 Name Value Type Units
 _______________ _____ _____________ ____________

 {'AmountParam'} 1 {'parameter'} {'nanomole'}

Observables:

 Name Type Units
 ______ _____________ _________________

 {'TO'} {'parameter'} {'dimensionless'}

Dosed:

 TargetName TargetDimension Amount AmountValue AmountUnits
 _______________ ___________________________________ _______________ ___________ ____________

 {'Plasma.Drug'} {'Amount (e.g., mole or molecule)'} {'AmountParam'} 1 {'nanomole'}

TimeUnits: day

warning('on','SimBiology:SimFunction:DOSES_NOT_EMPTY');

Simulate the model using the dose amounts generated by the Scenarios object. In this case, the
object generates 31 different doses; hence the model is simulated 31 times and generates a SimData
array.

doseTable = getTable(d);
sd = f(doseSamples,cs.StopTime,doseTable)

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 0

Plot the simulation results. Also add two reference lines that represent the safety and efficacy
thresholds for TO. In this example, suppose that any TO value above 0.85 is unsafe, and any TO value
below 0.15 has no efficacy.

h = sbioplot(sd);
time = sd(1).Time;
h.NextPlot = 'add';
safetyThreshold = plot(h,[min(time), max(time)],[0.85, 0.85],'DisplayName','Safety Threshold');
efficacyThreshold = plot(h,[min(time), max(time)],[0.15, 0.15],'DisplayName','Efficacy Threshold');

2 Methods

2-48

Postprocess the simulation results. Find out which dose amounts are effective, corresponding to the
TO responses within the safety and efficacy thresholds. To do so, add an observable expression to the
simulation data.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
newSD = addobservable(sd,'stat1','max(TO) < 0.85 & min(TO) > 0.15','Units','dimensionless')

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 1

The addobservable function evaluates the new observable expression for each SimData in sd and
returns the evaluated results as a new SimData array, newSD, which now has the added observable
(stat1).

SimBiology stores the observable results in two different properties of a SimData object. If the
results are scalar-valued, they are stored in SimData.ScalarObservables. Otherwise, they are

 addobservable

2-49

stored in SimData.VectorObservables. In this example, the stat1 observable expression is
scalar-valued.

Extract the scalar observable values and plot them against the dose amounts.

scalarObs = vertcat(newSD.ScalarObservables);
doseAmounts = generate(doseSamples);
figure
plot(doseAmounts.AmountParam,scalarObs.stat1,'o','MarkerFaceColor','b')

The plot shows that dose amounts ranging from 50 to 180 nanomoles provide TO responses that lie
within the target efficacy and safety thresholds.

You can update the observable expression with different threshold amounts. The function recalculates
the expression and returns the results in a new SimData object array.

newSD2 = updateobservable(newSD,'stat1','max(TO) < 0.75 & min(TO) > 0.30');

Rename the observable expression. The function renames the observable, updates any expressions
that reference the renamed observable (if applicable), and returns the results in a new SimData
object array.

newSD3 = renameobservable(newSD2,'stat1','EffectiveDose');

Restore the warning settings.

warning('on','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');

2 Methods

2-50

Input Arguments
modelObj — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object.

obsName — Name of observable object
character vector | string

Name of the observable object, specified as a character vector or string.

The name

• Cannot contain the characters [], ->, or <->.
• Cannot be empty, the word time, the word null, or all whitespace.
• Must be unique in a model, meaning no observable object can have the same name as another

observable, species, compartment, parameter, reaction, variant, or dose in the model.

For details, see “Guidelines for Naming Model Components”.
Example: 'AUC_obs'
Data Types: char | string

obsExpression — Expression of observable object
character vector | string

Expression of the observable object, specified as a character vector or string.
Example: 'trapz(time,drug)'
Data Types: char | string

Output Arguments
obsObj — Observable object
Observable object

Observable object, returned as an observable object.

Version History
Component naming restriction
Behavior change in future release

In a future release, there will be a naming restriction on the following model component types:
model, compartment, species, parameter, reaction, rule, event, observable, dose, and variant. The
restriction is that within a single model, these components will be required to have unique names
even when they are of different types with the following two exceptions:

• Species in different parent compartments can have the same name.
• Parameters with different parents can have the same name. Specifically, you can use the same

name for a model-scoped parameter and reaction-scoped parameters, where each reaction-scoped
parameter belongs to a different reaction.

 addobservable

2-51

See Also
Observable | addobservable(SimData) | updateobservable(SimData) |
renameobservable(SimData)

Introduced in R2020a

2 Methods

2-52

addobservable
Add observable expressions to SimData

Syntax
sdout = addobservable(sdin,obsNames,obsExpressions)
sdout = addobservable(sdin,obsNames,obsExpressions,'Units',units)

Description
sdout = addobservable(sdin,obsNames,obsExpressions) returns a new SimData object (or
array of objects) sdout after adding the specified observables to the input SimData sdin. The inputs
obsNames and obsExpressions are the observable names and their corresponding expressions.
The number of expressions must match the number of observable names.

sdout = addobservable(sdin,obsNames,obsExpressions,'Units',units) specifies units
for the observable expressions. The number of units must match the number of observable names.

Examples

Calculate Statistics After Model Simulation Using Observables

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Set the target occupancy (TO) as a response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Get the dosing information.

d = getdose(m1,'Daily Dose');

Scan over different dose amounts using a SimBiology.Scenarios object. To do so, first
parameterize the Amount property of the dose. Then vary the corresponding parameter value using
the Scenarios object.

amountParam = addparameter(m1,'AmountParam','Units',d.AmountUnits);
d.Amount = 'AmountParam';
d.Active = 1;
doseSamples = SimBiology.Scenarios('AmountParam',linspace(0,300,31));

Create a SimFunction to simulate the model. Set TO as the simulation output.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:SimFunction:DOSES_NOT_EMPTY');
f = createSimFunction(m1,doseSamples,'TO',d)

f =
SimFunction

 addobservable

2-53

Parameters:

 Name Value Type Units
 _______________ _____ _____________ ____________

 {'AmountParam'} 1 {'parameter'} {'nanomole'}

Observables:

 Name Type Units
 ______ _____________ _________________

 {'TO'} {'parameter'} {'dimensionless'}

Dosed:

 TargetName TargetDimension Amount AmountValue AmountUnits
 _______________ ___________________________________ _______________ ___________ ____________

 {'Plasma.Drug'} {'Amount (e.g., mole or molecule)'} {'AmountParam'} 1 {'nanomole'}

TimeUnits: day

warning('on','SimBiology:SimFunction:DOSES_NOT_EMPTY');

Simulate the model using the dose amounts generated by the Scenarios object. In this case, the
object generates 31 different doses; hence the model is simulated 31 times and generates a SimData
array.

doseTable = getTable(d);
sd = f(doseSamples,cs.StopTime,doseTable)

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 0

Plot the simulation results. Also add two reference lines that represent the safety and efficacy
thresholds for TO. In this example, suppose that any TO value above 0.85 is unsafe, and any TO value
below 0.15 has no efficacy.

h = sbioplot(sd);
time = sd(1).Time;
h.NextPlot = 'add';
safetyThreshold = plot(h,[min(time), max(time)],[0.85, 0.85],'DisplayName','Safety Threshold');
efficacyThreshold = plot(h,[min(time), max(time)],[0.15, 0.15],'DisplayName','Efficacy Threshold');

2 Methods

2-54

Postprocess the simulation results. Find out which dose amounts are effective, corresponding to the
TO responses within the safety and efficacy thresholds. To do so, add an observable expression to the
simulation data.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
newSD = addobservable(sd,'stat1','max(TO) < 0.85 & min(TO) > 0.15','Units','dimensionless')

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 1

The addobservable function evaluates the new observable expression for each SimData in sd and
returns the evaluated results as a new SimData array, newSD, which now has the added observable
(stat1).

SimBiology stores the observable results in two different properties of a SimData object. If the
results are scalar-valued, they are stored in SimData.ScalarObservables. Otherwise, they are

 addobservable

2-55

stored in SimData.VectorObservables. In this example, the stat1 observable expression is
scalar-valued.

Extract the scalar observable values and plot them against the dose amounts.

scalarObs = vertcat(newSD.ScalarObservables);
doseAmounts = generate(doseSamples);
figure
plot(doseAmounts.AmountParam,scalarObs.stat1,'o','MarkerFaceColor','b')

The plot shows that dose amounts ranging from 50 to 180 nanomoles provide TO responses that lie
within the target efficacy and safety thresholds.

You can update the observable expression with different threshold amounts. The function recalculates
the expression and returns the results in a new SimData object array.

newSD2 = updateobservable(newSD,'stat1','max(TO) < 0.75 & min(TO) > 0.30');

Rename the observable expression. The function renames the observable, updates any expressions
that reference the renamed observable (if applicable), and returns the results in a new SimData
object array.

newSD3 = renameobservable(newSD2,'stat1','EffectiveDose');

Restore the warning settings.

warning('on','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');

2 Methods

2-56

Input Arguments
sdin — Input simulation data
SimData object | array of SimData objects

Input simulation data, specified as a SimData object or array of objects.

obsNames — Names of observable expressions
character vector | string | string vector | cell array of character vectors

Names of the observable expressions, specified as a character vector, string, string vector, or cell
array of character vectors.

Each name must be unique in the SimData object, meaning it cannot match the name of any other
observable, species, compartment, parameter, or reaction referenced in the SimData object.
Example: {'max_drug','mean_drug'}
Data Types: char | string | cell

obsExpressions — Observable expressions
character vector | string | string vector | cell array of character vectors

Observable expressions, specified as a character vector, string, string vector, or cell array of
character vectors. The number of expressions must match the number of observable names.
Example: {'max(drug)','mean(drug)'}
Data Types: char | string | cell

units — Units for observable expressions
character vector | string | string vector | cell array of character vectors

Units for the observable expressions, specified as a character vector, string, string vector, or cell
array of character vectors. The number of units must match the number of observable names.
Example: {'nanomole/liter','nanomole/liter'}
Data Types: char | string | cell

Output Arguments
sdout — Simulation data with observable results
SimData object | array of SimData objects

Simulation data with observable results, returned as a SimData object or array of objects.

See Also
SimData | updateobservable | renameobservable

Introduced in R2020a

 addobservable

2-57

addobservable
Compute Sobol indices or elementary effects for new observable expression

Syntax
results = addobservable(gsaObj,obsNames,obsExpressions)
results = addobservable(gsaObj,obsNames,obsExpressions,'Units',units)

Description
results = addobservable(gsaObj,obsNames,obsExpressions) computes Sobol indices or
elementary effects for the new observables specified by obsNames with the corresponding
expressions obsExpressions.

results = addobservable(gsaObj,obsNames,obsExpressions,'Units',units) specifies
units for the new observable expressions. The function performs unit conversion for the observable
expressions only if you set UnitConversion to true.

Examples

Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with the estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

2 Methods

2-58

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, retrieve model parameters of interest that are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1','k2'};
outputName = 'tumor_weight';

Then perform GSA by computing the first- and total-order Sobol indices using sbiosobol. Set
'ShowWaitBar' to true to show the simulation progress. By default, the function uses 1000
parameter samples to compute the Sobol indices [1].

rng('default');
sobolResults = sbiosobol(m1,modelParamNames,outputName,Variants=v,Doses=d,ShowWaitBar=true)

sobolResults =
 Sobol with properties:

 Time: [444x1 double]
 SobolIndices: [5x1 struct]
 Variance: [444x1 table]
 ParameterSamples: [1000x5 table]
 Observables: {'[Tumor Growth Model].tumor_weight'}
 SimulationInfo: [1x1 struct]

 addobservable

2-59

You can change the number of samples by specifying the 'NumberSamples' name-value pair
argument. The function requires a total of (number of input parameters + 2) *
NumberSamples model simulations.

Show the mean model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(sobolResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying 'Alphas' for the lower
and upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100 * alpha and 100 * (1 - alpha) quantiles of all simulated model responses.

plotData(sobolResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

2 Methods

2-60

Plot the time course of the first- and total-order Sobol indices.

h = plot(sobolResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 addobservable

2-61

The first-order Sobol index of an input parameter gives the fraction of the overall response variance
that can be attributed to variations in the input parameter alone. The total-order index gives the
fraction of the overall response variance that can be attributed to any joint parameter variations that
include variations of the input parameter.

From the Sobol indices plots, parameters L1 and w0 seem to be the most sensitive parameters to the
tumor weight before the dose was applied at t = 7. But after the dose is applied, k1 and k2 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
total variance plot also shows a larger variance for the after-dose stage at t > 35 than for the before-
dose stage of the tumor growth, indicating that k1 and k2 might be more important parameters to
investigate further. The fraction of unexplained variance shows some variance at around t = 33, but
the total variance plot shows little variance at t = 33, meaning the unexplained variance could be
insignificant. The fraction of unexplained variance is calculated as 1 - (sum of all the first-order Sobol
indices), and the total variance is calculated using var(response), where response is the model
response at every time point.

You can also display the magnitudes of the sensitivities in a bar plot. Darker colors mean that those
values occur more often over the whole time course.

bar(sobolResults);

2 Methods

2-62

You can specify more samples to increase the accuracy of the Sobol indices, but the simulation can
take longer to finish. Use addsamples to add more samples. For example, if you specify 1500
samples, the function performs 1500 * (2 + number of input parameters) simulations.

gsaMoreSamples = addsamples(gsaResults,1500)

The “SimulationInfo” on page 2-0 property of the result object contains various information for
computing the Sobol indices. For instance, the model simulation data (SimData) for each simulation
using a set of parameter samples is stored in the SimData field of the property. This field is an array
of SimData objects.

sobolResults.SimulationInfo.SimData

 SimBiology SimData Array : 1000-by-7

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 7000 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(sobolResults.SimulationInfo.ValidSample)

 addobservable

2-63

ans = 1x7 logical array

 1 1 1 1 1 1 1

SimulationInfo.ValidSample is a table of logical values. It has the same size as
SimulationInfo.SimData. If ValidSample indicates that any simulations failed, you can get more
information about those simulation runs and the samples used for those runs by extracting
information from the corresponding column of SimulationInfo.SimData. Suppose that the fourth
column contains one or more failed simulation runs. Get the simulation data and sample values used
for that simulation using getSimulationResults.

[samplesUsed,sd,validruns] = getSimulationResults(sobolResults,4);

You can add custom expressions as observables and compute Sobol indices for the added observables.
For example, you can compute the Sobol indices for the maximum tumor weight by defining a custom
expression as follows.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
sobolObs = addobservable(sobolResults,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(sobolObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1280 800];

2 Methods

2-64

You can also remove the observable by specifying its name.

gsaNoObs = removeobservable(sobolObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Perform GSA by Computing Elementary Effects

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

 addobservable

2-65

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, define model parameters of interest, which are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1'};
outputName = 'tumor_weight';

Then perform GSA by computing the elementary effects using sbioelementaryeffects. Use 100
as the number of samples and set ShowWaitBar to true to show the simulation progress.

rng('default');
eeResults = sbioelementaryeffects(m1,modelParamNames,outputName,Variants=v,Doses=d,NumberSamples=100,ShowWaitbar=true);

Show the median model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(eeResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying Alphas for the lower and
upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100*alpha and 100*(1-alpha) quantiles of all simulated model responses.

plotData(eeResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

2 Methods

2-66

Plot the time course of the means and standard deviations of the elementary effects.

h = plot(eeResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 addobservable

2-67

The mean of effects explains whether variations in input parameter values have any effect on the
tumor weight response. The standard deviation of effects explains whether the sensitivity change is
dependent on the location in the parameter domain.

From the mean of effects plots, parameters L1 and w0 seem to be the most sensitive parameters to
the tumor weight before the dose is applied at t = 7. But, after the dose is applied, k1 and L0 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
plots of standard deviation of effects show more deviations for the larger parameter values in the
later stage (t > 35) than for the before-dose stage of the tumor growth.

You can also display the magnitudes of the sensitivities in a bar plot. Each color shading represents a
histogram representing values at different times. Darker colors mean that those values occur more
often over the whole time course.

bar(eeResults);

2 Methods

2-68

You can also plot the parameter grids and samples used to compute the elementary effects.

plotGrid(eeResults)

 addobservable

2-69

You can specify more samples to increase the accuracy of the elementary effects, but the simulation
can take longer to finish. Use addsamples to add more samples.

eeResults2 = addsamples(eeResults,200);

The SimulationInfo property of the result object contains various information for computing the
elementary effects. For instance, the model simulation data (SimData) for each simulation using a set
of parameter samples is stored in the SimData field of the property. This field is an array of SimData
objects.

eeResults2.SimulationInfo.SimData

 SimBiology SimData Array : 1500-by-1

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 1500 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(eeResults2.SimulationInfo.ValidSample)

2 Methods

2-70

ans = logical
 1

You can add custom expressions as observables and compute the elementary effects of the added
observables. For example, you can compute the effects for the maximum tumor weight by defining a
custom expression as follows.

% Suppress an information warning that is issued.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
eeObs = addobservable(eeResults2,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(eeObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1500 800];

You can also remove the observable by specifying its name.

eeNoObs = removeobservable(eeObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Input Arguments
gsaObj — Results from global sensitivity analysis
SimBiology.gsa.Sobol object | SimBiology.gsa.ElementaryEffects object

 addobservable

2-71

Results from global sensitivity analysis, specified as a SimBiology.gsa.Sobol or
SimBiology.gsa.ElementaryEffects object.

obsNames — Names of observable expressions
character vector | string | string vector | cell array of character vector

Names of observable expressions, specified as a character vector, string, string vector, or cell array of
character vectors.
Data Types: char | string | cell

obsExpressions — Observable expressions
character vector | string | string vector | cell array of character vector

Observable expressions, specified as a character vector, string, string vector, or cell array of
character vectors.
Data Types: char | string | cell

units — Observable units
character vector | string | string vector | cell array of character vector

Observable units, specified as a character vector, string, string vector, or cell array of character
vectors.
Data Types: char | string | cell

Output Arguments
results — Computed Sobol indices or elementary effects for observables
SimBiology.gsa.Sobol | SimBiology.gsa.ElementaryEffects

Computed Sobol indices or elementary effects for added observables, returned as a
SimBiology.gsa.Sobol or SimBiology.gsa.ElementaryEffects object.

References
[1] Saltelli, Andrea, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano

Tarantola. “Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the
Total Sensitivity Index.” Computer Physics Communications 181, no. 2 (February 2010): 259–
70. https://doi.org/10.1016/j.cpc.2009.09.018.

[2] Morris, Max D. “Factorial Sampling Plans for Preliminary Computational Experiments.”
Technometrics 33, no. 2 (May 1991): 161–74.

[3] Sohier, Henri, Jean-Loup Farges, and Helene Piet-Lahanier. “Improvement of the Representativity
of the Morris Method for Air-Launch-to-Orbit Separation.” IFAC Proceedings Volumes 47, no.
3 (2014): 7954–59.

See Also
SimBiology.gsa.Sobol | SimBiology.gsa.ElementaryEffects | sbiosobol |
sbioelementaryeffects

2 Methods

2-72

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2020a

 addobservable

2-73

addparameter (model, kineticlaw)
Create parameter object and add to model or kinetic law object

Syntax
parameterObj = addparameter(Obj, 'NameValue')
parameterObj = addparameter(Obj, 'NameValue', ValueValue)

parameterObj = addparameter(...'PropertyName', PropertyValue...)

Arguments
Obj Model object or kineticlaw object. Enter a variable name for

the object.
NameValue Property for a parameter object. Enter a unique character vector.

Since objects can use this property to reference a parameter, a
parameter object must have a unique name at the level it is created.
For example, a kinetic law object cannot contain two parameter
objects named kappa. However, the model object that contains the
kinetic law object can contain a parameter object named kappa along
with the kinetic law object.

For information on naming parameters, see Name.
ValueValue Property for a parameter object. Enter a number.

Description
parameterObj = addparameter(Obj, 'NameValue') creates a parameter object and returns
the object (parameterObj). In the parameter object, this method assigns a value (NameValue) to the
property Name, assigns a value 1 to the property Value, and assigns the model or kinetic law object
to the property Parent. In the model or kinetic law object, (Obj), this method assigns the parameter
object to the property Parameters.

A parameter object defines an assignment that a model or a kinetic law can use. The scope of the
parameter is defined by the parameter parent. If a parameter is defined with a kinetic law object,
then only the kinetic law object and objects within the kinetic law object can use the parameter. If a
parameter object is defined with a model object as its parent, then all objects within the model
(including all rules, events and kinetic laws) can use the parameter.

modelObj = sbiomodel('cell')
parameterObj = addparameter(modelObj, 'TF1', 0.01)

2 Methods

2-74

modelObj = sbiomodel('cell')
reactionObj = addreaction(modelObj, 'a -> b')
kineticlawObj = addkineticlaw (reactionObj, 'MassAction')
parameterObj = addparameter(kineticlawObj, 'K1_forward', 0.1)

parameterObj = addparameter(Obj, 'NameValue', ValueValue) creates a parameter
object, assigns a value (NameValue) to the property Name, assigns the value (ValueValue) to the
property Value, and assigns the model object or the kineticlaw object to the property
Parent. In the model or kinetic law object (Obj), this method assigns the parameter object to the
property Parameters, and returns the parameter object to a variable (parameterObj).

parameterObj = addparameter(...'PropertyName', PropertyValue...) defines optional
property values. The name-value pairs can be in any format supported by the function set.

Scope of a parameter — A parameter can be scoped to either a model or a kinetic law.

• When a kinetic law searches for a parameter in its expression, it first looks in the parameter list of
the kinetic law. If the parameter isn’t found there, it moves to the model that the kinetic law object
is in and looks in the model parameter list. If the parameter isn’t found there, it moves to the
model parent.

• When a rule searches for a parameter in its expression, it looks in the parameter list for the
model. If the parameter isn’t found there, it moves to the model parent. A rule cannot use a
parameter that is scoped to a kinetic law. So for a parameter to be used in both a reaction rate
equation and a rule, the parameter should be scoped to a model.

Additional parameter object properties can be viewed with the get command. Additional parameter
object properties can be modified with the set command. The parameters of Obj can be viewed with
get(Obj, 'Parameters').

 addparameter (model, kineticlaw)

2-75

A SimBiology parameter object can be copied to a SimBiology model or kinetic law object with
copyobj. A SimBiology parameter object can be removed from a SimBiology model or kinetic law
object with delete.

Method Summary
Methods for parameter objects

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
findUsages Find out how a species, parameter, or compartment is used in a model
get Get SimBiology object properties
move Move SimBiology species or parameter object to new parent
rename Rename object and update expressions
set Set SimBiology object properties

Property Summary
Properties for parameter objects

Constant Specify variable or constant species amount, parameter value, or compartment
capacity

ConstantValue Specify variable or constant parameter value
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Tag Specify label for SimBiology object
Type Display SimBiology object type
Units Units for species amount, parameter value, compartment capacity, observable

expression
UserData Specify data to associate with object
Value Value of species, compartment, or parameter object
ValueUnits Parameter value units

Example
1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');
3 Add a parameter and assign it to the kinetic law object (kineticlawObj); add another

parameter and assign to the model object (modelObj).

2 Methods

2-76

% Add parameter to kinetic law object
parameterObj1 = addparameter (kineticlawObj, 'K1');

get (kineticlawObj, 'Parameters')

MATLAB returns:

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
 1 K1 1

% Add parameter with value 0.9 to model object
parameterObj1 = addparameter (modelObj, 'K2', 0.9);

get (modelObj, 'Parameters')

MATLAB returns:

SimBiology Parameter Array

 Index: Name: Value: ValueUnits:
 1 K2 1

Version History
Component naming restriction
Behavior change in future release

In a future release, there will be a naming restriction on the following model component types:
model, compartment, species, parameter, reaction, rule, event, observable, dose, and variant. The
restriction is that within a single model, these components will be required to have unique names
even when they are of different types with the following two exceptions:

• Species in different parent compartments can have the same name.
• Parameters with different parents can have the same name. Specifically, you can use the same

name for a model-scoped parameter and reaction-scoped parameters, where each reaction-scoped
parameter belongs to a different reaction.

See Also
model object | kineticlaw object | addreaction

Introduced in R2006a

 addparameter (model, kineticlaw)

2-77

addproduct (reaction)
Add product species object to reaction object

Syntax
speciesObj = addproduct(reactionObj, 'NameValue')
speciesObj = addproduct(reactionObj, speciesObj)
speciesObj = addproduct(reactionObj, 'NameValue', Stoichcoefficient)
speciesObj = addproduct(reactionObj, speciesObj, Stoichcoefficient)

Arguments

reactionObj Reaction object. Enter a name for the reaction object.
NameValue Names of species objects. Enter a character vector or cell array of

character vectors.

A species object can be referenced by other objects using its name. You
can use the function sbioselect on page 1-247 to find an object
with a name specified by NameValue.

speciesObj Species object or vector of species objects.
Stoichcoeffieient Stoichiometric coefficients for products. Enter a positive scalar or

vector of positive doubles. If vector, it must have the same number of
elements as the number of species specified by NameValue or
speciesObj.

Description
speciesObj = addproduct(reactionObj, 'NameValue') creates a species object (if it does
not exist already in the model) and returns the species object (speciesObj). In the species object,
this method assigns the value (NameValue) to the property Name. In the reaction object, this method
assigns the species object to the property Products, modifies the reaction equation in the property
Reaction to include the new species, and adds the stoichiometric coefficient 1 to the property
Stoichiometry.

When you define a reaction with a new species:

• If no compartment objects exist in the model, the method creates a compartment object (called
'unnamed') in the model and adds the newly created species to that compartment.

• If only one compartment object (compObj) exists in the model, the method creates a species
object in that compartment.

• If there is more than one compartment object (compObj) in the model, you must qualify the
species name with the compartment name.

For example, cell.glucose denotes that you want to put the species named glucose into a
compartment named cell. Additionally, if the compartment named cell does not exist, the
process of adding the reaction creates the compartment and names it cell.

2 Methods

2-78

Create and add a species object to a compartment object with the method addspecies on page 2-
106.

speciesObj = addproduct(reactionObj, speciesObj), in the species object (speciesObj),
assigns the parent object of the reactionObj to the species property Parent. In the reaction object
(reactionObj), it assigns the species object to the property Products, modifies the reaction
equation in the property Reaction to include the new species, and adds the stoichiometric
coefficient 1 to the property Stoichiometry.

speciesObj = addproduct(reactionObj, 'NameValue', Stoichcoefficient), in addition
to the description above, adds the stoichiometric coefficient (Stoichcoefficient) to the property
Stoichiometry. If NameValue is a cell array of species names, then Stoichcoefficient must be
a vector of doubles with the same length as NameValue.

speciesObj = addproduct(reactionObj, speciesObj, Stoichcoefficient), in addition
to the description above, adds the stoichiometric coefficient (Stoichcoefficient) to the property
Stoichiometry.

Species names are referenced by reaction objects, kinetic law objects, and model objects. If you
change the Name of a species the reaction also uses the new name. You must however configure all
other applicable elements such as rules that use the species, and the kinetic law object.

Examples
1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'A + C -> U');

2 Modify the reaction of the reactionObj from A + C -> U to A + C -> U + 2 H.

speciesObj = addproduct(reactionObj, 'H', 2);

See Also
addspecies

Introduced in R2006a

 addproduct (reaction)

2-79

addreactant (reaction)
Add species object as reactant to reaction object

Syntax
speciesObj = addreactant(reactionObj, 'NameValue')
speciesObj = addreactant(reactionObj, speciesObj)
speciesObj = addreactant(reactionObj, speciesObj, StoichCoefficient)
speciesObj = addreactant(reactionObj, 'NameValue', StoichCoefficient)

Arguments
reactionObj Reaction object.
NameValue Names of species objects. Enter a character vector or cell array

of character vectors.

A species object can be referenced by other objects using its
name. You can use the function sbioselect on page 1-247
to find an object with a name specified by NameValue.

speciesObj Species object or vector of species objects.
StoichCoefficient Stoichiometric coefficients for reactants. Enter a positive scalar

or vector of positive doubles. If vector, it must have the same
number of elements as the number of species specified by
NameValue or speciesObj.

Description
speciesObj = addreactant(reactionObj, 'NameValue') creates a species object (if it does
not exist already in the model) and returns the species object (speciesObj). In the species object,
this method assigns the value (NameValue) to the property Name. In the reaction object, this method
assigns the species object to the property Reactants, modifies the reaction equation in the property
Reaction to include the new species, and adds the stoichiometric coefficient -1 to the property
Stoichiometry.

When you define a reaction with a new species:

• If no compartment objects exist in the model, the method creates a compartment object (called
'unnamed') in the model and adds the newly created species to that compartment.

• If only one compartment object (compObj) exists in the model, the method creates a species
object in that compartment.

• If there is more than one compartment object (compObj) in the model, you must qualify the
species name with the compartment name.

For example, cell.glucose denotes that you want to put the species named glucose into a
compartment named cell. Additionally, if the compartment named cell does not exist, the
process of adding the reaction creates the compartment and names it cell.

2 Methods

2-80

Create and add a species object to a compartment object with the method addspecies on page 2-
106.

speciesObj = addreactant(reactionObj, speciesObj), in the species object (speciesObj),
assigns the parent object of the reactionObj to the species property Parent. In the reaction object
(reactionObj), it assigns the species object to the property Reactants, modifies the reaction
equation in the property Reaction to include the new species, and adds the stoichiometric
coefficient 1 to the property Stoichiometry.

speciesObj = addreactant(reactionObj, speciesObj, StoichCoefficient), in the
species object (speciesObj), assigns the parent object to the speciesObj property Parent. In the
reaction object (reactionObj), it assigns the species object to the property Reactants, modifies
the reaction equation in the property Reaction to include the new species, and adds the
stoichiometric coefficient -1 to the property Stoichiometry. If speciesObj is a cell array of
species objects, then StoichCoefficient must be a vector of doubles with the same length as
speciesObj.

speciesObj = addreactant(reactionObj, 'NameValue', StoichCoefficient), in
addition to the description above, adds the stoichiometric coefficient (StoichCoefficient) to the
property Stoichiometry. If NameValue is a cell array of species names, then StoichCoefficient
must be a vector of doubles with the same length as NameValue.

Species names are referenced by reaction objects, kinetic law objects, and model objects. If you
change the Name of a species the reaction also uses the new name. You must, however, configure all
other applicable elements such as rules that use the species, and the kinetic law object.

See “Specifying Species Names in SimBiology” for more information on species names.

Example
1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'A -> U');

2 Modify the reaction of the reactionObj from A -> U to be A + 3 C -> U.

speciesObj = addreactant(reactionObj, 'C', 3);

See Also
addspecies

Introduced in R2006a

 addreactant (reaction)

2-81

addreaction (model)
Create reaction object and add to model object

Syntax
reactionObj = addreaction(modelObj,'ReactionValue')
reactionObj = addreaction(modelObj, 'ReactantsValue', 'ProductsValue')
reactionObj = addreaction(modelObj, 'ReactantsValue', RStoichCoefficients,
'ProductsValue', PStoichCoefficients)

reactionObj = addreaction(...'PropertyName', PropertyValue...)

Arguments
modelObj SimBiology model object.
ReactionValue Specify the reaction equation. Enter a character vector. A

hyphen preceded by a space and followed by a right angle
bracket (->) indicates reactants going forward to products. A
hyphen with left and right angle brackets (<->) indicates a
reversible reaction. Coefficients before reactant or product
names must be followed by a space.

Examples are 'A -> B', 'A + B -> C', '2 A + B -> 2 C',
and 'A <-> B'. Enter reactions with spaces between the
species.

If there are multiple compartments, or to specify the
compartment name, use compartmentName.speciesName to
qualify the species name.

Examples are 'cytoplasm.A -> cytoplasm.B',
'cytoplasm.A -> nucleus.A', and 'cytoplasm.A +
cytoplasm.B -> nucleus.AB'.

ReactantsValue Character vector defining the species name, a cell array of
character vectors, a species object, or an array of species
objects. If using names, qualify with compartment names if there
are multiple compartments.

ProductsValue Character vector defining the species name, a cell array of
character vectors, a species object, or an array of species
objects. If using names, qualify with compartment names if there
are multiple compartments.

RStoichCoefficients Stoichiometric coefficients for reactants, length of array equal to
length of ReactantsValue.

PStoichCoefficients Stoichiometric coefficients for products, length of array equal to
length of ProductsValue.

2 Methods

2-82

Note If you qualify any species name with a compartment name, then you must qualify every species
with the corresponding compartment name.

Description
reactionObj = addreaction(modelObj,'ReactionValue') creates a reaction object, assigns
a value (ReactionValue) to the property Reaction, assigns reactant species object(s) to the
property Reactants, assigns the product species object(s) to the property Products, and assigns
the model object to the property Parent. In the Model object (modelObj), this method assigns the
reaction object to the property Reactions, and returns the reaction object (reactionObj).

reactionObj = addreaction(modelObj, 'a -> b')

When you define a reaction with a new species:

• If no compartment objects exist in the model, the method creates a compartment object (called
'unnamed') in the model and adds the newly created species to that compartment.

• If only one compartment object (compObj) exists in the model, the method creates a species
object in that compartment.

• If there is more than one compartment object (compObj) in the model, you must qualify the
species name with the compartment name.

For example, cell.glucose denotes that you want to put the species named glucose into a
compartment named cell. Additionally, if the compartment named cell does not exist, the
process of adding the reaction creates the compartment and names it cell.

You can manually add a species to a compartment object with the method addspecies.

You can add species to a reaction object using the methods addreactant or addproduct. You can
remove species from a reaction object with the methods rmreactant or rmproduct. The property
Reaction is modified by adding or removing species from the reaction equation.

You can copy a SimBiology reaction object to a model object with the function copyobj. You can
remove the SimBiology reaction object from a SimBiology model object with the function delete.

You can view additional reaction object properties with the get command. For example, the reaction
equation of reactionObj can be viewed with the command get(reactionObj, 'Reaction').
You can modify additional reaction object properties with the command set.

reactionObj = addreaction(modelObj, 'ReactantsValue', 'ProductsValue') creates a
reaction object, assigns a value to the property Reaction using the reactant (ReactantsValue) and
product (ProductsValue) names, assigns the species objects to the properties Reactants and
Products, and assigns the model object to the property Parent. In the model object (modelObj),
this method assigns the reaction object to the property Reactions, and returns the reaction object
(reactionObj). The stoichiometric values are assumed to be 1.

 addreaction (model)

2-83

reactionObj = addreaction(modelObj, 'ReactantsValue', RStoichCoefficients,
'ProductsValue', PStoichCoefficients) adds stoichiometric coefficients
(RStoichCoefficients) for reactant species, and stoichiometric coefficients
(PStoichCoefficients) for product species to the property Stoichiometry on page 3-173.
The length of Reactants and RCoefficients must be equal, and the length of Products and
PCoefficients must be equal.

reactionObj = addreaction(...'PropertyName', PropertyValue...) defines optional
properties. The property name/property value pairs can be in any format supported by the function
set.

Note If you use the addreaction method to create a reaction rate expression that is not continuous
and differentiable, see “Using Events to Address Discontinuities in Rule and Reaction Rate
Expressions” before simulating your model.

Method Summary
Methods for reaction objects

addkineticlaw (reaction) Create kinetic law object and add to reaction object
addproduct (reaction) Add product species object to reaction object
addreactant (reaction) Add species object as reactant to reaction object
copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
rename Rename object and update expressions
rmproduct (reaction) Remove species object from reaction object products
rmreactant (reaction) Remove species object from reaction object reactants
set Set SimBiology object properties

Property Summary
Properties for reaction objects

2 Methods

2-84

Active Indicate object in use during simulation
KineticLaw Show kinetic law used for ReactionRate
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Products Array of reaction products
Reactants Array of reaction reactants
Reaction Reaction object reaction
ReactionRate Reaction rate equation in reaction object
Reversible Specify whether reaction is reversible or irreversible
Stoichiometry Species coefficients in reaction
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

Examples
Create a model, add a reaction object, and assign the expression for the reaction rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type 'Henri-Michaelis-Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm and Km) and one

species variable (S) that should to be set. To set these variables, first create the parameter
variables as parameter objects (parameterObj1, parameterObj2) with names Vm_d, and
Km_d, and assign the objects Parent property value to the kineticlawObj.

parameterObj1 = addparameter(kineticlawObj, 'Vm_d');
parameterObj2 = addparameter(kineticlawObj, 'Km_d');

4 Set the variable names for the kinetic law object.
set(kineticlawObj,'ParameterVariableNames', {'Vm_d' 'Km_d'});
set(kineticlawObj,'SpeciesVariableNames', {'a'});

5 Verify that the reaction rate is expressed correctly in the reaction object ReactionRate
property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Vm_d*a/(Km_d+a)

 addreaction (model)

2-85

Version History
Component naming restriction
Behavior change in future release

In a future release, there will be a naming restriction on the following model component types:
model, compartment, species, parameter, reaction, rule, event, observable, dose, and variant. The
restriction is that within a single model, these components will be required to have unique names
even when they are of different types with the following two exceptions:

• Species in different parent compartments can have the same name.
• Parameters with different parents can have the same name. Specifically, you can use the same

name for a model-scoped parameter and reaction-scoped parameters, where each reaction-scoped
parameter belongs to a different reaction.

See Also
model object | addkineticlaw | addproduct | addreactant | rmproduct | rmreactant

Introduced in R2006a

2 Methods

2-86

addrule (model)
Create rule object and add to model object

Syntax
ruleObj = addrule(modelObj, Rule)
ruleObj = addrule(modelObj, Rule, RuleType)

ruleObj = addrule(..., 'PropertyName', PropertyValue,...)

Arguments
modelObj Model object to which to add the rule.
Rule Character vector specifying the rule. For example, enter the

algebraic rule 'Va*Ea + Vi*Ei - K2'.
RuleType Character vector specifying the type of rule. Choices are:

• 'algebraic'
• 'initialAssignment'
• 'repeatedAssignment'
• 'rate'

For more information, see RuleType

Description
A rule is a mathematical expression that changes the amount of a species or the value of a parameter.
It also defines how species and parameters interact with one another.

ruleObj = addrule(modelObj, Rule) constructs and returns ruleObj, a rule object. In
ruleObj, the rule object, this method assigns the modelObj input argument to the Parent property,
assigns the Rule input argument to the Rule property, and assigns 'initialAssignment' or
'algebraic' to the RuleType property. (This method assigns 'initialAssignment' for all
assignment rules and 'algebraic' for all other rules.) In modelObj, the model object, this
method assigns ruleObj, the rule object, to the Rules property.

ruleObj = addrule(modelObj, Rule, RuleType) in addition to the assignments above,
assigns the RuleType input argument to the RuleType property. For more information on the types
of rules, see RuleType.

ruleObj = addrule(..., 'PropertyName', PropertyValue,...) defines optional
properties. The property name/property value pairs can be in any format supported by the function
set.

View additional rule properties with the function get, and modify rule properties with the function
set. Copy a rule object to a model with the function copyobj on page 2-171, or delete a rule
object from a model with the function delete on page 2-210.

 addrule (model)

2-87

Note If you use the addrule method to create an algebraic rule, rate rule, or repeated assignment
rule, and the rule expression is not continuous and differentiable, see “Using Events to Address
Discontinuities in Rule and Reaction Rate Expressions” before simulating your model.

Method Summary
Methods for rule objects

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
rename Rename object and update expressions
set Set SimBiology object properties

Property Summary
Properties for rule objects

Active Indicate object in use during simulation
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Rule Specify species and parameter interactions
RuleType Specify type of rule for rule object
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

Examples
Add a rule with the default RuleType.

1 Create a model object, and then add a rule object.

modelObj = sbiomodel('cell');
ruleObj = addrule(modelObj, '0.1*B-A')

2 Get a list of properties for a rule object.

get(modelObj.Rules(1)) or get(ruleObj)

MATLAB displays a list of rule properties.

 Active: 1
 Annotation: ''
 Name: ''

2 Methods

2-88

 Notes: ''
 Parent: [1x1 SimBiology.Model]
 Rule: '0.1*B-A'
 RuleType: 'algebraic'
 Tag: ''
 Type: 'rule'
 UserData: []

Add a rule with the RuleType property set to rate.

1 Create model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a -> b');

2 Add a rule which defines that the quantity of a species c. In the rule expression, k is the rate
constant for a -> b.

ruleObj = addrule(modelObj, 'c = k*(a+b)')
3 Change the RuleType from default ('algebraic') to 'rate', and verify using the get

command.

set(ruleObj, 'RuleType', 'rate');
get(ruleObj)

MATLAB returns all the properties for the rule object.

 Active: 1
Annotation: ''
 Name: ''
 Notes: ''
 Parent: [1x1 SimBiology.Model]
 Rule: 'c = k*(a+b)'
 RuleType: 'rate'
 Tag: ''
 Type: 'rule'
 UserData: []

Version History
Component naming restriction
Behavior change in future release

In a future release, there will be a naming restriction on the following model component types:
model, compartment, species, parameter, reaction, rule, event, observable, dose, and variant. The
restriction is that within a single model, these components will be required to have unique names
even when they are of different types with the following two exceptions:

• Species in different parent compartments can have the same name.
• Parameters with different parents can have the same name. Specifically, you can use the same

name for a model-scoped parameter and reaction-scoped parameters, where each reaction-scoped
parameter belongs to a different reaction.

See Also
model object | copyobj | delete | sbiomodel

 addrule (model)

2-89

Introduced in R2006a

2 Methods

2-90

addsamples
Add additional samples to increase accuracy of Sobol indices or elementary effects analysis

Syntax
results = addsamples(gsaObj,numSamples)
results = addobservable(gsaObj,numSamples,'ShowWaitbar',tf)

Description
results = addsamples(gsaObj,numSamples) adds the specified number of new samples to
increase the accuracy of the variance decomposition (Sobol indices) or the accuracy of elementary
effects analysis. For the Sobol indices, the function simulates the model numSamples * (2 +
number of parameters) times. For details, see “Saltelli Method to Compute Sobol Indices” on
page 2-821. For the elementary effects analysis, the function simulates the model numSamples * (1
+ number of parameters) times. For details, see “Elementary Effects for Global Sensitivity
Analysis” on page 1-53.

results = addobservable(gsaObj,numSamples,'ShowWaitbar',tf) specifies whether to
show the simulation progress in a graphic.

Examples

Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with the estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

 addsamples

2-91

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, retrieve model parameters of interest that are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1','k2'};
outputName = 'tumor_weight';

Then perform GSA by computing the first- and total-order Sobol indices using sbiosobol. Set
'ShowWaitBar' to true to show the simulation progress. By default, the function uses 1000
parameter samples to compute the Sobol indices [1].

rng('default');
sobolResults = sbiosobol(m1,modelParamNames,outputName,Variants=v,Doses=d,ShowWaitBar=true)

sobolResults =
 Sobol with properties:

 Time: [444x1 double]
 SobolIndices: [5x1 struct]
 Variance: [444x1 table]
 ParameterSamples: [1000x5 table]
 Observables: {'[Tumor Growth Model].tumor_weight'}
 SimulationInfo: [1x1 struct]

2 Methods

2-92

You can change the number of samples by specifying the 'NumberSamples' name-value pair
argument. The function requires a total of (number of input parameters + 2) *
NumberSamples model simulations.

Show the mean model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(sobolResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying 'Alphas' for the lower
and upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100 * alpha and 100 * (1 - alpha) quantiles of all simulated model responses.

plotData(sobolResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

 addsamples

2-93

Plot the time course of the first- and total-order Sobol indices.

h = plot(sobolResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

2 Methods

2-94

The first-order Sobol index of an input parameter gives the fraction of the overall response variance
that can be attributed to variations in the input parameter alone. The total-order index gives the
fraction of the overall response variance that can be attributed to any joint parameter variations that
include variations of the input parameter.

From the Sobol indices plots, parameters L1 and w0 seem to be the most sensitive parameters to the
tumor weight before the dose was applied at t = 7. But after the dose is applied, k1 and k2 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
total variance plot also shows a larger variance for the after-dose stage at t > 35 than for the before-
dose stage of the tumor growth, indicating that k1 and k2 might be more important parameters to
investigate further. The fraction of unexplained variance shows some variance at around t = 33, but
the total variance plot shows little variance at t = 33, meaning the unexplained variance could be
insignificant. The fraction of unexplained variance is calculated as 1 - (sum of all the first-order Sobol
indices), and the total variance is calculated using var(response), where response is the model
response at every time point.

You can also display the magnitudes of the sensitivities in a bar plot. Darker colors mean that those
values occur more often over the whole time course.

bar(sobolResults);

 addsamples

2-95

You can specify more samples to increase the accuracy of the Sobol indices, but the simulation can
take longer to finish. Use addsamples to add more samples. For example, if you specify 1500
samples, the function performs 1500 * (2 + number of input parameters) simulations.

gsaMoreSamples = addsamples(gsaResults,1500)

The “SimulationInfo” on page 2-0 property of the result object contains various information for
computing the Sobol indices. For instance, the model simulation data (SimData) for each simulation
using a set of parameter samples is stored in the SimData field of the property. This field is an array
of SimData objects.

sobolResults.SimulationInfo.SimData

 SimBiology SimData Array : 1000-by-7

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 7000 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(sobolResults.SimulationInfo.ValidSample)

2 Methods

2-96

ans = 1x7 logical array

 1 1 1 1 1 1 1

SimulationInfo.ValidSample is a table of logical values. It has the same size as
SimulationInfo.SimData. If ValidSample indicates that any simulations failed, you can get more
information about those simulation runs and the samples used for those runs by extracting
information from the corresponding column of SimulationInfo.SimData. Suppose that the fourth
column contains one or more failed simulation runs. Get the simulation data and sample values used
for that simulation using getSimulationResults.

[samplesUsed,sd,validruns] = getSimulationResults(sobolResults,4);

You can add custom expressions as observables and compute Sobol indices for the added observables.
For example, you can compute the Sobol indices for the maximum tumor weight by defining a custom
expression as follows.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
sobolObs = addobservable(sobolResults,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(sobolObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1280 800];

 addsamples

2-97

You can also remove the observable by specifying its name.

gsaNoObs = removeobservable(sobolObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Perform GSA by Computing Elementary Effects

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

2 Methods

2-98

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, define model parameters of interest, which are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1'};
outputName = 'tumor_weight';

Then perform GSA by computing the elementary effects using sbioelementaryeffects. Use 100
as the number of samples and set ShowWaitBar to true to show the simulation progress.

rng('default');
eeResults = sbioelementaryeffects(m1,modelParamNames,outputName,Variants=v,Doses=d,NumberSamples=100,ShowWaitbar=true);

Show the median model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(eeResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying Alphas for the lower and
upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100*alpha and 100*(1-alpha) quantiles of all simulated model responses.

plotData(eeResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

 addsamples

2-99

Plot the time course of the means and standard deviations of the elementary effects.

h = plot(eeResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

2 Methods

2-100

The mean of effects explains whether variations in input parameter values have any effect on the
tumor weight response. The standard deviation of effects explains whether the sensitivity change is
dependent on the location in the parameter domain.

From the mean of effects plots, parameters L1 and w0 seem to be the most sensitive parameters to
the tumor weight before the dose is applied at t = 7. But, after the dose is applied, k1 and L0 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
plots of standard deviation of effects show more deviations for the larger parameter values in the
later stage (t > 35) than for the before-dose stage of the tumor growth.

You can also display the magnitudes of the sensitivities in a bar plot. Each color shading represents a
histogram representing values at different times. Darker colors mean that those values occur more
often over the whole time course.

bar(eeResults);

 addsamples

2-101

You can also plot the parameter grids and samples used to compute the elementary effects.

plotGrid(eeResults)

2 Methods

2-102

You can specify more samples to increase the accuracy of the elementary effects, but the simulation
can take longer to finish. Use addsamples to add more samples.

eeResults2 = addsamples(eeResults,200);

The SimulationInfo property of the result object contains various information for computing the
elementary effects. For instance, the model simulation data (SimData) for each simulation using a set
of parameter samples is stored in the SimData field of the property. This field is an array of SimData
objects.

eeResults2.SimulationInfo.SimData

 SimBiology SimData Array : 1500-by-1

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 1500 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(eeResults2.SimulationInfo.ValidSample)

 addsamples

2-103

ans = logical
 1

You can add custom expressions as observables and compute the elementary effects of the added
observables. For example, you can compute the effects for the maximum tumor weight by defining a
custom expression as follows.

% Suppress an information warning that is issued.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
eeObs = addobservable(eeResults2,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(eeObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1500 800];

You can also remove the observable by specifying its name.

eeNoObs = removeobservable(eeObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Input Arguments
gsaObj — Results from global sensitivity analysis
SimBiology.gsa.Sobol object | SimBiology.gsa.ElementaryEffects object

2 Methods

2-104

Results from global sensitivity analysis, specified as a SimBiology.gsa.Sobol or
SimBiology.gsa.ElementaryEffects object.

numSamples — Number of new samples
positive integer

Number of new samples to add, specified a positive integer.
Data Types: double

tf — Flag to show simulation progress
false (default) | true

Flag to show the simulation progress graphically, specified as true or false.
Data Types: logical

Output Arguments
results — Computed Sobol indices or elementary effects
SimBiology.gsa.Sobol | SimBiology.gsa.ElementaryEffects

Computed Sobol indices or elementary effects after adding more samples, returned as a
SimBiology.gsa.Sobol or SimBiology.gsa.ElementaryEffects object.

References
[1] Saltelli, Andrea, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano

Tarantola. “Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the
Total Sensitivity Index.” Computer Physics Communications 181, no. 2 (February 2010): 259–
70. https://doi.org/10.1016/j.cpc.2009.09.018.

[2] Morris, Max D. “Factorial Sampling Plans for Preliminary Computational Experiments.”
Technometrics 33, no. 2 (May 1991): 161–74.

[3] Sohier, Henri, Jean-Loup Farges, and Helene Piet-Lahanier. “Improvement of the Representativity
of the Morris Method for Air-Launch-to-Orbit Separation.” IFAC Proceedings Volumes 47, no.
3 (2014): 7954–59.

See Also
SimBiology.gsa.Sobol | SimBiology.gsa.ElementaryEffects | sbioelementaryeffects

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2020a

 addsamples

2-105

addspecies (model, compartment)
Create species object and add to compartment object within model object

Syntax
speciesObj = addspecies(compObj, 'NameValue')
speciesObj = addspecies(compObj, 'NameValue', InitialAmountValue)
speciesObj = addspecies(modelObj, 'NameValue')
speciesObj = addspecies(modelObj, 'NameValue', InitialAmountValue)

speciesObj = addspecies(...'PropertyName', PropertyValue...)

Arguments
compObj Compartment object.
modelObj Model object containing zero or one compartment.
NameValue Name for a species object. Enter a character vector unique among

species within modelObj or compObj. Species objects are
identified by name within the Event, ReactionRate, and Rule
properties.

For information on naming species, see Name.

You can use the function sbioselect on page 1-247 to find an
object with a specific Name property value.

InitialAmountValue Initial amount value for the species object. Enter double. Positive
real number, default is 0.

PropertyName Enter the name of a valid property. Valid property names are listed
in “Property Summary” on page 2-108.

PropertyValue Enter the value for the property specified in PropertyName. Valid
property values are listed on each property reference page.

Description
speciesObj = addspecies(compObj, 'NameValue') creates speciesObj, a species object,
and adds it to compObj, a compartment object. In the species object, this method assigns NameValue
to the Name property, assigns compObj to the Parent property, and assigns 0 to the InitialAmount
property. In the compartment object, this method adds the species object to the Species property.

speciesObj = addspecies(compObj, 'NameValue', InitialAmountValue), in addition to
the above, assigns InitialAmountValue to the InitialAmount property for the species object.

speciesObj = addspecies(modelObj, 'NameValue') creates speciesObj, a species object,
and adds it to compObj, the compartment object in modelObj, a Model object. If modelObj does
not contain any compartments, it creates compObj with a Name property of 'unnamed'. In the
species object, this method assigns NameValue to the Name property, assigns compObj to the

2 Methods

2-106

Parent property, and assigns 0 to the InitialAmount property. In the compartment object, this
method adds the species object to the Species property.

speciesObj = addspecies(modelObj, 'NameValue', InitialAmountValue), in addition to
the above, assigns InitialAmountValue to the InitialAmount property for the species object.

You can also add a species to a reaction using the methods addreactant on page 2-80 and
addproduct on page 2-78.

A species object must have a unique name at the level at which it is created. For example, a
compartment object cannot contain two species objects named H2O. However, another compartment
can have a species named H2O.

View properties for a species object with the get command, and modify properties for a species
object with the set command. You can view a summary table of species objects in a compartment
(compObj) with get(compObj, 'Species') or the properties of the first species with
get(compObj.Species(1)).

speciesObj = addspecies(...'PropertyName', PropertyValue...) defines optional
properties. The property name/property value pairs can be in any format supported by the function
set (for example, name-value pairs, structures, and name-value cell array pairs). The property
summary on this page shows the list of properties.

If there is more than one compartment object (compObj) in the model, you must qualify the species
name with the compartment name. For example, cell.glucose denotes that you want to put the
species named glucose into a compartment named cell. Additionally, if the compartment named
cell does not exist, the process of adding the reaction creates the compartment and names it cell.

If you change the name of a species you must configure all applicable elements, such as events and
rules that use the species, any user-specified ReactionRate, or the kinetic law object property
SpeciesVariableNames. Use the method setspecies to configure SpeciesVariableNames.

To update species names in the SimBiology graphical user interface, access each appropriate pane
through the Project Explorer. You can also use the Find feature to locate the names that you want
to update. The Output pane opens with the results of Find. Double-click a result row to go to the
location of the model component.

Species names are automatically updated for reactions that use MassAction kinetic law.

Method Summary
Methods for species objects

 addspecies (model, compartment)

2-107

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
findUsages Find out how a species, parameter, or compartment is used in a model
get Get SimBiology object properties
move Move SimBiology species or parameter object to new parent
rename Rename object and update expressions
set Set SimBiology object properties

Property Summary
Properties for species objects

BoundaryCondition Indicate species boundary condition
Constant Specify variable or constant species amount, parameter value, or compartment

capacity
ConstantAmount Specify variable or constant species amount
InitialAmount Species initial amount
InitialAmountUnits Species initial amount units
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Tag Specify label for SimBiology object
Type Display SimBiology object type
Units Units for species amount, parameter value, compartment capacity, observable

expression
UserData Specify data to associate with object
Value Value of species, compartment, or parameter object

Examples
Add two species to a model, where one is a reactant and the other is the enzyme catalyzing the
reaction.

1 Create a model object named my_model and add a compartment object.

modelObj = sbiomodel ('my_model');
compObj = addcompartment(modelObj, 'comp1');

2 Add two species objects named glucose_6_phosphate and
glucose_6_phosphate_dehydrogenase.

speciesObj1 = addspecies (compObj, 'glucose_6_phosphate');
speciesObj2 = addspecies (compObj, ...
 'glucose_6_phosphate_dehydrogenase');

3 Set the initial amount of glucose_6_phosphate to 100 and verify.

2 Methods

2-108

set (speciesObj1, 'InitialAmount',100);
get (speciesObj1, 'InitialAmount')

MATLAB returns:

ans =

 100
4 Use get to note that modelObj contains the species object array.

get(compObj, 'Species')

MATLAB returns:
SimBiology Species Array

Index: Name: InitialAmount: InitialAmountUnits:
 1 glucose_6_phosphate 100
 2 glucose_6_phosphate_dehydrogenase 0

5 Retrieve information about the first species in the array.

get(compObj.Species(1))
 Annotation: ''
 BoundaryCondition: 0
 ConstantAmount: 0
 InitialAmount: 100
 InitialAmountUnits: ''
 Name: 'glucose_6_phosphate'
 Notes: ''
 Parent: [1x1 SimBiology.Compartment]
 Tag: ''
 Type: 'species'
 UserData: []

Version History
Component naming restriction
Behavior change in future release

In a future release, there will be a naming restriction on the following model component types:
model, compartment, species, parameter, reaction, rule, event, observable, dose, and variant. The
restriction is that within a single model, these components will be required to have unique names
even when they are of different types with the following two exceptions:

• Species in different parent compartments can have the same name.
• Parameters with different parents can have the same name. Specifically, you can use the same

name for a model-scoped parameter and reaction-scoped parameters, where each reaction-scoped
parameter belongs to a different reaction.

See Also
Model object | Compartment object | addcompartment | addproduct | addreactant |
addreaction

Introduced in R2006a

 addspecies (model, compartment)

2-109

addvariant (model)
Add variant to model

Syntax
variantObj = addvariant(modelObj, 'NameValue')
variantObj2 = addvariant(modelObj, variantObj)

Arguments

modelObj Specify the Model object to which you want add a variant.
variantObj Variant object to create and add to the model object.
NameValue Name of the variant object. NameValue is assigned to the Name

property of the variant object.

Description
variantObj = addvariant(modelObj, 'NameValue') creates a SimBiology variant object
(variantObj) with the name NameValue and adds the variant object to the SimBiology Model
object modelObj. The variant object Parent property is assigned the value of modelObj.

A SimBiology variant object stores alternate values for properties on a SimBiology model. For more
information on variants, see Variant object.

variantObj2 = addvariant(modelObj, variantObj) adds a SimBiology variant object
(variantObj) to the SimBiology model object and returns another variant object variantObj2. The
variant object variantObj2 Parent property is assigned the value of modelObj. The Active
property of variantObj2 is set to false by default.

View properties for a variant object with the get command, and modify properties for a variant object
with the set command.

Note

• Remember to use the addcontent method instead of using the set method on the Content
property, because the set method replaces the data in the Content property, whereas
addcontent appends the data.

• When there are multiple active variant objects on a model, if there are duplicate specifications for
a property's value, the last occurrence for the property value in the array of variants, is used
during simulation.

To view the variants stored on a model object, use the getvariant method. To copy a variant object
to another model, use copyobj. To remove a variant object from a SimBiology model, use the
delete method.

2 Methods

2-110

Examples
1 Create a model containing one species.

modelObj = sbiomodel('mymodel');
compObj = addcompartment(modelObj, 'comp1');
speciesObj = addspecies(compObj, 'A');

2 Add a variant object that varies the InitialAmount property of a species named A.

variantObj = addvariant(modelObj, 'v1');
addcontent(variantObj, {'species', 'A', 'InitialAmount', 5});

Version History
Component naming restriction
Behavior change in future release

In a future release, there will be a naming restriction on the following model component types:
model, compartment, species, parameter, reaction, rule, event, observable, dose, and variant. The
restriction is that within a single model, these components will be required to have unique names
even when they are of different types with the following two exceptions:

• Species in different parent compartments can have the same name.
• Parameters with different parents can have the same name. Specifically, you can use the same

name for a model-scoped parameter and reaction-scoped parameters, where each reaction-scoped
parameter belongs to a different reaction.

See Also
Model object | Variant object | addcontent | commit | copyobj | delete | getvariant

Introduced in R2007b

 addvariant (model)

2-111

bar
Create bar plot of multiparametric global sensitivity analysis statistics

Syntax
h = bar(mpgsaObj)
h = bar(mpgsaObj,Name,Value)

Description
h = bar(mpgsaObj) creates a bar plot of the Kolmogorov-Smirnov statistic (Statistics and Machine
Learning Toolbox) (K-S statistic) from multiparametric global sensitivity analysis (MPGSA) and
returns the figure handle h.

• The function plots o for each input parameter if all of its parameter samples are classified in one
category (accepted or rejected).

• The function plots x for negligible p-values smaller than 0.001.
• The function plots two solid vertical lines at x = 0 and x = 1 as limiting reference lines because K-

S statistic values are always between 0 and 1.

h = bar(mpgsaObj,Name,Value) uses additional options specified by one or more name-value
pair arguments.

Examples

Perform Multiparametric Global Sensitivity Analysis (MPGSA)

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Get the active configset and set the target occupancy (TO) as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Simulate the model and plot the TO profile.

sbioplot(sbiosimulate(m1,cs));

2 Methods

2-112

Define an exposure (area under the curve of the TO profile) threshold for the target occupancy.

classifier = 'trapz(time,TO) <= 0.1';

Perform MPGSA to find sensitive parameters with respect to the TO. Vary the parameter values
between predefined bounds to generate 10,000 parameter samples.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
rng(0,'twister'); % For reproducibility
params = {'kel','ksyn','kdeg','km'};
bounds = [0.1, 1;
 0.1, 1;
 0.1, 1;
 0.1, 1];
mpgsaResults = sbiompgsa(m1,params,classifier,Bounds=bounds,NumberSamples=10000)

mpgsaResults =
 MPGSA with properties:

 Classifiers: {'trapz(time,TO) <= 0.1'}
 KolmogorovSmirnovStatistics: [4x1 table]
 ECDFData: {4x4 cell}
 SignificanceLevel: 0.0500
 PValues: [4x1 table]
 SupportHypothesis: [10000x1 table]
 ParameterSamples: [10000x4 table]
 Observables: {'TO'}

 bar

2-113

 SimulationInfo: [1x1 struct]

Plot the quantiles of the simulated model response.

plotData(mpgsaResults,ShowMedian=true,ShowMean=false);

Plot the empirical cumulative distribution functions (eCDFs) of the accepted and rejected samples.
Except for km, none of the parameters shows a significant difference in the eCDFs for the accepted
and rejected samples. The km plot shows a large Kolmogorov-Smirnov (K-S) distance between the
eCDFs of the accepted and rejected samples. The K-S distance is the maximum absolute distance
between two eCDFs curves.

h = plot(mpgsaResults);
% Resize the figure.
pos = h.Position(:);
h.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

2 Methods

2-114

To compute the K-S distance between the two eCDFs, SimBiology uses a two-sided test based on the
null hypothesis that the two distributions of accepted and rejected samples are equal. See kstest2
(Statistics and Machine Learning Toolbox) for details. If the K-S distance is large, then the two
distributions are different, meaning that the classification of the samples is sensitive to variations in
the input parameter. On the other hand, if the K-S distance is small, then variations in the input
parameter do not affect the classification of samples. The results suggest that the classification is
insensitive to the input parameter. To assess the significance of the K-S statistic rejecting the null-
hypothesis, you can examine the p-values.

bar(mpgsaResults)

 bar

2-115

The bar plot shows two bars for each parameter: one for the K-S distance (K-S statistic) and another
for the corresponding p-value. You reject the null hypothesis if the p-value is less than the
significance level. A cross (x) is shown for any p-value that is almost 0. You can see the exact p-value
corresponding to each parameter.

[mpgsaResults.ParameterSamples.Properties.VariableNames',mpgsaResults.PValues]

ans=4×2 table
 Var1 trapz(time,TO) <= 0.1
 ________ _____________________

 {'kel' } 0.0021877
 {'ksyn'} 1
 {'kdeg'} 0.99983
 {'km' } 0

The p-values of km and kel are less than the significance level (0.05), supporting the alternative
hypothesis that the accepted and rejected samples come from different distributions. In other words,
the classification of the samples is sensitive to km and kel but not to other parameters (kdeg and
ksyn).

You can also plot the histograms of accepted and rejected samples. The historgrams let you see
trends in the accepted and rejected samples. In this example, the histogram of km shows that there
are more accepted samples for larger km values, while the kel histogram shows that there are fewer
rejected samples as kel increases.

2 Methods

2-116

h2 = histogram(mpgsaResults);
% Resize the figure.
pos = h2.Position(:);
h2.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

Restore the warning settings.

warning(warnSettings);

Input Arguments
mpgsaObj — Multiparametric global sensitivity analysis results
SimBiology.gsa.MPGSA object

Multiparametric global sensitivity analysis results, specified as a SimBiology.gsa.MPGSA object.

 bar

2-117

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: h = bar(results,'Classifier',1) specifies to create a bar plot of the MPGSA results
of the first classifier.

Parameters — Input model quantities to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Input model quantities, namely parameters, species, or compartments, to plot, specified as the
comma-separated pair consisting of 'Parameters' and a character vector, string, string vector, cell
array of character vectors, or a vector of positive integers indexing into the columns of the
mpgsaObj.ParameterSamples table.
Example: 'Parameters','k1'
Data Types: double | char | string | cell

Classifiers — Classifiers to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Classifiers to plot, specified as the comma-separated pair consisting of 'Classifiers' and a
character vector, string, string vector, cell array of character vectors, or a vector of positive integers.

Specify the expressions of classifiers to plot as a character vector, string, string vector, cell array of
character vectors. Alternatively, you can specify a vector of positive integers indexing into
mpgsaObj.Classifiers.
Example: 'Classifiers',[1 3]
Data Types: double | char | string | cell

Color — Color of Kolmogorov-Smirnov statistic
three-element row vector

Color of Kolmogorov-Smirnov statistic (K-S Statistic), specified as the comma-separated pair
consisting of 'Color' and a three-element row vector. By default, the function uses the first MATLAB
default color. To view the default color order, enter get(groot,'defaultAxesColorOrder') or
see the “ColorOrder” property.
Example: 'Color',[0.4,0.3,0.2]
Data Types: double

PValueColor — Color of p-values
[0.5,0.5,0.5] (default) | three-element row vector

Color of p-values, specified as the comma-separated pair consisting of 'PValueColor' and a three-
element row vector. The default color is gray [0.5,0.5,0.5].
Example: 'PValueColor',[0.4,0.3,0.2]
Data Types: double

2 Methods

2-118

Output Arguments
h — Handle
figure handle

Handle to the figure, specified as a figure handle.

References
[1] Tiemann, Christian A., Joep Vanlier, Maaike H. Oosterveer, Albert K. Groen, Peter A. J. Hilbers, and

Natal A. W. van Riel. “Parameter Trajectory Analysis to Identify Treatment Effects of
Pharmacological Interventions.” Edited by Scott Markel. PLoS Computational Biology 9, no. 8
(August 1, 2013): e1003166. https://doi.org/10.1371/journal.pcbi.1003166.

See Also
SimBiology.gsa.MPGSA | sbiompgsa | plotData | bar | histogram | kstest2 | ecdf

Introduced in R2020a

 bar

2-119

bar
Plot magnitudes of means and standard deviations of elementary effects

Syntax
h = bar(eeObj)
h = bar(eeObj,Name=Value)

Description
h = bar(eeObj) plots the means and standard deviations of elementary effects as a bar graph and
returns the figure handle h. The color shading of each bar represents a histogram representing
values at different times. Darker colors mean that those values occur more often over the whole time
course. The plot shows a single dot for scalar or constant model responses instead of a bar.

h = bar(eeObj,Name=Value) uses additional options specified by one or more name-value
arguments.

Examples

Perform GSA by Computing Elementary Effects

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

2 Methods

2-120

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, define model parameters of interest, which are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1'};
outputName = 'tumor_weight';

Then perform GSA by computing the elementary effects using sbioelementaryeffects. Use 100
as the number of samples and set ShowWaitBar to true to show the simulation progress.

rng('default');
eeResults = sbioelementaryeffects(m1,modelParamNames,outputName,Variants=v,Doses=d,NumberSamples=100,ShowWaitbar=true);

Show the median model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(eeResults,ShowMedian=true,ShowMean=false);

 bar

2-121

You can adjust the quantile region to a different percentage by specifying Alphas for the lower and
upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100*alpha and 100*(1-alpha) quantiles of all simulated model responses.

plotData(eeResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

2 Methods

2-122

Plot the time course of the means and standard deviations of the elementary effects.

h = plot(eeResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 bar

2-123

The mean of effects explains whether variations in input parameter values have any effect on the
tumor weight response. The standard deviation of effects explains whether the sensitivity change is
dependent on the location in the parameter domain.

From the mean of effects plots, parameters L1 and w0 seem to be the most sensitive parameters to
the tumor weight before the dose is applied at t = 7. But, after the dose is applied, k1 and L0 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
plots of standard deviation of effects show more deviations for the larger parameter values in the
later stage (t > 35) than for the before-dose stage of the tumor growth.

You can also display the magnitudes of the sensitivities in a bar plot. Each color shading represents a
histogram representing values at different times. Darker colors mean that those values occur more
often over the whole time course.

bar(eeResults);

2 Methods

2-124

You can also plot the parameter grids and samples used to compute the elementary effects.

plotGrid(eeResults)

 bar

2-125

You can specify more samples to increase the accuracy of the elementary effects, but the simulation
can take longer to finish. Use addsamples to add more samples.

eeResults2 = addsamples(eeResults,200);

The SimulationInfo property of the result object contains various information for computing the
elementary effects. For instance, the model simulation data (SimData) for each simulation using a set
of parameter samples is stored in the SimData field of the property. This field is an array of SimData
objects.

eeResults2.SimulationInfo.SimData

 SimBiology SimData Array : 1500-by-1

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 1500 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(eeResults2.SimulationInfo.ValidSample)

2 Methods

2-126

ans = logical
 1

You can add custom expressions as observables and compute the elementary effects of the added
observables. For example, you can compute the effects for the maximum tumor weight by defining a
custom expression as follows.

% Suppress an information warning that is issued.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
eeObs = addobservable(eeResults2,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(eeObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1500 800];

You can also remove the observable by specifying its name.

eeNoObs = removeobservable(eeObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Input Arguments
eeObj — Results containing means and standard deviations of elementary effects
SimBiology.gsa.ElementaryEffects object

 bar

2-127

Results containing the means and standard deviations of elementary effects, specified as a
SimBiology.gsa.ElementaryEffects object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: h = bar(results,'Observables','tumor_weight') specifies to plot the bar graph
of the mean and standard deviation of elementary effects corresponding to the tumor weight
response.

Parameters — Input parameters to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Input parameters to plot, specified as a character vector, string, string vector, cell array of character
vectors, or vector of positive integers indexing into the columns of the
resultsObject.ParameterSamples table. Use this name-value argument to select parameters
and plot their corresponding GSA results. By default, all input parameters are included in the plot.
Data Types: double | char | string | cell

Observables — Model responses or observables to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Model responses or observables to plot, specified as a character vector, string, string vector, cell
array of character vectors, or vector of positive integers indexing into
resultsObject.Observables. By default, the function plots GSA results for all model responses or
observables.
Data Types: double | char | string | cell

ShowMean — Flag to plot means of elementary effects
true (default) | false

Flag to plot the means of elementary effects, specified as true or false.
Data Types: logical

ShowStandardDeviation — Flag to plot standard deviations of elementary effects
true (default) | false

Flag to plot the standard deviations of elementary effects, specified as true or false.
Data Types: logical

MeanColor — Color of means of elementary effects
three-element row vector

Color of the means of elementary effects, specified as a three-element row vector. By default, the
function uses the first MATLAB default color. To view the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Data Types: double

StandardDeviationColor — Color of standard deviations of elementary effects
three-element row vector

2 Methods

2-128

Color of the standard deviations of elementary effects, specified as a three-element row vector. By
default, the function uses the second MATLAB default color. To view the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Data Types: double

Output Arguments
h — Handle
figure handle

Handle to the figure, specified as a figure handle.

See Also
SimBiology.gsa.Sobol | SimBiology.gsa.ElementaryEffects | sbioelementaryeffects

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2021b

 bar

2-129

bar
Create bar plot of first- and total-order Sobol indices

Syntax
h = bar(sobolObj)
h = bar(sobolObj,Name,Value)

Description
h = bar(sobolObj) plots the first- and total-order Sobol indices as a bar plot and returns the
figure handle h. The color shading of each bar represents a histogram representing values at
different times. Darker colors mean that those values occur more often over the whole time course.
The plot shows a single dot for scalar or constant model responses instead of a bar.

h = bar(sobolObj,Name,Value) uses additional options specified by one or more name-value
pair arguments.

Examples

Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with the estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

2 Methods

2-130

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, retrieve model parameters of interest that are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1','k2'};
outputName = 'tumor_weight';

Then perform GSA by computing the first- and total-order Sobol indices using sbiosobol. Set
'ShowWaitBar' to true to show the simulation progress. By default, the function uses 1000
parameter samples to compute the Sobol indices [1].

rng('default');
sobolResults = sbiosobol(m1,modelParamNames,outputName,Variants=v,Doses=d,ShowWaitBar=true)

sobolResults =
 Sobol with properties:

 Time: [444x1 double]
 SobolIndices: [5x1 struct]
 Variance: [444x1 table]
 ParameterSamples: [1000x5 table]
 Observables: {'[Tumor Growth Model].tumor_weight'}
 SimulationInfo: [1x1 struct]

 bar

2-131

You can change the number of samples by specifying the 'NumberSamples' name-value pair
argument. The function requires a total of (number of input parameters + 2) *
NumberSamples model simulations.

Show the mean model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(sobolResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying 'Alphas' for the lower
and upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100 * alpha and 100 * (1 - alpha) quantiles of all simulated model responses.

plotData(sobolResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

2 Methods

2-132

Plot the time course of the first- and total-order Sobol indices.

h = plot(sobolResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 bar

2-133

The first-order Sobol index of an input parameter gives the fraction of the overall response variance
that can be attributed to variations in the input parameter alone. The total-order index gives the
fraction of the overall response variance that can be attributed to any joint parameter variations that
include variations of the input parameter.

From the Sobol indices plots, parameters L1 and w0 seem to be the most sensitive parameters to the
tumor weight before the dose was applied at t = 7. But after the dose is applied, k1 and k2 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
total variance plot also shows a larger variance for the after-dose stage at t > 35 than for the before-
dose stage of the tumor growth, indicating that k1 and k2 might be more important parameters to
investigate further. The fraction of unexplained variance shows some variance at around t = 33, but
the total variance plot shows little variance at t = 33, meaning the unexplained variance could be
insignificant. The fraction of unexplained variance is calculated as 1 - (sum of all the first-order Sobol
indices), and the total variance is calculated using var(response), where response is the model
response at every time point.

You can also display the magnitudes of the sensitivities in a bar plot. Darker colors mean that those
values occur more often over the whole time course.

bar(sobolResults);

2 Methods

2-134

You can specify more samples to increase the accuracy of the Sobol indices, but the simulation can
take longer to finish. Use addsamples to add more samples. For example, if you specify 1500
samples, the function performs 1500 * (2 + number of input parameters) simulations.

gsaMoreSamples = addsamples(gsaResults,1500)

The “SimulationInfo” on page 2-0 property of the result object contains various information for
computing the Sobol indices. For instance, the model simulation data (SimData) for each simulation
using a set of parameter samples is stored in the SimData field of the property. This field is an array
of SimData objects.

sobolResults.SimulationInfo.SimData

 SimBiology SimData Array : 1000-by-7

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 7000 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(sobolResults.SimulationInfo.ValidSample)

 bar

2-135

ans = 1x7 logical array

 1 1 1 1 1 1 1

SimulationInfo.ValidSample is a table of logical values. It has the same size as
SimulationInfo.SimData. If ValidSample indicates that any simulations failed, you can get more
information about those simulation runs and the samples used for those runs by extracting
information from the corresponding column of SimulationInfo.SimData. Suppose that the fourth
column contains one or more failed simulation runs. Get the simulation data and sample values used
for that simulation using getSimulationResults.

[samplesUsed,sd,validruns] = getSimulationResults(sobolResults,4);

You can add custom expressions as observables and compute Sobol indices for the added observables.
For example, you can compute the Sobol indices for the maximum tumor weight by defining a custom
expression as follows.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
sobolObs = addobservable(sobolResults,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(sobolObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1280 800];

2 Methods

2-136

You can also remove the observable by specifying its name.

gsaNoObs = removeobservable(sobolObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Input Arguments
sobolObj — Results containing Sobol indices
SimBiology.gsa.Sobol object

Results containing the first- and total-order Sobol indices, specified as a SimBiology.gsa.Sobol
object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: h = bar(results,'Observables','tumor_weight') creates a bar plot of the Sobol
indices corresponding to the tumor weight response.

Parameters — Input parameters to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Input parameters to plot, specified as a character vector, string, string vector, cell array of character
vectors, or vector of positive integers indexing into the columns of the
resultsObject.ParameterSamples table. Use this name-value argument to select parameters
and plot their corresponding GSA results. By default, all input parameters are included in the plot.
Data Types: double | char | string | cell

Observables — Model responses or observables to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Model responses or observables to plot, specified as a character vector, string, string vector, cell
array of character vectors, or vector of positive integers indexing into
resultsObject.Observables. By default, the function plots GSA results for all model responses or
observables.
Data Types: double | char | string | cell

FirstOrderColor — Color first-order Sobol indices
three-element row vector

Color of the first-order Sobol indices, specified as the comma-separated pair consisting of
'FirstOrderColor' and a three-element row vector. By default, the function uses the first MATLAB
default color for the first order and the second default color for the total order. To view the default
color order, enter get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Example: 'FirstOrderColor',[0.4,0.3,0.2]

 bar

2-137

Data Types: double

TotalOrderColor — Color of total-order Sobol indices
three-element row vector

Color of the total-order Sobol indices, specified as the comma-separated pair consisting of
'TotalOrderColor' and a three-element row vector. By default, the function uses the second
MATLAB default color. To view the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Example: 'TotalOrderColor',[0.2,0.5,0.8]
Data Types: double

Output Arguments
h — Handle
figure handle

Handle to the figure, specified as a figure handle.

References
[1] Saltelli, Andrea, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano

Tarantola. “Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the
Total Sensitivity Index.” Computer Physics Communications 181, no. 2 (February 2010): 259–
70. https://doi.org/10.1016/j.cpc.2009.09.018.

See Also
SimBiology.gsa.Sobol | sbiosobol | plot | plotData

Introduced in R2020a

2 Methods

2-138

boxplot
Create box plot showing the variation of estimated SimBiology model parameters

Syntax
boxplot(resultsObj)

Description
boxplot(resultsObj) creates a box plot showing the variation of the estimated SimBiology model
parameters.

Examples

Estimate Two-Compartment PK Parameters

Load the sample data set.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];

Create a two-compartment PK model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,"Central");
pkc1.DosingType = "Infusion";
pkc1.EliminationType = "linear-clearance";
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,"Peripheral");
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;
responseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];

Provide model parameters to estimate.

paramsToEstimate = ["log(Central)","log(Peripheral)","Q12","Cl_Central"];
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg
at a rate of 50 mg/hour.

dose = sbiodose("dose","TargetName","Drug_Central");
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = "milligram";
dose.TimeUnits = "hour";
dose.RateUnits = "milligram/hour";

 boxplot

2-139

Estimate model parameters. By default, the function estimates a set of parameter for each individual
(unpooled fit).

fitResults = sbiofit(model,gData,responseMap,estimatedParam,dose);

Plot the results.

plot(fitResults);

Plot all groups in one plot.

plot(fitResults,"PlotStyle","one axes");

2 Methods

2-140

Change some axes properties.

s = struct;
s.Properties.XGrid = "on";
s.Properties.YGrid = "on";
plot(fitResults,"PlotStyle","one axes","AxesStyle",s);

 boxplot

2-141

Compare the model predictions to the actual data.

plotActualVersusPredicted(fitResults)

2 Methods

2-142

Use boxplot to show the variation of estimated model parameters.

boxplot(fitResults)

 boxplot

2-143

Plot the distribution of residuals. This normal probability plot shows the deviation from normality and
the skewness on the right tail of the distribution of residuals. The default (constant) error model
might not be the correct assumption for the data being fitted.

plotResidualDistribution(fitResults)

2 Methods

2-144

Plot residuals for each response using the model predictions on x-axis.

plotResiduals(fitResults,"Predictions")

 boxplot

2-145

Get the summary of the fit results. stats.Name contains the name for each table from
stats.Table, which contains a list of tables with estimated parameter values and fit quality
statistics.

stats = summary(fitResults);
stats.Name

ans =
'Unpooled Parameter Estimates'

ans =
'Statistics'

ans =
'Unpooled Beta'

ans =
'Residuals'

ans =
'Covariance Matrix'

ans =
'Error Model'

stats.Table

2 Methods

2-146

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 1.422 0.12334 1.5619 0.36355 0.47163 0.15196 0.5291 0.036978
 {'2'} 1.8322 0.019672 5.3364 0.65327 0.2764 0.030799 0.86035 0.026257
 {'3'} 1.6657 0.038529 5.5632 0.37063 0.78361 0.058657 1.0233 0.027311

ans=3×7 table
 Group AIC BIC LogLikelihood DFE MSE SSE
 _____ _______ _______ _____________ ___ ________ _______

 {'1'} 60.961 64.051 -26.48 12 2.138 25.656
 {'2'} -7.8379 -4.7475 7.9189 12 0.029012 0.34814
 {'3'} -1.4336 1.6567 4.7168 12 0.043292 0.5195

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 0.35208 0.086736 0.44589 0.23277 0.47163 0.15196 0.5291 0.036978
 {'2'} 0.60551 0.010737 1.6746 0.12242 0.2764 0.030799 0.86035 0.026257
 {'3'} 0.51027 0.02313 1.7162 0.066621 0.78361 0.058657 1.0233 0.027311

ans=24×4 table
 ID Time CentralConc PeripheralConc
 __ ____ ___________ ______________

 1 0 0 0
 1 1 0.10646 -0.74394
 1 4 1.3745 1.2726
 1 8 -0.68825 -4.2435
 1 12 0.67383 0.21806
 1 18 0.88823 1.0269
 1 24 0.48941 0.66755
 1 36 0.13632 0.22948
 2 0 0 0
 2 1 -0.026731 -0.058311
 2 4 -0.033299 -0.20544
 2 8 -0.20466 0.20696
 2 12 -0.12223 0.045409
 2 18 0.041224 0.33883
 2 24 -0.059498 0.0036257
 2 36 -0.051645 0.27616
 ⋮

ans=12×6 table
 Group Parameters log(Central) log(Peripheral) Q12 Cl_Central
 _____ ___________________ ____________ _______________ ___________ ___________

 {'1'} {'log(Central)' } 0.015213 -0.022539 -0.0086672 0.001159
 {'1'} {'log(Peripheral)'} -0.022539 0.13217 0.045746 -0.0073135
 {'1'} {'Q12' } -0.0086672 0.045746 0.023092 -0.0021484
 {'1'} {'Cl_Central' } 0.001159 -0.0073135 -0.0021484 0.0013674
 {'2'} {'log(Central)' } 0.00038701 -0.002161 -0.00010177 9.7448e-05

 boxplot

2-147

 {'2'} {'log(Peripheral)'} -0.002161 0.42676 0.019101 -0.015755
 {'2'} {'Q12' } -0.00010177 0.019101 0.00094857 -0.00073328
 {'2'} {'Cl_Central' } 9.7448e-05 -0.015755 -0.00073328 0.00068942
 {'3'} {'log(Central)' } 0.0014845 -0.0054648 -0.0013216 0.00016639
 {'3'} {'log(Peripheral)'} -0.0054648 0.13737 0.016903 -0.0072722
 {'3'} {'Q12' } -0.0013216 0.016903 0.0034406 -0.00082538
 {'3'} {'Cl_Central' } 0.00016639 -0.0072722 -0.00082538 0.00074587

ans=3×5 table
 Group Response ErrorModel a b
 _____ __________ ____________ _______ ___

 {'1'} {0x0 char} {'constant'} 1.2663 NaN
 {'2'} {0x0 char} {'constant'} 0.14751 NaN
 {'3'} {0x0 char} {'constant'} 0.18019 NaN

Input Arguments
resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object or NLINResults object, or vector of
results objects which contains estimation results from running sbiofit.

See Also
NLINResults object | OptimResults object | sbiofit

Introduced in R2014a

2 Methods

2-148

boxplot(NLMEResults)
Create box plot showing the variation of estimated SimBiology model parameters

Syntax
boxplot(resultsObj)

Description
boxplot(resultsObj) creates a box plot showing the variation of the estimated SimBiology model
parameters.

Input Arguments
resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation results from
running sbiofitmixed.

See Also
NLMEResults object | sbiofitmixed

Introduced in R2014a

 boxplot(NLMEResults)

2-149

ci2table
Package: SimBiology.fit

Return summary table of confidence interval results

Syntax
tbl = ci2table(paraCI)

Description
tbl = ci2table(paraCI) returns a summary table of confidence interval results from paraCI, a
ParameterConfidenceInterval object or vector of objects.

Examples

Compute Confidence Intervals for Estimated PK Parameters and Model Predictions

Load Data

Load the sample data to fit. The data is stored as a table with variables ID , Time , CentralConc , and
PeripheralConc. This synthetic data represents the time course of plasma concentrations measured at
eight different time points for both central and peripheral compartments after an infusion dose for
three individuals.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},'Marker','+',...
 'LineStyle','none');

2 Methods

2-150

Create Model

Create a two-compartment model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Define Dosing

Define the infusion dose.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';

 ci2table

2-151

Define Parameters

Define the parameters to estimate. Set the parameter bounds for each parameter. In addition to these
explicit bounds, the parameter transformations (such as log, logit, or probit) impose implicit bounds.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};
paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,...
 'InitialValue',[1 1 1 1],...
 'Bounds',[0.1 3;0.1 10;0 10;0.1 2]);

Fit Model

Perform an unpooled fit, that is, one set of estimated parameters for each patient.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Perform a pooled fit, that is, one set of estimated parameters for all patients.

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Compute Confidence Intervals for Estimated Parameters

Compute 95% confidence intervals for each estimated parameter in the unpooled fit.

ciParamUnpooled = sbioparameterci(unpooledFit);

Display Results

Display the confidence intervals in a table format. For details about the meaning of each estimation
status, see “Parameter Confidence Interval Estimation Status” on page 2-611.

ci2table(ciParamUnpooled)

ans =

 12x7 table

 Group Name Estimate ConfidenceInterval Type Alpha Status
 _____ ______________ ________ __________________ ________ _____ ___________

 1 {'Central' } 1.422 1.1533 1.6906 Gaussian 0.05 estimable
 1 {'Peripheral'} 1.5629 0.83143 2.3551 Gaussian 0.05 constrained
 1 {'Q12' } 0.47159 0.20093 0.80247 Gaussian 0.05 constrained
 1 {'Cl_Central'} 0.52898 0.44842 0.60955 Gaussian 0.05 estimable
 2 {'Central' } 1.8322 1.7893 1.8751 Gaussian 0.05 success
 2 {'Peripheral'} 5.3368 3.9133 6.7602 Gaussian 0.05 success
 2 {'Q12' } 0.27641 0.2093 0.34351 Gaussian 0.05 success
 2 {'Cl_Central'} 0.86034 0.80313 0.91755 Gaussian 0.05 success
 3 {'Central' } 1.6657 1.5818 1.7497 Gaussian 0.05 success
 3 {'Peripheral'} 5.5632 4.7557 6.3708 Gaussian 0.05 success
 3 {'Q12' } 0.78361 0.65581 0.91142 Gaussian 0.05 success
 3 {'Cl_Central'} 1.0233 0.96375 1.0828 Gaussian 0.05 success

Plot the confidence intervals. If the estimation status of a confidence interval is success, it is plotted
in blue (the first default color). Otherwise, it is plotted in red (the second default color), which

2 Methods

2-152

indicates that further investigation into the fitted parameters may be required. If the confidence
interval is not estimable, then the function plots a red line with a centered cross. If there are any
transformed parameters with estimated values 0 (for the log transform) and 1 or 0 (for the probit or
logit transform), then no confidence intervals are plotted for those parameter estimates. To see the
color order, type get(groot,'defaultAxesColorOrder').

Groups are displayed from left to right in the same order that they appear in the GroupNames
property of the object, which is used to label the x-axis. The y-labels are the transformed parameter
names.

plot(ciParamUnpooled)

Compute the confidence intervals for the pooled fit.

ciParamPooled = sbioparameterci(pooledFit);

Display the confidence intervals.

ci2table(ciParamPooled)

ans =

 4x7 table

 Group Name Estimate ConfidenceInterval Type Alpha Status
 ______ ______________ ________ __________________ ________ _____ ___________

 ci2table

2-153

 pooled {'Central' } 1.6626 1.3287 1.9965 Gaussian 0.05 estimable
 pooled {'Peripheral'} 2.687 0.89848 4.8323 Gaussian 0.05 constrained
 pooled {'Q12' } 0.44956 0.11445 0.85152 Gaussian 0.05 constrained
 pooled {'Cl_Central'} 0.78493 0.59222 0.97764 Gaussian 0.05 estimable

Plot the confidence intervals. The group name is labeled as "pooled" to indicate such fit.

plot(ciParamPooled)

Plot all the confidence interval results together. By default, the confidence interval for each
parameter estimate is plotted on a separate axes. Vertical lines group confidence intervals of
parameter estimates that were computed in a common fit.

ciAll = [ciParamUnpooled;ciParamPooled];
plot(ciAll)

2 Methods

2-154

You can also plot all confidence intervals in one axes grouped by parameter estimates using the
'Grouped' layout.

plot(ciAll,'Layout','Grouped')

 ci2table

2-155

In this layout, you can point to the center marker of each confidence interval to see the group name.
Each estimated parameter is separated by a vertical black line. Vertical dotted lines group confidence
intervals of parameter estimates that were computed in a common fit. Parameter bounds defined in
the original fit are marked by square brackets. Note the different scales on the y-axis due to
parameter transformations. For instance, the y-axis of Q12 is in the linear scale, but that of Central
is in the log scale due to its log transform.

Compute Confidence Intervals for Model Predictions

Calculate 95% confidence intervals for the model predictions, that is, simulation results using the
estimated parameters.

% For the pooled fit
ciPredPooled = sbiopredictionci(pooledFit);
% For the unpooled fit
ciPredUnpooled = sbiopredictionci(unpooledFit);

Plot Confidence Intervals for Model Predictions

The confidence interval for each group is plotted in a separate column, and each response is plotted
in a separate row. Confidence intervals limited by the bounds are plotted in red. Confidence intervals
not limited by the bounds are plotted in blue.

plot(ciPredPooled)

2 Methods

2-156

plot(ciPredUnpooled)

 ci2table

2-157

Input Arguments
paraCI — Parameter confidence interval results
ParameterConfidenceInterval object | vector

Parameter confidence interval results, specified as a ParameterConfidenceInterval object or a
vector of objects.

Output Arguments
tbl — Summary table for confidence interval results

Summary table for confidence interval results, returned as a table. The table contains the following
columns.

Column Name Description
Group Group name
Name Estimated parameter name
Estimate Estimated parameter value
ConfidenceInterval Confidence interval values
Type Confidence interval type

2 Methods

2-158

Column Name Description
Alpha Confidence level
Status Confidence interval estimation status (for details,

see “Parameter Confidence Interval Estimation
Status” on page 2-611)

See Also
ParameterConfidenceInterval | sbioparameterci

Introduced in R2017b

 ci2table

2-159

commit (variant)
Commit variant contents to model

Syntax
commit(variantObj, modelObj)

Arguments

modelObj Specify the model object to which you want to commit a variant.
variantObj Variant object to commit to the model object.

Description
commit(variantObj, modelObj) commits the Contents property of a SimBiology variant object
(variantObj) to the model object modelObj. The property values stored in the variant object
replace the values stored in the model.

A SimBiology variant object stores alternate values for properties on a SimBiology model. For more
information on variants, see Variant object.

The Contents are set on the model object in order of occurrence, with duplicate entries overwriting.
If the commit method finds an incorrectly specified entry, an error occurs and the remaining
properties defined in the Contents property are not set.

Examples
1 Create a model containing one species.

modelObj = sbiomodel('mymodel');
compObj = addcompartment(modelObj, 'comp1');
speciesObj = addspecies(compObj, 'A', 10);

2 Add a variant object that varies the InitialAmount property of a species named A.

variantObj = addvariant(modelObj, 'v1');
addcontent(variantObj, {'species', 'A', 'InitialAmount', 5});

3 Commit the contents of the variant (variantObj).

commit (variantObj, modelObj);

See Also
addvariant, Variant object

Introduced in R2007b

2 Methods

2-160

Compartment object
Object containing compartment information

Description
The SimBiology compartment object represents a container for species in a model. Compartment size
can vary or remain constant during a simulation. All models must have at least one compartment and
all species in a model must be assigned to a compartment. Compartment names must be unique
within a model.

Compartments allow you to define the size (Capacity) of physically isolated regions that may affect
simulation, and associate pools of species within those regions. You can specify or change Capacity
using rules, events, and variants, similar to species amounts or parameter values.

The model object stores compartments as a flat list. Each compartment stores information on its own
organization; in other words a compartment has information on which compartment it lives within
(Owner) and who it contains (Compartments).

The flat list of compartments in the model object lets you vary the way compartments are organized
in your model without invalidating any expressions.

To add species that participate in reactions, add the reaction to the model using the addreaction
method. When you define a reaction with a new species:

• If no compartment objects exist in the model, the addreaction method creates a compartment
object (called 'unnamed') in the model and adds the newly created species to that compartment.

• If only one compartment object exists in the model, the method creates a species object in that
compartment.

• If there is more than one compartment object in the model, you must qualify the species name
with the compartment name.

For example, cell.glucose denotes that you want to put the species named glucose into a
compartment named cell. Additionally, if the compartment named cell does not exist, the
process of adding the reaction creates the compartment and names it cell.

Alternatively, create and add a species object to a compartment object, using the addspecies
method at the command line.

When you use the SimBiology desktop to create a new model, it adds an empty compartment
(unnamed), to which you can add species.

You can specify reactions that cross compartments using the syntax
compartment1Name.species1Name –> compartment2Name.species2Name. If you add a reaction
that contains species from different compartments, and the reaction rate dimensions are
concentration/time, all reactants should be from the same compartment.

In addition, if the reaction is reversible then there are two cases:

• If the kinetic law is MassAction, and the reaction rate reaction rate dimensions are
concentration/time, then the products must be from the same compartment.

 Compartment object

2-161

• If the kinetic law is not MassAction, then both reactants and products must be in the same
compartment.

See “Property Summary” on page 2-162 for links to compartment property reference pages.
Properties define the characteristics of an object. Use the get and set commands to list object
properties and change their values at the command line. You can graphically change object properties
in the graphical user interface.

Constructor Summary
addcompartment (model, compartment)

Create compartment object

Method Summary
Methods for compartment objects

addcompartment (model,
compartment)

Create compartment object

addspecies (model,
compartment)

Create species object and add to compartment object within model
object

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
findUsages Find out how a species, parameter, or compartment is used in a

model
get Get SimBiology object properties
move Move SimBiology compartment object to new owner
rename Rename object and update expressions
reorder (model, compartment,
kinetic law)

Reorder component lists

set Set SimBiology object properties

Property Summary
Properties for compartment objects

2 Methods

2-162

Capacity Compartment capacity
CapacityUnits Compartment capacity units
Compartments Array of compartments in model or compartment
Constant Specify variable or constant species amount, parameter value, or compartment

capacity
ConstantCapacity Specify variable or constant compartment capacity
Name Specify name of object
Notes HTML text describing SimBiology object
Owner Owning compartment
Parent Indicate parent object
Species Array of species in compartment object
Tag Specify label for SimBiology object
Type Display SimBiology object type
Units Units for species amount, parameter value, compartment capacity, observable

expression
UserData Specify data to associate with object
Value Value of species, compartment, or parameter object

See Also
AbstractKineticLaw object, Configset object, KineticLaw object, Model object,
Parameter object, Reaction object, Root object, Rule object

Introduced in R2008a

 Compartment object

2-163

ConfidenceInterval
Object containing confidence interval results

Description
The ConfidenceInterval object is a superclass of two confidence interval objects:
PredictionConfidenceInterval and ParameterConfidenceInterval. These objects contain
confidence interval results computed with sbiopredictionci and sbioparameterci, respectively.

Properties
Type — Confidence interval type
'gaussian' | 'profilelikelihood' | 'bootstrap'

This property is read-only.

Confidence interval type, specified as 'gaussian', 'profileLikelihood' (for
ParameterConfidenceInterval only), or 'bootstrap'
Example: 'bootstrap'

GroupNames — Original group names from data used for fitting
cell array of character vectors

This property is read-only.

Original group names from the data used for fitting the model, specified as a cell array of character
vectors. Each cell contains the name of a group.
Example: {'1'}{'2'}{'3'}

Alpha — Confidence level
positive scalar

This property is read-only.

Confidence level, (1-Alpha) * 100%, specified as a positive scalar between 0 and 1.
Example: 0.01

Results — Confidence interval data
table

This property is read-only.

Confidence interval data, specified as a table.

ExitFlags — Exit flags returned during calculation of bootstrap confidence intervals
vector

This property is read-only.

2 Methods

2-164

Exit flags returned during the calculation of bootstrap confidence intervals only, specified as a
vector of integers. Each integer is an exit flag returned by the estimation function (except nlinfit)
used to fit parameters during bootstrapping. The same estimation function used in the original fit is
used for bootstrapping.

Each flag indicates the success or failure status of the fitting performed to create a bootstrap sample.
Refer to the reference page of the corresponding estimation function for the meaning of the exit flag.

If the estimation function does not return an exit flag, ExitFlags is set to []. For the gaussian and
profileLikelihood confidence intervals, ExitFlags is not supported and is always set to [].

See Also
sbioparameterci | sbiopredictionci | ParameterConfidenceInterval |
PredictionConfidenceInterval

Introduced in R2017b

 ConfidenceInterval

2-165

Configset object
Solver settings information for model simulation

Description
The SimBiology configset object, also known as the configuration set object, contains the options that
the solver uses during simulation of the model object. The configuration set object contains the
following options for you to choose:

• Type of solver
• Stop time for the simulation
• Solver error tolerances, and for ode solvers — the maximum time step the solver should take
• Whether to perform sensitivity analysis during simulation
• Whether to perform dimensional analysis and unit conversion during simulation
• Species and parameter input factors for sensitivity analysis

A SimBiology model can contain multiple configsets with one being active at any given time. The
active configset contains the settings that are used during the simulation. Use the method
setactiveconfigset to define the active configset. Use the method getconfigset to return a list
of configsets contained by a model. Use the method addconfigset to add a new configset to a
model.

Warning The Active property of the configset object will be removed in a future release.
Explicitly specify a configset object as an input argument when you simulate a model using
sbiosimulate.

See “Property Summary” on page 2-167 for links to configset object property reference pages.

Properties define the characteristics of an object. Use the get and set commands to list object
properties and change their values at the command line. You can graphically change object properties
in the SimBiology desktop.

Constructor Summary

addconfigset (model) Create configuration set object and add to model object

Method Summary

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
set Set SimBiology object properties

2 Methods

2-166

Property Summary
Active Indicate object in use during simulation
AmountUnits Amount unit used internally during simulation when UnitConversion is on
CompileOptions Dimensional analysis and unit conversion options
MassUnits Mass unit used internally during simulation when UnitConversion is on
MaximumNumberOfLogs Maximum number of logs criteria to stop simulation
MaximumWallClock Maximum elapsed wall clock time to stop simulation
Name Specify name of object
Notes HTML text describing SimBiology object
RuntimeOptions Options for logged species
SensitivityAnalysisOptions Specify sensitivity analysis options
SolverOptions Specify model solver options
SolverType Select solver type for simulation
StopTime Simulation time criteria to stop simulation
TimeUnits Show time units for dosing and simulation
Type Display SimBiology object type

See Also
AbstractKineticLaw object, KineticLaw object, Model object, Parameter object,
Reaction object, Root object, Rule object, Species object

Introduced in R2006b

 Configset object

2-167

construct (PKModelDesign)
Construct SimBiology model from PKModelDesign object

Syntax
[modelObj, pkModelMapObject] = construct(pkModelDesignObject)
[modelObj, pkModelMapObject, CovModelObj] = construct(pkModelDesignObject)

Arguments
modelObj SimBiology model object specifying a pharmacokinetic model.
pkModelMapObject Defines the roles of the components in modelObj. For details, see

PKModelMap object.
CovModelObj Defines the relationship between parameters and covariates. For

details, see CovariateModel object.

Description
[modelObj, pkModelMapObject] = construct(pkModelDesignObject) constructs a
SimBiology model object, modelObj, containing the model components (such as compartments,
species, reactions, and rules) required to represent the pharmacokinetic model specified in
pkModelDesignObject. It also constructs pkModelMapObject, a PKModelMap object, which
defines the roles of the model components.

The newly constructed model object, modelObj, is named 'Generated Model' (which you can
change). It contains one compartment for each compartment specified in the PKCompartment
property of pkModelDesignObject. Each compartment contains a species that represents a drug
concentration. The compartments are connected with reversible reactions that models flux between
compartments.

[modelObj, pkModelMapObject, CovModelObj] = construct(pkModelDesignObject)
constructs CovModelObj, a CovariateModel object, which defines the relationship between
parameters and covariates. Within the Expression property of CovModelObj, each parameter being
estimated has an expression of the form parameterName = exp(theta1 + eta1) (without
covariate dependencies), where theta1 is a fixed effect, and eta1 is a random effect. You can modify
the expressions to add covariate dependencies. For details, see CovariateModel on page 2-173
object.

See Also
PKModelDesign object | PKModelMap object | CovariateModel object

Topics
“Create a Pharmacokinetic Model Using the Command Line”
“Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”
“Specify a Covariate Model”

2 Methods

2-168

Introduced in R2009a

 construct (PKModelDesign)

2-169

constructDefaultFixedEffectValues (covmodel)
Create initial estimate vector needed for fit

Syntax
FEInitEstimates = constructDefaultFixedEffectValues(CovModelObj)

Description
FEInitEstimates = constructDefaultFixedEffectValues(CovModelObj) creates
FEInitEstimates, a structure containing the initial estimates for the fixed effects in CovModelObj,
a CovariateModel object. These initial estimates are set to a default of zero, but you can edit these
estimates. The number and names of the fields in the FEInitEstimates structure matches the
number and names of fixed effects (theta values) in the Expression on page 3-68 property of
CovModelObj.

Tip After creating the FEInitEstimates structure, you can edit it and use it to change the
FixedEffectValues property of CovModelObj, before using the object as an input argument to
sbionlmefit or sbionlmefitsa.

See Also
CovariateModel on page 2-173 | Expression on page 3-68 | FixedEffectValues on page 3-
75 | sbionlmefit | sbionlmefitsa

Topics
“Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”
“Specify a Covariate Model”

Introduced in R2011b

2 Methods

2-170

copyobj
Copy SimBiology object and its children

Syntax
copiedObj = copyobj(Obj, parentObj)
copiedObj = copyobj(modelObj)

Arguments
Obj Compartment, configuration set, event, kinetic law, model, parameter,

reaction, rule, species, RepeatDose, ScheduleDose, variant, or observable
object.

Note Abstract kinetic law objects cannot be copied using copyobj.
parentObj If copiedObj is... parentObj must be...

configuration set, event, reaction,
rule, RepeatDose, ScheduleDose,
variant, or observable object

model object

compartment object compartment or model object
species object compartment object
parameter object model or kinetic law object
kinetic law object reaction object
model object sbioroot

modelObj Model object to be copied.
copiedObj Output returned by the copyobj method with the parent set as specified in

input argument (parentObj).

Description
copiedObj = copyobj(Obj, parentObj) makes a copy of a SimBiology object (Obj) and returns
a pointer to the copy (copiedObj). In the copied object (copiedObj), this method assigns a value
(parentObj) to the property Parent.

copiedObj = copyobj(modelObj) makes a copy of a model object (modelObj) and returns the
copy (copiedObj). In the copied model object (copiedObj), this method assigns the root object to
the property Parent.

Note When the copyobj method copies a model, it resets the StatesToLog property to the default
value. Similarly, the Inputs and Outputs properties are not copied but rather left empty. Thus, when
you simulate a copied model you see results for the default states, unless you manually update these
properties.

 copyobj

2-171

Examples
Create a reaction object separate from a model object, and then add it to a model.

1 Create a model object and add a reaction object.

modelObj1 = sbiomodel('cell');
reactionObj = addreaction(modelObj1, 'a -> b');

2 Create a copy of the reaction object and assign it to another model object.

modelObj2 = sbiomodel('cell2');
reactionObjCopy = copyobj(reactionObj, modelObj2);
modelObj2.Reactions

SimBiology Reaction Array

Index: Reaction:
 1 a -> b

See Also
sbiomodel, sbioroot

Introduced in R2006a

2 Methods

2-172

CovariateModel object
Define relationship between parameters and covariates

Description
CovariateModel defines the relationship between estimated parameters and covariates.

Tip Use a CovariateModel object as an input argument to sbiofitmixed to fit a model with
covariate dependencies. Before using the CovariateModel object, set the FixedEffectValues on
page 3-75 property to specify the initial estimates for the fixed effects.

Construction
CovModelObj = CovariateModel creates an empty CovariateModel object.

CovModelObj = CovariateModel(Expression) creates a CovariateModel object with its
Expression property set to Expression, a character vector, string, string vector, or cell array of
character vectors, where each character vector or string represents the relationship between a
parameter being estimated and one or more covariates. Expression must denote fixed effects with
the prefix theta, and random effects with the prefix eta. Each character vector or string in
Expression must be in the form:
parameterName = relationship

This example of an expression defines the relationship between a parameter (volume) and a
covariate (weight), with fixed effects, but no random effects:
Expression = {'volume = theta1 + theta2*weight'};

If a model component name or covariate name is not a valid MATLAB variable name, surround it by
square brackets when referring to it in the expression. For example, if the name of a species is DNA
polymerase+, write [DNA polymerase+]. If a covariate name itself contains square brackets, you
cannot use it in the expression.

This table illustrates expression formats for some common parameter-covariate relationships.

Parameter-Covariate
Relationship

Expression Format

Linear with random effect Cl = theta1 + theta2*WEIGHT + eta1
Exponential without random
effect

Cl = exp(theta_Cl + theta_Cl_WT*WEIGHT)

Exponential, WEIGHT centered
by mean, has random effect

Cl = exp(theta1 + theta2*(WEIGHT - mean(WEIGHT)) +
eta1)

Exponential, log(WEIGHT), which
is equivalent to power model

Cl = exp(theta1 + theta2*log(WEIGHT) + eta1)

Exponential, dependent on
WEIGHT and AGE, has random
effect

Cl = exp(theta1 + theta2*WEIGHT + theta3*AGE +
eta1)

 CovariateModel object

2-173

Parameter-Covariate
Relationship

Expression Format

Inverse of probit, dependent on
WEIGHT and AGE, has random
effect

Cl = probitinv(theta1 + theta2*WEIGHT + theta3*AGE
+ eta1)

Inverse of logit, dependent on
WEIGHT and AGE, has random
effect

Cl = logitinv(theta1 + theta2*WEIGHT + theta3*AGE
+ eta1)

Tip To simultaneously fit data from multiple dose levels, use a CovariateModel object as an input
argument to sbiofitmixed, and omit the random effect (eta) from the Expression property in the
CovariateModel object.

Method Summary

constructDefaultFixedEffectValues (covmodel)
Create initial estimate vector needed for fit

verify (covmodel) Check covariate model for errors

Property Summary

CovariateLabels
(CovariateModel)

Labels for covariates in CovariateModel object

Expression (CovariateModel) Define relationship between parameters and covariates
FixedEffectDescription
(CovariateModel)

Descriptions of fixed effects in CovariateModel object

FixedEffectNames
(CovariateModel)

Names of fixed effects in CovariateModel object

FixedEffectValues
(CovariateModel)

Values for initial estimates of fixed effects in CovariateModel
object

ParameterNames
(CovariateModel)

Names of parameters in CovariateModel object

RandomEffectNames
(CovariateModel)

Names of random effects in CovariateModel object

Examples
Create a CovariateModel object and set the Expression property to define the relationship
between two parameters (clearance and volume) and two covariates (weight and age) using fixed
effects (thetas) and random effects (etas):

covModelObj = CovariateModel
covModelObj.Expression = {'CL = theta1 + theta2*WT + eta1', 'V = theta3 + theta4*AGE + eta2'};

2 Methods

2-174

See Also
construct | getCovariateData on page 2-323 | PKData object | PKModelDesign object |
sbionlmefit | sbionlmefitsa

Topics
“Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”
“Specify a Covariate Model”

Introduced in R2011b

 CovariateModel object

2-175

covariateModel(NLMEResults)
Return a copy of the covariate model that was used for the nonlinear mixed-effects estimation using
sbiofitmixed

Syntax
covmodel = covariateModel(resultsObj)

Description
covmodel = covariateModel(resultsObj) returns a copy of the covariate model that was used
for the nonlinear mixed-effects estimation using sbiofitmixed.

Input Arguments
resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation results from
running sbiofitmixed.

Output Arguments
covmodel — Covariate model
CovariateModel object

Covariate model, returned as a CovariateModel object, that was used for the nonlinear mixed-
effects estimation using sbiofitmixed. The model describes the relationship between SimBiology
model parameters, fixed effects, random effects, and covariates.

See Also
NLMEResults object | sbiofitmixed

Introduced in R2014a

2 Methods

2-176

createDoses
Create dose objects from groupedData object

Syntax
doseArray = createDoses(grpData,amountVarNames)
doseArray = createDoses(grpData,amountVarNames,rateVarNames)
doseArray = createDoses(grpData,amountVarNames,rateVarNames,tempDoses)
doseArray = createDoses(grpData,amountVarNames,rateVarNames,tempDoses,groups)

Description
doseArray = createDoses(grpData,amountVarNames) creates an array of SimBiology dose
objects using dose times and amount data specified in grpData, with one row per group and one
column per dose amount variable.

grpData.Properties.IndependentVariable specifies which variable contains dose times, and
amountVarNames specifies which variables contain valid dose amounts.

doseArray = createDoses(grpData,amountVarNames,rateVarNames) uses dose rate
variables specified by rateVarNames.

doseArray = createDoses(grpData,amountVarNames,rateVarNames,tempDoses) uses
template doses specified by tempDoses as templates for dose objects in doseArray. In other words,
this argument lets you copy some of the template dose properties, such as TargetName,
DurationParameterName, and LagParameterName, to dose objects in doseArray.

doseArray = createDoses(grpData,amountVarNames,rateVarNames,tempDoses,groups)
specifies which groups in grpData to create doses for.

Examples

Create Array of Doses from groupedData

Load the sample data set.

load pheno.mat ds

Create a groupedData object from the data set ds.

grpData = groupedData(ds);

Display the object properties.

grpData.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Observations' 'Variables'}

 createDoses

2-177

 VariableNames: {'ID' 'TIME' 'DOSE' 'WEIGHT' 'APGAR' 'CONC'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'TIME'

GroupVariableName and IndpendentVariableName have been automatically assigned to 'ID' and
'Time', respectively.

Create an array of dose objects using the dosing information from the groupedData specified by the
DOSE variable. Each row (dose object) represents a dosing schedule for each individual (group).

doseArray = createDoses(grpData,'DOSE');

Input Arguments
grpData — Grouped data
groupedData object

Grouped data, specified as a groupedData object.

Set grpData.Properties.IndependentVariable to a valid variable in grpData that specifies
the dose times. grpData.Properties.GroupVariableName optionally identifies a grouping
variable. grpData.Properties.VariableUnits optionally specifies units for the corresponding
variables. If the specified units are invalid, a warning is issued, and the units of corresponding doses
in doseArray are set to empty character vectors ('').

amountVarNames — Amount variable names
character vector | string | cell array of character vectors | string vector

Amount variable names, specified as a character vector, string, string vector, or cell array of
character vectors that specifies variables in grpData that define dose amounts. Each character
vector or string must specify a valid amount variable.

An amount variable is valid if it is a real, nonnegative column vector containing no infinite values.

rateVarNames — Rate variable names
character vector | string | cell array of character vectors | string vector

Rate variable names, specified as a character vector, string, string vector, or cell array of character
vectors that specify variables in grpData that define dose rates. If it is empty [] or {}, it indicates
that there are no dose rates. If it is not empty, it must be a character vector, string, cell array of
character vectors or string vector of names of the same length as amountVarNames. Individual
names can be empty ('' or "") to indicate no dose rates for the corresponding doses or can be valid
variable names in grpData specifying dose rates.

A rate variable is valid if it is a real, nonnegative column vector containing no infinite values. NaN rate
values are allowed, but they are treated the same as the rate values of 0, that is, the doses are
treated as bolus (instantaneous) doses.

2 Methods

2-178

tempDoses — Template doses
dose object | vector of dose object | []

Template doses, specified as a dose object (ScheduleDose object or RepeatDose object),
vector of dose objects, or empty array [].

Use this argument to copy the following template dose properties to each dose in doseArray:
TargetName, DurationParameterName, LagParameterName, Notes, Tag, and UserData.

If tempDoses is a single dose object, these properties from the object are copied to all doses in
doseArray. If it is a vector, it must have the same length as amountVarNames, and these properties
from each element (dose) are copied to the corresponding column of doses in doseArray.

The Name property of each dose in doseArray consists of the Name of the template dose followed by
the group name in parentheses, such as 'DailyDose (Patient1)'.

If you do not specify units in grpData.Properties.VariableUnits, the following template dose
units properties are copied to doses in doseArray: AmountUnits, RateUnits, and TimeUnits.

groups — Group names
[] (default) | character vector | string vector | vector

Group names, specified as a character vector, string vector, an empty array [], or a vector of data
types that can be converted to a categorical vector. For a list of supported data types, see
categorical.

By default, groups is set to [], meaning the function creates doses for each group in grpData, with
doseArray containing one row per group in grpData, in the order of the first occurrence of each
group in grpData.

If you specify any group, the function converts those groups and the grouping variable in grpData to
categorical vectors and compares them. The ith row of doseArray corresponds to the ith group
specified in groups.

Output Arguments
doseArray — SimBiology dose objects
2-D matrix of dose objects

SimBiology dose objects, returned as a 2-D matrix of dose objects containing dose time and amount
data from grpData. If dose times for a particular dose in grpData are regularly spaced, then the
corresponding dose object in doseArray is a RepeatDose object. Otherwise, the corresponding
dose object is a ScheduleDose object.

Note If there is a single dose time, then the dose object is represented as a ScheduleDose object.

See Also
table | groupedData | ScheduleDose object | RepeatDose object

Introduced in R2014a

 createDoses

2-179

createSimFunction (model)
Create SimFunction object

Syntax
F = createSimFunction(model,params,observables,dosed)
F = createSimFunction(model,params,observables,dosed, variants)
F = createSimFunction(___ ,Name,Value)

Description
F = createSimFunction(model,params,observables,dosed) creates a SimFunction
object F that you can execute like a function handle. The params and observables arguments
define the inputs and outputs of the function F when it is executed, and dosed defines the dosing
information of species. See SimFunction object for details on how to execute F.

F = createSimFunction(model,params,observables,dosed, variants) creates a
SimFunction object, applying the values stored in variants, a vector of variant objects, as the
model baseline values.

F = createSimFunction(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Note

• Active doses and variants of the model are ignored when F is executed.
• F is immutable after it is created.
• F is automatically accelerated at the first function execution unless you set “AutoAccelerate” on

page 2-0 to false. Manually accelerate the object if you want it accelerated in your
deployment applications.

Input Arguments
model — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object.

The function uses the same configset settings by making a copy of the Configset object of the
model object. However, the function ignores the following configset settings: StatesToLog,
OutputTimes, StopTime, and SensitivityAnalysisOptions because these settings are provided by other
inputs to the function.

params — Inputs of SimFunction F
character vector | cell array of character vectors | {} | SimBiology.Scenarios object

Inputs of SimFunction F, specified as a character vector, cell array of character vectors, empty cell
array {}, or SimBiology.Scenarios object. The character vectors represent the names of model

2 Methods

2-180

quantities (species, compartments, or parameters) that define the inputs of F. Use an empty cell array
{} or empty Scenarios object SimBiology.Scenarios.empty() to create a SimFunction
object that has no parameters.

To unambiguously name a model quantity, use the qualified name, which includes the name of the
compartment. To name a reaction-scoped parameter, use the reaction name to qualify the parameter.
If the name is not a valid MATLAB variable name, surround it by square brackets such as [reaction
1].[parameter 1].

observables — Outputs of SimFunction F
character vector | cell array of character vectors

Outputs of SimFunction F, specified as a character vector or cell array of character vectors. The
character vectors represent the names of model quantities (species, compartments, or parameters) or
observable objects that define the outputs of F.

dosed — Dosed species or dose objects
character vector | cell array of character vectors | vector of dose objects | []

Dosed species or dose objects, specified as a character vector, cell array of character vectors, vector
of dose objects, or empty array [].

If it is [], no species are dosed during simulation unless you specify a Scenarios object that has
doses defined in its entries.

If it is a cell array of character vectors, it must be 1-by-N array, where N is the number of dosed
species names. You can use duplicate species names if you plan to use multiple doses on page 2-0
for the same species when you run the SimFunction F. Using only dosed species names contains no
information on the dose properties. If you have a dose object that contains parameterized properties
such as Amount, use the dose object as input instead of just species names to transfer such
parameter information to the created SimFunction F.

If it is a vector of dose objects, it must be 1-by-N vector, where N is the number of dose objects. If
dose objects have properties with nondefault numeric values, these values are ignored and a warning
is issued. Only TargetName, DurationParameterName, LagParameterName, and parameterized
properties are used to create the SimFunction object F, that is, to define the Dosed property of F. For
details on how the Dosed property table is populated, see “Property Summary” on page 2-789.

The dosing information that you specify during the creation of the SimFunction object must be
consistent with the dosing information you specify during the execution of the object. In other words,
the number of elements in the Dosed property of SimFunction F must equal to the combined
number of doses in the input Scenarios object in phi on page 2-0 and doses in the input
argument u on page 2-0 when you execute the object.

variants — Alternate model values
variant object | vector of variant objects

Alternate model values, specified as a variant or vector of variant objects. These values are applied as
the model baseline values when the SimFunction object is created. If there are multiple variants
referring to the same model element, the last occurrence is used.

 createSimFunction (model)

2-181

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'UseParallel',true specifies to execute the SimFunction F in parallel.

UseParallel — Flag to execute SimFunction F in parallel
false (default) | true

Flag to execute SimFunction F in parallel, specified as the comma-separated pair consisting of
'UseParallel' and true or false. If true and Parallel Computing Toolbox is available, the
SimFunction F is executed in parallel.
Example: 'UseParallel',true

AutoAccelerate — Flag to accelerate model on first evaluation of SimFunction
true (default) | false

Flag to accelerate the model on the first evaluation of the SimFunction object, specified as the
comma-separated pair consisting of 'AutoAccelerate' and true or false.

Set the value to false if you have a model that is fast to simulate because the acceleration of the
model could take longer than the actual simulation of the model.
Example: 'AutoAccelerate',false

SensitivityOutputs — Sensitivity output factors
{} (default) | cell array of character vectors | 'all'

Sensitivity output factors, specified as the comma-separated pair consisting of
'SensitivityOutputs' and a cell array of character vectors. The character vectors are the names
of model quantities (species and parameters) for which you want to compute the sensitivities. The
default is {} meaning there is no output factors. Output factors are the numerators of time-
dependent derivatives explained in “Sensitivity Analysis in SimBiology”.

Use the keyword 'all' or "all" to specify all model quantities as sensitivity outputs. However,
{'all'} means a model quantity named all in the model. ["all","x"] sets the sensitivity input
factors or output factors to the species named all and x.

You must specify both 'SensitivityOutputs' and 'SensitivityInputs' name-value pair
arguments for sensitivity calculations.
Example: 'SensitivityOutputs','all'

SensitivityInputs — Sensitivity input factors
{} (default) | cell array of character vectors | 'all'

Sensitivity input factors, specified as the comma-separated pair consisting of
'SensitivityInputs' and a cell array of character vectors. The character vectors are the names
of model quantities (species, compartments, and parameters) with respect to which you want to
compute the sensitivities. The default is {} meaning no input factors. Input factors are the
denominators of time-dependent derivatives explained in “Sensitivity Analysis in SimBiology”.

2 Methods

2-182

Use the keyword 'all' or "all" to specify all model quantities as sensitivity outputs. However,
{'all'} means a model quantity named all in the model. ["all","x"] sets the sensitivity inputs
or outputs to the species named all and x.

You must specify both 'SensitivityOutputs' and 'SensitivityInputs' name-value pair
arguments for sensitivity calculations.
Example: 'SensitivityInputs',{'Reaction1.c1','Reaction1.c2'}

SensitivityNormalization — Normalization for calculated sensitivities
'None' (default) | 'Half | 'Full'

Normalization for calculated sensitivities, specified as the comma-separated pair consisting of
'SensitivityNormalization' and 'None', 'Half', or 'Full'.

• 'None' — No normalization (default)
• 'Half' — Normalization relative to the numerator only
• 'Full' — Full dedimensionalization

For details, see Normalization.
Example: 'SensitivityNormalization','Full'

Output Arguments
F — SimFunction
SimFunction object | SimFunctionSensitivity object

SimFunction, returned as a SimFunction object or SimFunctionSensitivity object. You can
execute F like a function handle.

F is a SimFunctionSensitivity object if you specify non-empty 'SensitivityOutputs' and
'SensitivityInputs' name-value pair arguments.

Examples

Create a SimFunction Object

This example uses a radioactive decay model with the first-order reaction dz
dt = c ⋅ x, where x and z

are species and c is the forward rate constant.

Load the sample project containing the radioactive decay model m1.

sbioloadproject radiodecay;

Create a SimFunction object, specifying the parameter Reaction1.c to be scanned, and species
x as the output of the function with no dosed species.

f = createSimFunction(m1, 'Reaction1.c','x', [])

f =
SimFunction

 createSimFunction (model)

2-183

Parameters:

 Name Value Type Units
 _______________ _____ _____________ ____________

 {'Reaction1.c'} 0.5 {'parameter'} {'1/second'}

Observables:

 Name Type Units
 _____ ___________ ____________

 {'x'} {'species'} {'molecule'}

Dosed: None

TimeUnits: second

If the UnitConversion option was set to false when the SimFunction object f was created, the
table does not display the units of the model quantities.

To illustrate this, first set the UnitConversion option to false.

cs = getconfigset(m1);
cs.CompileOptions.UnitConversion = false;

Create the SimFunction object as before and note that the variable named Units disappears.

f = createSimFunction(m1, {'Reaction1.c'},{'x'}, [])

f =
SimFunction

Parameters:

 Name Value Type
 _______________ _____ _____________

 {'Reaction1.c'} 0.5 {'parameter'}

Observables:

 Name Type
 _____ ___________

 {'x'} {'species'}

Dosed: None

If any of the species in the model is being dosed, specify the names of dosed species as the last
argument. For example, if the species x is being dosed, specify it as the last argument.

f = createSimFunction(m1, {'Reaction1.c'},{'x'}, 'x')

f =
SimFunction

Parameters:

2 Methods

2-184

 Name Value Type
 _______________ _____ _____________

 {'Reaction1.c'} 0.5 {'parameter'}

Observables:

 Name Type
 _____ ___________

 {'x'} {'species'}

Dosed:

 TargetName

 {'x'}

Once the SimFunction object is created, you can execute it like a function handle and perform
parameter scans (in parallel if Parallel Computing Toolbox™ is available), Monte Carlo simulations,
and scans with multiple or vectorized doses. See SimFunction object for more examples.

Create a SimFunction Object with Dosing Information

This example creates a SimFunction object with dosing information using a RepeatDose or
ScheduleDose object or a vector of these objects. However, if any dose object contains data such as
StartTime, Amount, and Rate, such data are ignored, and a warning is issued. Only data, if
available, used are TargetName, LagParameterName, and DurationParameterName of the dose
object.

Load the sample project containing the radioactive decay model m1.

sbioloadproject radiodecay;

Create a RepeatDose object and specify its properties.

rdose = sbiodose('rd');
rdose.TargetName = 'x';
rdose.StartTime = 5;
rdose.TimeUnits = 'second';
rdose.Amount = 300;
rdose.AmountUnits = 'molecule';
rdose.Rate = 1;
rdose.RateUnits = 'molecule/second';
rdose.Interval = 100;
rdose.RepeatCount = 2;

Add a lag parameter and duration parameter to the model.

lagPara = addparameter(m1,'lp');
lagPara.Value = 1;
lagPara.ValueUnits = 'second';

 createSimFunction (model)

2-185

duraPara = addparameter(m1,'dp');
duraPara.Value = 1;
duraPara.ValueUnits = 'second';

Set these parameters to the dose object.

rdose.LagParameterName = 'lp';
rdose.DurationParameterName = 'dp';

Create a SimFunction object f using the RepeatDose object rdose that you just created.

f = createSimFunction(m1,{'Reaction1.c'},{'x','z'},rdose)

Warning: Some Dose objects in DOSED had data. This data
will be ignored.
> In SimFunction>SimFunction.SimFunction at 847
 In SimFunction>SimFunction.createSimFunction at 374

f =

SimFunction

Parameters:

 Name Value Type Units
 _____________ _____ ___________ __________

 'Reaction1.c' 0.5 'parameter' '1/second'

Observables:

 Name Type Units
 ____ _________ __________

 'x' 'species' 'molecule'
 'z' 'species' 'molecule'

Dosed:

 TargetName TargetDimension
 __________ _______________________________

 'x' 'Amount(e.g. mole or molecule)'

 DurationParameterName DurationParameterValue
 _____________________ ______________________

 'dp' 1

 DurationParameterUnits LagParameterName
 ______________________ ________________

 'second' 'lp'

 LagParameterValue LagParameterUnits

2 Methods

2-186

 _________________ _________________

 1 'second'

A warning message appears because the rdose object contains data (StartTime, Amount, Rate)
that are ignored by the createSimFunction method.

Scan Parameters of the Lotka-Volterra Model

This example shows how to execute different signatures of the SimFunction object to simulate
and scan parameters of the Lotka-Volterra (predator-prey) model described by Gillespie [1].

Load the sample project containing the model m1.

sbioloadproject lotka;

Create a SimFunction object f with c1 and c2 as input parameters to be scanned, and y1 and y2 as
the output of the function with no dosed species.

f = createSimFunction(m1,{'Reaction1.c1', 'Reaction2.c2'},{'y1', 'y2'}, [])

f =
SimFunction

Parameters:

 Name Value Type
 ________________ _____ _____________

 {'Reaction1.c1'} 10 {'parameter'}
 {'Reaction2.c2'} 0.01 {'parameter'}

Observables:

 Name Type
 ______ ___________

 {'y1'} {'species'}
 {'y2'} {'species'}

Dosed: None

Define an input matrix that contains values for each parameter (c1 and c2) for each simulation. The
number of rows indicates the total number of simulations, and each simulation uses the parameter
values specified in each row.

phi = [10 0.01; 10 0.02];

Run simulations until the stop time is 5 and plot the simulation results.

sbioplot(f(phi, 5));

 createSimFunction (model)

2-187

You can also specify a vector of different stop times for each simulation.

t_stop = [3;6];
sbioplot(f(phi, t_stop));

2 Methods

2-188

Next, specify the output times as a vector.

t_output = 0:0.1:5;
sbioplot(f(phi,[],[],t_output));

 createSimFunction (model)

2-189

Specify output times as a cell array of vectors.

t_output = {0:0.01:3, 0:0.2:6};
sbioplot(f(phi, [], [], t_output));

2 Methods

2-190

Calculate Sensitivities Using SimFunctionSensitivity Object

This example shows how to calculate the sensitivities of some species in the Lotka-Volterra model
using the SimFunctionSensitivity object.

Load the sample project.

sbioloadproject lotka;

Define the input parameters.

params = {'Reaction1.c1', 'Reaction2.c2'};

Define the observed species, which are the outputs of simulation.

observables = {'y1', 'y2'};

Create a SimFunctionSensitivity object. Set the sensitivity output factors to all species (y1 and
y2) specified in the observables argument and input factors to those in the params argument (c1
and c2) by setting the name-value pair argument to 'all'.

f = createSimFunction(m1,params,observables,[],'SensitivityOutputs','all','SensitivityInputs','all','SensitivityNormalization','Full')

f =
SimFunction

 createSimFunction (model)

2-191

Parameters:

 Name Value Type
 ________________ _____ _____________

 {'Reaction1.c1'} 10 {'parameter'}
 {'Reaction2.c2'} 0.01 {'parameter'}

Observables:

 Name Type
 ______ ___________

 {'y1'} {'species'}
 {'y2'} {'species'}

Dosed: None

Sensitivity Input Factors:

 Name Type
 ________________ _____________

 {'Reaction1.c1'} {'parameter'}
 {'Reaction2.c2'} {'parameter'}

Sensitivity Output Factors:

 Name Type
 ______ ___________

 {'y1'} {'species'}
 {'y2'} {'species'}

Sensitivity Normalization:

Full

Calculate sensitivities by executing the object with c1 and c2 set to 10 and 0.1, respectively. Set the
output times from 1 to 10. t contains time points, y contains simulation data, and sensMatrix is the
sensitivity matrix containing sensitivities of y1 and y2 with respect to c1 and c2.

[t,y,sensMatrix] = f([10,0.1],[],[],1:10);

Retrieve the sensitivity information at time point 5.

temp = sensMatrix{:};
sensMatrix2 = temp(t{:}==5,:,:);
sensMatrix2 = squeeze(sensMatrix2)

sensMatrix2 = 2×2

 37.6987 -6.8447
 -40.2791 5.8225

The rows of sensMatrix2 represent the output factors (y1 and y2). The columns represent the input
factors (c1 and c2).

2 Methods

2-192

sensMatrix2 =

∂y1
∂c1

∂y2
∂c1

∂y1
∂c2

∂y2
∂c2

Set the stop time to 15, without specifying the output times. In this case, the output times are the
solver time points by default.

sd = f([10,0.1],15);

Retrieve the calculated sensitivities from the SimData object sd.

[t,y,outputs,inputs] = getsensmatrix(sd);

Plot the sensitivities of species y1 and y2 with respect to c1.

figure;
plot(t,y(:,:,1));
legend(outputs);
title('Sensitivities of species y1 and y2 with respect to parameter c1');
xlabel('Time');
ylabel('Sensitivity');

Plot the sensitivities of species y1 and y2 with respect to c2.

figure;
plot(t,y(:,:,2));

 createSimFunction (model)

2-193

legend(outputs);
title('Sensitivities of species y1 and y2 with respect to parameter c2');
xlabel('Time');
ylabel('Sensitivity');

Alternatively, you can use sbioplot.

sbioplot(sd);

2 Methods

2-194

You can also plot the sensitivity matrix using the time integral for the calculated sensitivities of y1
and y2. The plot indicates y1 and y2 are more sensitive to c1 than c2.

[~, in, out] = size(y);
result = zeros(in, out);
for i = 1:in
 for j = 1:out
 result(i,j) = trapz(t(:),abs(y(:,i,j)));
 end
end
figure;
hbar = bar(result);
haxes = hbar(1).Parent;
haxes.XTick = 1:length(outputs);
haxes.XTickLabel = outputs;
legend(inputs,'Location','NorthEastOutside');
ylabel('Sensitivity');

 createSimFunction (model)

2-195

Simulate Model of Glucose-Insulin Response with Different Initial Conditions

This example shows how to simulate the glucose-insulin responses for the normal and diabetic
subjects.

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo', 'm1')

The model contains different initial conditions stored in various variants.

variants = getvariant(m1);

Get the initial conditions for the type 2 diabetic patient.

type2 = variants(1)

type2 =
 SimBiology Variant - Type 2 diabetic (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Plasma Volume ... Value 1.49
 2 parameter k1 Value 0.042
 3 parameter k2 Value 0.071

2 Methods

2-196

 4 parameter Plasma Volume ... Value 0.04
 5 parameter m1 Value 0.379
 6 parameter m2 Value 0.673
 7 parameter m4 Value 0.269
 8 parameter m5 Value 0.0526
 9 parameter m6 Value 0.8118
 10 parameter Hepatic Extrac... Value 0.6
 11 parameter kmax Value 0.0465
 12 parameter kmin Value 0.0076
 13 parameter kabs Value 0.023
 14 parameter kgri Value 0.0465
 15 parameter f Value 0.9
 16 parameter a Value 6e-05
 17 parameter b Value 0.68
 18 parameter c Value 0.00023
 19 parameter d Value 0.09
 20 parameter kp1 Value 3.09
 21 parameter kp2 Value 0.0007
 22 parameter kp3 Value 0.005
 23 parameter kp4 Value 0.0786
 24 parameter ki Value 0.0066
 25 parameter [Ins Ind Glu U... Value 1
 26 parameter Vm0 Value 4.65
 27 parameter Vmx Value 0.034
 28 parameter Km Value 466.21
 29 parameter p2U Value 0.084
 30 parameter K Value 0.99
 31 parameter alpha Value 0.013
 32 parameter beta Value 0.05
 33 parameter gamma Value 0.5
 34 parameter ke1 Value 0.0007
 35 parameter ke2 Value 269
 36 parameter Basal Plasma G... Value 164.18
 37 parameter Basal Plasma I... Value 54.81

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Create SimFunction objects to simulate the glucose-insulin response for the normal and diabetic
subjects.

• Specify an empty array {} for the second input argument to denote that the model will be
simulated using the base parameter values (that is, no parameter scanning will be performed).

• Specify the plasma glucose and insulin concentrations as responses (outputs of the function to be
plotted).

• Specify the species Dose as the dosed species. This species represents the initial concentration of
glucose at the start of the simulation.

normSim = createSimFunction(m1,{},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose')

normSim =
SimFunction

Parameters:

 createSimFunction (model)

2-197

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

For the diabetic patient, specify the initial conditions using the variant type2.

diabSim = createSimFunction(m1,{},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose',type2)

diabSim =
SimFunction

Parameters:

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

Select a dose that represents a single meal of 78 grams of glucose at the start of the simulation.

singleMeal = sbioselect(m1,'Name','Single Meal');

Convert the dosing information to the table format.

mealTable = getTable(singleMeal);

Simulate the glucose-insulin response for a normal subject for 24 hours.

sbioplot(normSim([],24,mealTable));

2 Methods

2-198

Simulate the glucose-insulin response for a diabetic subject for 24 hours.

sbioplot(diabSim([],24,mealTable));

 createSimFunction (model)

2-199

Perform a Scan Using Variants

Suppose you want to perform a parameter scan using an array of variants that contain different initial
conditions for different insulin impairments. For example, the model m1 has variants that correspond
to the low insulin sensitivity and high insulin sensitivity. You can simulate the model for both
conditions via a single call to the SimFunction object.

Select the variants to scan.

varToScan = sbioselect(m1,'Name',...
 {'Low insulin sensitivity','High insulin sensitivity'});

Check which model parameters are being stored in each variant.

varToScan(1)

ans =
 SimBiology Variant - Low insulin sensitivity (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Vmx Value 0.0235
 2 parameter kp3 Value 0.0045

varToScan(2)

ans =
 SimBiology Variant - High insulin sensitivity (inactive)

2 Methods

2-200

 ContentIndex: Type: Name: Property: Value:
 1 parameter Vmx Value 0.094
 2 parameter kp3 Value 0.018

Both variants store alternate values for Vmx and kp3 parameters. You need to specify them as input
parameters when you create a SimFunction object.

Create a SimFunction object to scan the variants.

variantScan = createSimFunction(m1,{'Vmx','kp3'},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose');

Simulate the model and plot the results. Run 1 include simulation results for the low insulin
sensitivity and Run 2 for the high insulin sensitivity.

sbioplot(variantScan(varToScan,24,mealTable));

Low insulin sensitivity lead to increased and prolonged plasma glucose concentration.

Restore warning settings.

 createSimFunction (model)

2-201

warning(warnSettings);

References
[1] Gillespie, D.T. (1977). Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of

Physical Chemistry. 81(25), 2340–2361.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true.

For more information, see the 'UseParallel' name-value pair argument.

See Also
SimBiology.Scenarios | model object | SimFunction object | SimFunctionSensitivity
object | sbiosampleerror | sbiosampleparameters

Topics
“Model Simulation”

Introduced in R2014a

2 Methods

2-202

createVariants
Create variant objects from groupedData object

Syntax
variants = createVariants(grpData,variableNames)
variants = createVariants(grpData,variableNames,groups)
variants = createVariants(___ ,Name=Value)

Description
variants = createVariants(grpData,variableNames) creates a column vector of variant
objects for each group in grpData using data variables variableNames.

variants = createVariants(grpData,variableNames,groups) creates a vector of variant
objects for the specified groups.

variants = createVariants(___ ,Name=Value) uses additional options specified by one or
more name-value arguments.

Examples

Create Variants from Grouped Data

Import sample data. The data contain three groups (individuals) with some time course measurement
data. The Cl_Central and Central columns represent group-specific variant values.

tbl = readtable('sample_data_variants_simbiology.xlsx')

tbl=16×6 table
 Group Time CentralConc Dose1 Cl_Central Central
 _____ ____ ___________ _____ __________ _______

 1 0 83.378 100 0.65 0.96
 1 0 85 NaN NaN NaN
 1 1 31.019 NaN NaN NaN
 1 4 6.4875 NaN NaN NaN
 1 8 1.1631 NaN NaN NaN
 1 36 0 NaN NaN NaN
 2 0 49.992 100 0.55 0.67
 2 1 25.276 NaN 0.55 0.67
 2 4 7.1079 NaN 0.55 0.67
 2 8 2.7109 NaN 0.55 0.67
 2 36 0 NaN 0.55 0.67
 3 0 NaN 100 0.78 NaN
 3 1 26.269 NaN NaN NaN
 3 4 14.365 NaN NaN NaN
 3 8 7.3422 NaN NaN NaN
 3 36 0.18685 NaN NaN NaN

 createVariants

2-203

Convert to a groupedData object.

gdata = groupedData(tbl);

By default, the function uses the "Group" column as the group variable.

gdata.Properties.GroupVariableName

ans =
'Group'

Create a variant for each group for using the Cl_Central and Central variables from the data.

variants = createVariants(gdata,["Cl_Central","Central"])

variants =
 SimBiology Variant Array

 Index: Name: Active:
 1 1 false
 2 2 false
 3 3 false

variants(1)

ans =
 SimBiology Variant - 1 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Cl_Central Value 0.65
 2 parameter Central Value 0.96

variants(2)

ans =
 SimBiology Variant - 2 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Cl_Central Value 0.55
 2 parameter Central Value 0.67

variants(3)

ans =
 SimBiology Variant - 3 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Cl_Central Value 0.78

Note that individual 3 has a variant value for Cl_Central but not Central. Hence the function
created only one variant content, for Cl_Central.

You can also specify which group to create variants for. For example, create variants for individuals 1
and 2 only.

variants = createVariants(gdata,["Cl_Central","Central"],["1","2"])

2 Methods

2-204

variants =
 SimBiology Variant Array

 Index: Name: Active:
 1 1 false
 2 2 false

variants(1)

ans =
 SimBiology Variant - 1 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Cl_Central Value 0.65
 2 parameter Central Value 0.96

variants(2)

ans =
 SimBiology Variant - 2 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Cl_Central Value 0.55
 2 parameter Central Value 0.67

By default, the function assigns the type as parameter for each variable. You can specify which type
(species, parameter, or compartment) by using the Types name-value argument. Specify
Cl_Central as a parameter and Central as a compartment.

variants = createVariants(gdata,["Cl_Central","Central"],Types=["parameter","compartment"]);
variants(1)

ans =
 SimBiology Variant - 1 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Cl_Central Value 0.65
 2 compartment Central Value 0.96

variants(2)

ans =
 SimBiology Variant - 2 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Cl_Central Value 0.55
 2 compartment Central Value 0.67

variants(3)

ans =
 SimBiology Variant - 3 (inactive)

 ContentIndex: Type: Name: Property: Value:

 createVariants

2-205

 1 parameter Cl_Central Value 0.78

If you know the name of model component that maps to each variable, you can use the component
name to define the Name of each variant content. For example, map the data variables to the model
components named "Clearance" and "Central".

variants = createVariants(gdata,["Cl_Central","Central"],Types=["parameter","compartment"],Names=["Clearance","Central"]);
variants(1)

ans =
 SimBiology Variant - 1 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Clearance Value 0.65
 2 compartment Central Value 0.96

variants(2)

ans =
 SimBiology Variant - 2 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Clearance Value 0.55
 2 compartment Central Value 0.67

variants(3)

ans =
 SimBiology Variant - 3 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Clearance Value 0.78

If your data variables have the same names as the corresponding model components, you can use the
model as the source and the function automatically does the mapping.

% Create a two-compartment model.
pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
variants = createVariants(gdata,["Cl_Central","Central"],Model=model);
variants(1)

ans =
 SimBiology Variant - 1 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Cl_Central Value 0.65
 2 compartment Central Value 0.96

2 Methods

2-206

Alternatively, if you have the corresponding model component objects, you can use them as well to
map to the data variables.

% Extract the parameter and compartment object.
clearance = sbioselect(model,Name="Cl_Central");
centralVol = sbioselect(model,Name="Central");
% Map the data variables to these objects.
variants = createVariants(gdata,["Cl_Central","Central"],Components=[clearance,centralVol])

variants =
 SimBiology Variant Array

 Index: Name: Active:
 1 1 false
 2 2 false
 3 3 false

variants(1)

ans =
 SimBiology Variant - 1 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Cl_Central Value 0.65
 2 compartment Central Value 0.96

Input Arguments
grpData — Grouped data
groupedData object

Grouped data, specified as a groupedData object.

grpData.Properties.GroupVariableName optionally identifies a grouping variable.

variableNames — Names of data variables
character vector | string | string vector | cell array of character vectors

Names of data variables used to generate variants, specified as a character vector, string, string
vector, or cell array of character vectors.

Each variable in variableNames must be a numeric column vector without Inf values.

For each variable, the non-NaN values within a group can be repeated but they must be identical. You
can use NaN to indicate no value for a particular row. If all values of a variable within a group are
NaN, that variable is not included in the group variant.

groups — Group names
[] | character vector | string scalar | string vector | cell array of character vectors | vector

Group names, specified as an empty vector [], character vector, string scalar, string vector, cell array
of character vectors, or a vector of data types that can be converted to a categorical vector. For a list
of supported data types, see categorical.

 createVariants

2-207

Use [] to indicate the default behavior of including variants for each group.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Types="compartment",Names="Central" specifies the model component type as
compartment and its name as Central.

Types — Model component types
"parameter" (default) | "species" | "compartment" | string vector | cell array of character
vectors

Model component types used in the variants, specified as "parameter", "species",
"compartment", string vector, or cell array of character vectors, where each element must be one of
these strings or character vectors.

If you specify only one component type, the function applies it to all variant content. If you specify
more than one type, the number of types must match the number of names in variableNames.

You cannot specify this argument together with 'Components' or 'Model'.
Data Types: char | string | cell

Names — Model component names
names from variableNames input argument (default) | character vector | string scalar | string
vector | cell array of character vectors

Model component names used in the variants, specified as a character vector, string scalar, string
vector, or cell array of character vectors. If you do not specify this argument or 'Components', by
default, the function uses the names from the variableName input argument as the component
names.

You cannot specify this argument together with 'Components'.
Data Types: char | string | cell

Components — Model components
vector of parameter, species, or compartment objects

Model components used in the variants, specified as a vector of parameter, species, or compartment
objects. The number of components must match the number of names in variableNames. The types
and names used in the variant contents on page 3-33 are the types and qualified names of the
specified components.

You cannot specify this argument together with 'Types','Names', or 'Model'.

Model — SimBiology model
model object

SimBiology model used to identify the model components in the variants, specified as a model object.

When you have a name that matches different quantities, the software uses the following precedence
rule to decide: species > compartment > parameter. For details, see “Precedence Rules for
Evaluating Quantity Names”.

2 Methods

2-208

You cannot specify this argument together with 'Types' or 'Components'.

UnitConversion — Flag to covert units
"auto" (default) | true | false

Flag to convert units of the data variable to the units specified for each model component, specified
as "auto", true, or false. The variable units are defined in
grpData.Properties.VariableUnits.

When the value is "auto", the function converts units for any pair of variable and component that
both specify nonempty units, which are consistent with each other. Otherwise, the values in the data
variables are used without unit conversion.

When the value is true, the function converts all values in the data variables to the units of each
component.

When the value is false, the function uses the values in the data variables without unit conversion.

Output Arguments
variants — SimBiology variant objects
column vector of variant objects

SimBiology variant objects, returned as a column vector of variant objects, with one variant for each
group in grpData. If you do not specify the groups input, the order of returned variants follows the
order of groups in the input data. If you specify groups, the order of variants follows the order of
specified groups.

See Also
Variant object | table | groupedData | ScheduleDose object | RepeatDose object

Topics
“Variants in SimBiology Models”

Introduced in R2021b

 createVariants

2-209

delete
Delete SimBiology object

Syntax
delete(sobj)

Description
delete(sobj) deletes the SimBiology object sobj and removes it from its parent on page 3-127
object.

Note You can also use sbioreset to delete all model objects from the SimBiology root object, which
contains a list of model objects, available units, unit prefixes, and kinetic laws.

Examples

Delete SimBiology Objects

Load the G-protein model.

sbioloadproject('gprotein.sbproj');

Get the model-scoped parameters.

params = m1.Parameters

params =
 SimBiology Parameter Array

 Index: Name: Value: Units:
 1 kRLm 0.01
 2 kRL 3.32e-18
 3 kRdo 0.0004
 4 kRs 4
 5 kRD1 0.004
 6 kG1 1
 7 kGa 1e-05
 8 kGd 0.11
 9 GaFrac 1

Delete the parameters.

delete(params)

m1.Parameters

ans =
 0x1 Parameter array with properties:

2 Methods

2-210

 ValueUnits
 ConstantValue
 Constant
 Value
 Units
 BoundaryCondition
 Name
 Parent
 Notes
 Tag
 Type
 UserData

Input Arguments
sobj — Object
SimBiology object | array of SimBiology objects

Object, specified as a SimBiology object or array of SimBiology objects.

• If sobj is a model object, the model is deleted from the root object. delete removes all
references to the model at the command line and in the SimBiology and SimBiology Model
Analyzer apps.

• If sobj is a species object used by a reaction object, the function issues a warning, and the
species object is not deleted. You need to delete the reaction or remove the species from the
reaction before you can delete the species object.

• If sobj is a parameter object used by a kinetic law object, there is no warning when the object is
deleted. However, when you try to simulate your model, a error occurs because the parameter
cannot be found.

• If sobj is a reaction object, the function deletes the object, but the species objects that were
being used by the reaction object are not deleted.

• If sobj is an abstract kinetic law object and there is a kinetic law object referencing it, the
function returns an error.

• If sobj is a configuration set object, and it is the active configuration set object, the function,
after deleting the object, makes the default configuration set object active. Note that you cannot
delete the default configuration set.

• You cannot delete the SimBiology root object or a SimData object.

See Also
set

Introduced in R2006a

 delete

2-211

SimBiology.DiffResults
Results of comparison between two SimBiology models and diagrams

Description
SimBiology.DiffResults contains the results from comparing two SimBiology models and
diagram information.

Creation
Use sbiodiff to compare the models and the function returns SimBiology.DiffResults as an
output.

Properties
Comparisons — Results of comparison between two SimBiology models and their diagrams
table

Results of comparison between two SimBiology models and their diagrams, specified as a table.

The table has the following columns:

• Class — Model component type specified as a string. Note that for a variant, the table shows
"Variant (X)", where X is the string "species", "compartment", or "parameter"
depending on the type of the component referenced in the corresponding row of the variant
content. For details on how SimBiology matches variants, see “Doses and Variants”.

• Source — Source component name.

• For a species, parameter, or compartment, the column shows a qualified name (such as
cell.Ligand).

• For a kinetic law, it shows "Kinetic Law (Y)", where Y is the parent reaction name.
• For a rule, it shows the rule name. If the name is empty, it shows the value of the Rule property

instead.
• For an event, it shows the event name. If the name is empty, it shows the value of the Trigger

property instead.
• For a reaction, observable, dose, or variant, it shows the value of the Name property.

• Target — Target component name (see the Source column for details)
• Property — Name of the component property for which the value is shown in the SourceValue and

TargetValue column.
• SourceValue — Value of the corresponding property of the source component
• TargetValue — Value of the corresponding property of the target component

The Property, SourceValue, and TargetValue show <missing> as the value for any deleted or
inserted model component.

2 Methods

2-212

Tip The Class, Source, Target, and Property columns contain strings. You can use these columns to
select specific changes by using string comparisons. For instance, to get all modifications to the value
of any parameter from the table, use:

diffResults = sbiodiff(m1,m2);
diffTbl = diffResults.Comparisons;
param_subset = diffTbl(diffTbl.Class == "Parameter" & diffTbl.Property == "Value",:);

To find <missing> values, use ismissing.

Data Types: table

Source — Source model information
struct

Source model information, specified as a structure. The structure contains the following fields.

• Project — Name of the SBPROJ file that contains the source model. If you specify the
corresponding model as a SimBiology model object, this field value is "".

• ModelName — SimBiology model name
• Model — SimBiology model object
• LastModified — Last modified date of the SBPROJ file. If you specify the corresponding model

as a SimBiology model object, this field value is "".

Data Types: struct

Target — Target model information
struct

Target model information, specified as a structure. The structure contains the following fields.

• Project — Name of the SBPROJ file that contains the target model. If you specify the
corresponding model as a SimBiology model object, this field value is "".

• ModelName — SimBiology model name
• Model — SimBiology model object
• LastModified — Last modified date of the SBPROJ file. If you specify the corresponding model

as a SimBiology model object, this field value is "".

Data Types: struct

Object Functions
getComponent
s

Get model components associated with SimBiology model comparison results

visdiff Open the Comparison tool to graphically inspect the comparison results

Examples

 SimBiology.DiffResults

2-213

Compare SimBiology Models

Load a source model.

model1 = sbmlimport("lotka");
y1 = sbioselect(model1, "Type", "species", "Name", "y1");
y1.Value = 880;

Load a target model to compare against the source model.

model2 = sbmlimport("lotka");
y1 = sbioselect(model2, "Type", "species", "Name", "y1");
y1.Value = 920;

Compare the models using sbiodiff and display the comparison table.

diffResults = sbiodiff(model1,model2);
diffTable = diffResults.Comparisons

diffTable=1×6 table
 Class Source Target Property SourceValue TargetValue
 _________ ______ ______ ________ ___________ ___________

 1 "Species" "y1" "y1" "Value" {[880]} {[920]}

You can also view the comparison results graphically in the Comparison tool.

visdiff(diffResults);

Get a table of model components associated with the changes reported in the comparison table.

tbl = getComponents(diffResults)

tbl=1×2 table
 Source Target
 ________________________ ________________________

 1 {1x1 SimBiology.Species} {1x1 SimBiology.Species}

See Also
Model | sbioloadproject | SimBiology Model Builder | sbiodiff | visdiff

Topics
“Compare SimBiology Models”
“SimBiology Model Matching Policy”
“What is a SimBiology Model?”

Introduced in R2022a

2 Methods

2-214

display
Display summary of SimBiology object

Syntax
display(sobj)

Description
display(sobj) displays the summary information of the SimBiology object sobj.

Examples

Display Summary Information of SimBiology Model

Load the G-protein model.

sbioloadproject('gprotein.sbproj')

Display the summary information of the model.

display(m1)

m1 =
 SimBiology Model - Heterotrimeric G Protein wt

 Model Components:
 Compartments: 1
 Events: 0
 Parameters: 9
 Reactions: 6
 Rules: 1
 Species: 7
 Observables: 0

Input Arguments
sobj — Object
SimBiology object | array of SimBiology objects

Object, specified as a SimBiology object or array of SimBiology objects.

See Also
set | SimData

Introduced in R2006a

 display

2-215

SimBiology.gsa.ElementaryEffects
Object containing results from calculation of elementary effects for global sensitivity analysis (GSA)

Description
The SimBiology.gsa.ElementaryEffects object contains GSA results returned by
sbioelementaryeffects. The object contains the computed elementary effects with respect to
parameter inputs.

Creation
Create a SimBiology.gsa.ElementaryEffects object using sbioelementaryeffects.

Properties
AbsoluteEffects — Flag to use absolute values of elementary effects
true (default) | false

Flag to use the absolute values of elementary effects, specified as true or false. By default, the
function uses the absolute values of elementary effects. Using nonabsolute values can average out
when calculating the mean. For details, see “Elementary Effects for Global Sensitivity Analysis” on
page 1-53.
Data Types: logical

Time — Time points
column numeric vector

This property is read-only.

Time points at which elementary effects are computed, specified as a column numeric vector. The
property is [] if all observables are scalars.
Data Types: double

Results — GSA results with elementary effects
structure array

This property is read-only.

GSA results with elementary effects, specified as a structure array. The size of the array is params-by-
observables, where params is the number of input parameters (sensitivity inputs) and observables is
the number of observables (sensitivity outputs).

Each structure contains the following fields.

• Parameter — Name of an input parameter, specified as a character vector
• Observable — Name of an observable, specified as a character vector

2 Methods

2-216

• Mean — Mean of absolute values of elementary effects, specified as a scalar or numeric vector
• StandardDeviation — Standard deviation of absolute elementary effects, specified as a scalar

or numeric vector

If all observables are scalar, then the Mean and StandardDeviation fields are specified as scalars.
If any observables are vectors, Mean and StandardDeviation are numeric vectors of length Time.
If some observables are scalars and some are vectors, scalar observables are scalar-expanded, where
each time point has the same value.
Data Types: struct

GridLevel — Discretization level of parameter domain
10 (default) | positive even integer

This property is read-only.

Discretization level of the parameter domain, specified as a positive even integer. This parameter
defines a grid of equidistant points in the parameter domain, where each dimension is discretized
using Gridlevel+1 points. The following figure shows an example of a grid for parameters p1 and
p2 within given parameter bounds.

 SimBiology.gsa.ElementaryEffects

2-217

For details, see “Elementary Effects for Global Sensitivity Analysis” on page 1-53.
Data Types: double

GridDelta — Step size for computing elementary effects
GridLevel/2 (default) | positive integer between 1 and GridLevel

This property is read-only.

Step size for computing elementary effects, specified as a positive integer between 1 and GridLevel.
The step size is measured in terms of grid points between neighboring points. The following figure
shows examples of different grid delta values.

For details, see “Elementary Effects for Global Sensitivity Analysis” on page 1-53.
Data Types: double

PointSelection — Method to select sample points to compute elementary effects
"chain" (default) | "radial"

This property is read-only.

2 Methods

2-218

Method to select sample points to compute elementary effects, specified as "chain" or "radial".
The "chain" point selection uses the Morris method [1]. The "radial" point selection uses the
Sohier method [2]. For details, see “Elementary Effects for Global Sensitivity Analysis” on page 1-53.
Data Types: double

ParameterSamples — Sampled parameter values
table

This property is read-only.

Sampled parameter values, specified as a table. The table contains (1+numel(“params” on page
1-0))*“NumberSamples” on page 1-0 rows and numel(“params” on page 1-0)
columns.

sbioelementaryeffects uses blocks of k+1 rows, where k is the number of input “params” on
page 1-0 , to compute an elementary effect for each input parameter. The total number of these
blocks is equal to the total number of samples. You can get the block indices by running
kron((1:NumberSamples)',ones(numel(params)+1,1)). For details, see “Elementary Effects
for Global Sensitivity Analysis” on page 1-53.
Data Types: table

Observables — Names of model responses or observables
cell array of character vectors

This property is read-only.

Names of model responses or observables, specified as a cell array of character vectors.
Data Types: char

SimulationInfo — Simulation information used for computing elementary effects
structure

This property is read-only.

Simulation information, such as simulation data and parameter samples, used for computing
elementary effects, specified as a structure. The structure contains the following fields.

• SimFunction — SimFunction object used for simulating model responses or observables.
• SimData — SimData array of size [NumberSamples,1], where “NumberSamples” on page 1-

0 is the number of samples. The array contains simulation results from ParameterSamples.
• OutputTimes — Numeric column vector containing the common time vector of all SimData

objects.
• Bounds — Numeric matrix of size [params,2]. params is the number of input parameters. The
first column contains the lower bounds and the second column contains the upper bounds for
sensitivity inputs.

• DoseTables — Cell array of dose tables used for the SimFunction evaluation. DoseTables is
the output of getTable(doseInput), where doseInput is the value specified for the 'Doses'
name-value pair argument in the call to sbiosobol, sbiompgsa, or sbioelementaryeffects.
If no doses are applied, this field is set to [].

 SimBiology.gsa.ElementaryEffects

2-219

• ValidSample — Logical vector of size [NumberSamples,1] indicating whether a simulation for
a particular sample failed. Resampling of the simulation data (SimData) can result in NaN values
if the data is extrapolated. Such SimData are indicated as invalid.

• InterpolationMethod — Name of the interpolation method for SimData.
• SamplingMethod — Name of the sampling method used to draw ParameterSamples.
• RandomState — Structure containing the state of rng before drawing ParameterSamples.

Data Types: struct

Object Functions
resample Resample Sobol indices or elementary effects to new time vector
addobservable Compute Sobol indices or elementary effects for new observable expression
removeobservable Remove Sobol indices or elementary effects of observables
addsamples Add additional samples to increase accuracy of Sobol indices or elementary

effects analysis
plotData Plot quantile summary of model simulations from global sensitivity analysis

(requires Statistics and Machine Learning Toolbox)
plot Plot means and standard deviations of elementary effects
bar Plot magnitudes of means and standard deviations of elementary effects
plotGrid Plot parameter grid and points used to compute elementary effects

Examples

Perform GSA by Computing Elementary Effects

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

2 Methods

2-220

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, define model parameters of interest, which are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1'};
outputName = 'tumor_weight';

Then perform GSA by computing the elementary effects using sbioelementaryeffects. Use 100
as the number of samples and set ShowWaitBar to true to show the simulation progress.

rng('default');
eeResults = sbioelementaryeffects(m1,modelParamNames,outputName,Variants=v,Doses=d,NumberSamples=100,ShowWaitbar=true);

Show the median model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(eeResults,ShowMedian=true,ShowMean=false);

 SimBiology.gsa.ElementaryEffects

2-221

You can adjust the quantile region to a different percentage by specifying Alphas for the lower and
upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100*alpha and 100*(1-alpha) quantiles of all simulated model responses.

plotData(eeResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

2 Methods

2-222

Plot the time course of the means and standard deviations of the elementary effects.

h = plot(eeResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 SimBiology.gsa.ElementaryEffects

2-223

The mean of effects explains whether variations in input parameter values have any effect on the
tumor weight response. The standard deviation of effects explains whether the sensitivity change is
dependent on the location in the parameter domain.

From the mean of effects plots, parameters L1 and w0 seem to be the most sensitive parameters to
the tumor weight before the dose is applied at t = 7. But, after the dose is applied, k1 and L0 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
plots of standard deviation of effects show more deviations for the larger parameter values in the
later stage (t > 35) than for the before-dose stage of the tumor growth.

You can also display the magnitudes of the sensitivities in a bar plot. Each color shading represents a
histogram representing values at different times. Darker colors mean that those values occur more
often over the whole time course.

bar(eeResults);

2 Methods

2-224

You can also plot the parameter grids and samples used to compute the elementary effects.

plotGrid(eeResults)

 SimBiology.gsa.ElementaryEffects

2-225

You can specify more samples to increase the accuracy of the elementary effects, but the simulation
can take longer to finish. Use addsamples to add more samples.

eeResults2 = addsamples(eeResults,200);

The SimulationInfo property of the result object contains various information for computing the
elementary effects. For instance, the model simulation data (SimData) for each simulation using a set
of parameter samples is stored in the SimData field of the property. This field is an array of SimData
objects.

eeResults2.SimulationInfo.SimData

 SimBiology SimData Array : 1500-by-1

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 1500 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(eeResults2.SimulationInfo.ValidSample)

2 Methods

2-226

ans = logical
 1

You can add custom expressions as observables and compute the elementary effects of the added
observables. For example, you can compute the effects for the maximum tumor weight by defining a
custom expression as follows.

% Suppress an information warning that is issued.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
eeObs = addobservable(eeResults2,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(eeObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1500 800];

You can also remove the observable by specifying its name.

eeNoObs = removeobservable(eeObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

References
[1] Morris, Max D. “Factorial Sampling Plans for Preliminary Computational Experiments.”

Technometrics 33, no. 2 (May 1991): 161–74.

 SimBiology.gsa.ElementaryEffects

2-227

[2] Sohier, Henri, Jean-Loup Farges, and Helene Piet-Lahanier. “Improvement of the Representativity
of the Morris Method for Air-Launch-to-Orbit Separation.” IFAC Proceedings Volumes 47, no.
3 (2014): 7954–59.

See Also
“Elementary Effects for Global Sensitivity Analysis” on page 1-53

Introduced in R2021b

2 Methods

2-228

EstimatedInfo object
Object containing information about estimated model quantities

Description
The estimatedInfo object contains information about estimated model quantities (species,
parameters, or compartments). Use this object to specify which quantities in a SimBiology model are
estimated, what parameter transforms are used, and optionally, the initial estimates for these
quantities when using sbiofit or sbiofitmixed.

Construction
estimInfo = estimatedInfo creates an empty estimatedInfo object.

estimInfoArray = estimatedInfo(transformedNames) creates an array of estimatedInfo
objects for quantities specified in transformedNames. The initial values for these quantities are
obtained from the SimBiology model when you run sbiofit or sbiofitmixed.

estimInfoArray = estimatedInfo(___ ,'InitialTransformedValue',itValues) defines
the initial transformed values of model quantities specified by itValues. You cannot specify this
name-value pair along with the 'InitialValue' name-value pair.

estimInfoArray = estimatedInfo(___ ,'InitialValue',iValues) defines the initial values
of model quantities specified by iValues. You cannot specify this name-value pair along with the
'InitialTransformedValue' name-value pair.

estimInfoArray = estimatedInfo(___ ,'Bounds',boundValues) defines the lower and
upper bounds for parameter estimation specified by boundValues. You cannot specify this name-
value pair along with the 'TransformedBounds' name-value pair. All methods support parameter
bounds in sbiofit (that is, fminsearch, nlinfit, fminunc, fmincon, lsqcurvefit,
lsqnonlin, patternsearch, ga, particleswarm, and scattersearch on page 1-100). When using
fminsearch, nlinfit, or fminunc with bounds, the objective function returns Inf if bounds are
exceeded. When you turn on options such as FunValCheck, the optimization may error if bounds are
exceeded during estimation. If using nlinfit, it may report warnings about the Jacobian being ill-
conditioned or not being able to estimate if the final result is too close to the bounds. sbiofitmixed
does not support parameter bounds.

estimInfoArray = estimatedInfo(___ ,'TransformedBounds',tBoundValues) defines the
transformed bounds for parameter estimation specified by tBoundValues. You cannot specify this
name-value pair along with the 'Bounds' name-value pair.

estimInfoArray = estimatedInfo(___ ,'CategoryVariableName',groups) defines which
groups in the data have separate estimated values for parameters. In other words, this allows you to
estimate parameter values specific for each group or category. For example, you can estimate
parameters based on individuals’ age or sex.

Input Arguments
transformedNames — Names of estimated model quantities
character vector | string | string vector | cell array of character vectors

 EstimatedInfo object

2-229

Names of estimated model quantities, specified as a character vector, string, string vector, or cell
array of character vectors. To name a species unambiguously, use the qualified name, which includes
the name of the compartment that the species is in. To name a reaction-scoped parameter, use the
reaction name to qualify the parameter. Each character vector (or string) must be in one of these
formats:

• Name or qualified name of a model quantity, such as 'Cl', 'Reaction1.k','[c 1].[r 1]'
• Name of a supported parameter transform (log, logit, or probit) followed by a quantity name

in parentheses, such as 'log(Cl)', 'logit(Reaction1.k)', 'probit([c 1].[r 1])'

For details, see “Parameter Transformations”.

itValues — Initial transformed values of model quantities
vector | cell array

Initial transformed values of model quantities, specified as a vector or cell array. It must have the
same length as transformedNames. If it is a cell array, each element of the cell must be a scalar or
the empty matrix [].

iValues — Initial values of model quantities
vector | cell array

Initial values of model quantities, specified as a vector or cell array. It must have the same length as
transformedNames. If it is a cell array, each element of the cell must be a scalar or the empty
matrix [].

boundValues — Bound constraints for estimated parameters
[] (default) | matrix | cell array

Bound constraints for estimated parameters, specified as a matrix or cell array. If boundValues is a
matrix, it is a N-by-2 matrix of numbers, where N is either 1 or the length of transformedNames. If
it is a cell array, each element must be a vector of size 1-by-2 or empty [].

Each row of boundValues corresponds to the lower (the first number) and upper (the second
number) bounds of each element (such as a parameter) of estimInfo. The lower bound must be less
than the upper bound. If you specify a single row, these bounds are applied to all elements of
estimInfoArray.

You cannot specify this name-value pair along with the 'TransformedBounds' name-value pair.

tBoundValues — Transformed bound constraints for estimated parameters
[] (default) | matrix | cell array

Transformed bound constraints for estimated parameters, specified as a matrix or cell array.
tBoundValues is a N-by-2 matrix of numbers, where N is either 1 or the length of
transformedNames. If it is a cell array, each element must be a vector of size 1-by-2 or empty [].

Each row of tBoundValues corresponds to the lower (the first number) and upper (the second
number) bounds of each element (such as a parameter) of estimInfo. The lower bound must be less
than the upper bound. If you specify a single row, the bounds are applied to all elements of
estimInfoArray.

You cannot specify this name-value pair along with the 'Bounds' name-value pair.

2 Methods

2-230

groups — Group names for estimated parameters
character vector | string | string vector | cell array of character vectors

Group names for estimated parameters, specified as a character vector, string, string vector, or cell
array of character vectors. Each character vector (or string) must be one of the following.

• Name of a variable in the data used for fitting
• '<GroupVariableName>' (default)
• '<None>'

'<GroupVariableName>' indicates that each group in the data uses a separate parameter estimate.
'<None>' indicates that all groups in the data use the same parameter estimate.

If the data you plan to use for fitting contains variables that group data into different categories, you
can specify the names of those variables. For instance, if you have a variable called Sex which
indicates male and female individuals, you can specify 'Sex' as the 'CategoryVariableName'.
This means that all male individuals have one set of parameter estimates and all females have a
separate set.

Output Arguments
estimInfo — Estimated model quantity
estimatedInfo object

Estimated model quantity, returned as an estimatedInfo object.

estimInfoArray — Estimated model quantities
estimatedInfo object | vector

Estimated model quantities, returned as an estimatedInfo object or vector of estimatedInfo
objects. If transformedNames is a single character vector, estimInfoArray is a scalar
estimatedInfo object. Otherwise, estimInfoArray is a vector of estimatedInfo objects with
the same length as the input argument transformedNames.

Property Summary
Name Character vector indicating the name of an estimated model

quantity. Changing this property also updates the
TransformedName property.

 EstimatedInfo object

2-231

Transform Character vector indicating whether the quantity value is
transformed during estimation. Valid names are '', 'log',
'logit', and 'probit'. An empty character vector '' indicates
that no transform is applied.

A log transform ensures that the component value is always
positive during estimation. The logit and probit transforms
constrain component values to lie between 0 and 1.

The probit function is the inverse cumulative distribution
function associated with the standard normal distribution. For the
probit transform, SimBiology uses the norminv function. Hence
Statistics and Machine Learning Toolbox is required for the
transform.

The logit function, which is the inverse of sigmoid function, is
defined as logit(x) = log(x) – log(1 – x).

TransformedName Read-only character vector that combines the transform name
(such as 'log') and the quantity name (such as 'Central') into
an expression (such as 'log(Central)').

InitialValue Empty matrix [] or real, finite, scalar value specifying the initial
values of model quantities used for estimation. The empty matrix
indicates that the initial values for estimation are obtained from
the relevant quantity property (Value for parameters,
InitialAmount for species, and Capacity for compartments).

Changing this property automatically updates the
InitialTransformedValue property of corresponding model
quantities.

InitialTransformedValue Empty matrix [] or scalar value specifying the initial transformed
values of model quantities used for estimation. The empty matrix
indicates that the initial transformed values for estimation are
obtained by transforming the relevant quantity property (Value
for parameters, InitialAmount for species, and Capacity for
compartments).

Changing this property automatically updates the InitialValue
property of corresponding model quantities.

Bounds Empty matrix [] or 1-by-2 vector of real, finite value specifying
the lower and upper bound for an estimated parameter. The
empty matrix [] indicates that the only bound constraints are
those introduced by the value of Transform. For example, setting
Transform to 'log' constrains the parameter to the range
[0,inf]. Changing this property also updates
TransformedBounds.

The lower bound must be less than the upper bound.

2 Methods

2-232

TransformedBounds Empty matrix [] or 1-by-2 vector of real, finite value specifying
the lower and upper bound for an estimated parameter. The
empty matrix [] indicates that the value of the parameter in
transformed space is not constrained. Changing this property also
updates Bounds.

The lower bound must be less than the upper bound.
CategoryVariableName Character vector or cell array of character vectors specifying

which groups in the data have separate estimated values for the
parameter. The character vector can be the name of a variable in
the data used for fitting or one of the keywords:
'<GroupVariableName>' or '<None>'.

'<GroupVariableName>' indicates that each group in the data
uses a separate parameter estimate. '<None>' indicates that all
groups in the data use the same parameter estimate.

If you specify 'Pooled' name-value pair argument (to either
true or false) when you run sbiofit, then the function
ignores this variable. sbiofitmixed always ignores this
property.

Examples

Specify Estimated Parameters Using an EstimatedInfo Object

Create a one-compartment PK model with bolus dosing and linear clearance.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;

Suppose you want to estimate the volume of the central compartment (Central). You can specify
such estimated model quantity as well as appropriate parameter transform (log transform in this
example), initial value, and parameter bound using the estimatedInfo object.

estimated = estimatedInfo('log(Central)','InitialValue', 1,'Bounds',[0 10])

estimated =
 estimatedInfo with properties:

 Name: 'Central'
 Transform: 'log'
 TransformedName: 'log(Central)'
 InitialValue: 1
 InitialTransformedValue: 0
 Bounds: [0 10]
 TransformedBounds: [-Inf 2.3026]
 CategoryVariableName: '<GroupVariableName>'

 EstimatedInfo object

2-233

Fit One-Compartment Model to Individual PK Profile

Background

This example shows how to fit an individual's PK profile data to one-compartment model and estimate
pharmacokinetic parameters.

Suppose you have drug plasma concentration data from an individual and want to estimate the
volume of the central compartment and the clearance. Assume the drug concentration versus the
time profile follows the monoexponential decline Ct = C0e−ket, where Ct is the drug concentration at
time t, C0 is the initial concentration, and ke is the elimination rate constant that depends on the
clearance and volume of the central compartment ke = Cl/V.

The synthetic data in this example was generated using the following model, parameters, and dose:

• One-compartment model with bolus dosing and first-order elimination
• Volume of the central compartment (Central) = 1.70 liter
• Clearance parameter (Cl_Central) = 0.55 liter/hour
• Constant error model
• Bolus dose of 10 mg

Load Data and Visualize

The data is stored as a table with variables Time and Conc that represent the time course of the
plasma concentration of an individual after an intravenous bolus administration measured at 13
different time points. The variable units for Time and Conc are hour and milligram/liter, respectively.

load('data15.mat')
plot(data.Time,data.Conc,'b+')
xlabel('Time (hour)');
ylabel('Drug Concentration (milligram/liter)');

2 Methods

2-234

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for the fitting
function sbiofit for later use. A groupedData object also lets you set independent variable and
group variable names (if they exist). Set the units of the Time and Conc variables. The units are
optional and only required for the UnitConversion feature, which automatically converts matching
physical quantities to one consistent unit system.

gData = groupedData(data);
gData.Properties.VariableUnits = {'hour','milligram/liter'};
gData.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'Time' 'Conc'}
 VariableDescriptions: {}
 VariableUnits: {'hour' 'milligram/liter'}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: ''
 IndependentVariableName: 'Time'

 EstimatedInfo object

2-235

groupedData automatically set the name of the IndependentVariableName property to the Time
variable of the data.

Construct a One-Compartment Model

Use the built-in PK library to construct a one-compartment model with bolus dosing and first-order
elimination where the elimination rate depends on the clearance and volume of the central
compartment. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

For details on creating compartmental PK models using the SimBiology® built-in library, see “Create
Pharmacokinetic Models”.

Define Dosing

Define a single bolus dose of 10 milligram given at time = 0. For details on setting up different dosing
schedules, see “Doses in SimBiology Models”.

dose = sbiodose('dose');
dose.TargetName = 'Drug_Central';
dose.StartTime = 0;
dose.Amount = 10;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';

Map Response Data to the Corresponding Model Component

The data contains drug concentration data stored in the Conc variable. This data corresponds to the
Drug_Central species in the model. Therefore, map the data to Drug_Central as follows.

responseMap = {'Drug_Central = Conc'};

Specify Parameters to Estimate

The parameters to fit in this model are the volume of the central compartment (Central) and the
clearance rate (Cl_Central). In this case, specify log-transformation for these biological parameters
since they are constrained to be positive. The estimatedInfo object lets you specify parameter
transforms, initial values, and parameter bounds if needed.

paramsToEstimate = {'log(Central)','log(Cl_Central)'};
estimatedParams = estimatedInfo(paramsToEstimate,'InitialValue',[1 1],'Bounds',[1 5;0.5 2]);

Estimate Parameters

Now that you have defined one-compartment model, data to fit, mapped response data, parameters to
estimate, and dosing, use sbiofit to estimate parameters. The default estimation function that
sbiofit uses will change depending on which toolboxes are available. To see which function was
used during fitting, check the EstimationFunction property of the corresponding results object.

fitConst = sbiofit(model,gData,responseMap,estimatedParams,dose);

2 Methods

2-236

Display Estimated Parameters and Plot Results

Notice the parameter estimates were not far off from the true values (1.70 and 0.55) that were used
to generate the data. You may also try different error models to see if they could further improve the
parameter estimates.

fitConst.ParameterEstimates

ans=2×4 table
 Name Estimate StandardError Bounds
 ______________ ________ _____________ __________

 {'Central' } 1.6993 0.034821 1 5
 {'Cl_Central'} 0.53358 0.01968 0.5 2

s.Labels.XLabel = 'Time (hour)';
s.Labels.YLabel = 'Concentration (milligram/liter)';
plot(fitConst,'AxesStyle',s);

Use Different Error Models

Try three other supported error models (proportional, combination of constant and proportional error
models, and exponential).

 EstimatedInfo object

2-237

fitProp = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','proportional');
fitExp = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','exponential');
fitComb = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','combined');

Use Weights Instead of an Error Model

You can specify weights as a numeric matrix, where the number of columns corresponds to the
number of responses. Setting all weights to 1 is equivalent to the constant error model.

weightsNumeric = ones(size(gData.Conc));
fitWeightsNumeric = sbiofit(model,gData,responseMap,estimatedParams,dose,'Weights',weightsNumeric);

Alternatively, you can use a function handle that accepts a vector of predicted response values and
returns a vector of weights. In this example, use a function handle that is equivalent to the
proportional error model.

weightsFunction = @(y) 1./y.^2;
fitWeightsFunction = sbiofit(model,gData,responseMap,estimatedParams,dose,'Weights',weightsFunction);

Compare Information Criteria for Model Selection

Compare the loglikelihood, AIC, and BIC values of each model to see which error model best fits the
data. A larger likelihood value indicates the corresponding model fits the model better. For AIC and
BIC, the smaller values are better.

allResults = [fitConst,fitWeightsNumeric,fitWeightsFunction,fitProp,fitExp,fitComb];
errorModelNames = {'constant error model','equal weights','proportional weights', ...
 'proportional error model','exponential error model',...
 'combined error model'};
LogLikelihood = [allResults.LogLikelihood]';
AIC = [allResults.AIC]';
BIC = [allResults.BIC]';
t = table(LogLikelihood,AIC,BIC);
t.Properties.RowNames = errorModelNames;
t

t=6×3 table
 LogLikelihood AIC BIC
 _____________ _______ _______

 constant error model 3.9866 -3.9732 -2.8433
 equal weights 3.9866 -3.9732 -2.8433
 proportional weights -3.8472 11.694 12.824
 proportional error model -3.8257 11.651 12.781
 exponential error model 1.1984 1.6032 2.7331
 combined error model 3.9163 -3.8326 -2.7027

Based on the information criteria, the constant error model (or equal weights) fits the data best since
it has the largest loglikelihood value and the smallest AIC and BIC.

Display Estimated Parameter Values

Show the estimated parameter values of each model.

2 Methods

2-238

Estimated_Central = zeros(6,1);
Estimated_Cl_Central = zeros(6,1);
t2 = table(Estimated_Central,Estimated_Cl_Central);
t2.Properties.RowNames = errorModelNames;
for i = 1:height(t2)
 t2{i,1} = allResults(i).ParameterEstimates.Estimate(1);
 t2{i,2} = allResults(i).ParameterEstimates.Estimate(2);
end
t2

t2=6×2 table
 Estimated_Central Estimated_Cl_Central
 _________________ ____________________

 constant error model 1.6993 0.53358
 equal weights 1.6993 0.53358
 proportional weights 1.9045 0.51734
 proportional error model 1.8777 0.51147
 exponential error model 1.7872 0.51701
 combined error model 1.7008 0.53271

Conclusion

This example showed how to estimate PK parameters, namely the volume of the central compartment
and clearance parameter of an individual, by fitting the PK profile data to one-compartment model.
You compared the information criteria of each model and estimated parameter values of different
error models to see which model best explained the data. Final fitted results suggested both the
constant and combined error models provided the closest estimates to the parameter values used to
generate the data. However, the constant error model is a better model as indicated by the
loglikelihood, AIC, and BIC information criteria.

Estimate Category-Specific PK Parameters for Multiple Individuals

This example shows how to estimate category-specific (such as young versus old, male versus
female), individual-specific, and population-wide parameters using PK profile data from multiple
individuals.

Background

Suppose you have drug plasma concentration data from 30 individuals and want to estimate
pharmacokinetic parameters, namely the volumes of central and peripheral compartment, the
clearance, and intercompartmental clearance. Assume the drug concentration versus the time profile
follows the biexponential decline Ct = Ae−at + Be−bt, where Ct is the drug concentration at time t,
and a and b are slopes for corresponding exponential declines.

Load Data

This synthetic data contains the time course of plasma concentrations of 30 individuals after a bolus
dose (100 mg) measured at different times for both central and peripheral compartments. It also
contains categorical variables, namely Sex and Age.

clear
load('sd5_302RAgeSex.mat')

 EstimatedInfo object

2-239

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for the fitting
function sbiofit. A groupedData object also allows you set independent variable and group
variable names (if they exist). Set the units of the ID, Time, CentralConc, PeripheralConc, Age,
and Sex variables. The units are optional and only required for the UnitConversion feature, which
automatically converts matching physical quantities to one consistent unit system.

gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter','',''};
gData.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x6 cell}
 VariableDescriptions: {}
 VariableUnits: {1x6 cell}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'Time'

The IndependentVariableName and GroupVariableName properties have been automatically set
to the Time and ID variables of the data.

Visualize Data

Display the response data for each individual.

t = sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},...
 'Marker','+','LineStyle','none');
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

2 Methods

2-240

Set Up a Two-Compartment Model

Use the built-in PK library to construct a two-compartment model with infusion dosing and first-order
elimination where the elimination rate depends on the clearance and volume of the central
compartment. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

For details on creating compartmental PK models using the SimBiology® built-in library, see “Create
Pharmacokinetic Models”.

Define Dosing

Assume every individual receives a bolus dose of 100 mg at time = 0. For details on setting up
different dosing strategies, see “Doses in SimBiology Models”.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;

 EstimatedInfo object

2-241

dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';

Map the Response Data to Corresponding Model Components

The data contains measured plasma concentration in the central and peripheral compartments. Map
these variables to the appropriate model components, which are Drug_Central and
Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

Specify Parameters to Estimate

Specify the volumes of central and peripheral compartments Central and Peripheral,
intercompartmental clearance Q12, and clearance Cl_Central as parameters to estimate. The
estimatedInfo object lets you optionally specify parameter transforms, initial values, and
parameter bounds. Since both Central and Peripheral are constrained to be positive, specify a
log-transform for each parameter.

paramsToEstimate = {'log(Central)', 'log(Peripheral)', 'Q12', 'Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Estimate Individual-Specific Parameters

Estimate one set of parameters for each individual by setting the 'Pooled' name-value pair
argument to false.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Display Results

Plot the fitted results versus the original data for each individual (group).

plot(unpooledFit);

2 Methods

2-242

For an unpooled fit, sbiofit always returns one results object for each individual.

Examine Parameter Estimates for Category Dependencies

Explore the unpooled estimates to see if there is any category-specific parameters, that is, if some
parameters are related to one or more categories. If there are any category dependencies, it might be
possible to reduce the number of degrees of freedom by estimating just category-specific values for
those parameters.

First extract the ID and category values for each ID

catParamValues = unique(gData(:,{'ID','Sex','Age'}));

Add variables to the table containing each parameter's estimate.

allParamValues = vertcat(unpooledFit.ParameterEstimates);
catParamValues.Central = allParamValues.Estimate(strcmp(allParamValues.Name, 'Central'));
catParamValues.Peripheral = allParamValues.Estimate(strcmp(allParamValues.Name, 'Peripheral'));
catParamValues.Q12 = allParamValues.Estimate(strcmp(allParamValues.Name, 'Q12'));
catParamValues.Cl_Central = allParamValues.Estimate(strcmp(allParamValues.Name, 'Cl_Central'));

Plot estimates of each parameter for each category. gscatter requires Statistics and Machine
Learning Toolbox™. If you do not have it, use other alternative plotting functions such as plot.

h = figure;
ylabels = {'Central','Peripheral','Cl_Central','Q12'};

 EstimatedInfo object

2-243

plotNumber = 1;
for i = 1:4
 thisParam = estimatedParam(i).Name;

 % Plot for Sex category
 subplot(4,2,plotNumber);
 plotNumber = plotNumber + 1;
 gscatter(double(catParamValues.Sex), catParamValues.(thisParam), catParamValues.Sex);
 ax = gca;
 ax.XTick = [];
 ylabel(ylabels(i));
 legend('Location','bestoutside')
 % Plot for Age category
 subplot(4,2,plotNumber);
 plotNumber = plotNumber + 1;
 gscatter(double(catParamValues.Age), catParamValues.(thisParam), catParamValues.Age);
 ax = gca;
 ax.XTick = [];
 ylabel(ylabels(i));
 legend('Location','bestoutside')
end
% Resize the figure.
h.Position(:) = [100 100 1280 800];

Based on the plot, it seems that young individuals tend to have higher volumes of central and
peripheral compartments (Central, Peripheral) than old individuals (that is, the volumes seem to

2 Methods

2-244

be age-specific). In addition, males tend to have higher clearance rates (Cl_Central) than females
but the opposite for the Q12 parameter (that is, the clearance and Q12 seem to be sex-specific).

Estimate Category-Specific Parameters

Use the 'CategoryVariableName' property of the estimatedInfo object to specify which
category to use during fitting. Use 'Sex' as the group to fit for the clearance Cl_Central and Q12
parameters. Use 'Age' as the group to fit for the Central and Peripheral parameters.

estimatedParam(1).CategoryVariableName = 'Age';
estimatedParam(2).CategoryVariableName = 'Age';
estimatedParam(3).CategoryVariableName = 'Sex';
estimatedParam(4).CategoryVariableName = 'Sex';
categoryFit = sbiofit(model,gData,responseMap,estimatedParam,dose)

categoryFit =
 OptimResults with properties:

 ExitFlag: 3
 Output: [1x1 struct]
 GroupName: []
 Beta: [8x5 table]
 ParameterEstimates: [120x6 table]
 J: [240x8x2 double]
 COVB: [8x8 double]
 CovarianceMatrix: [8x8 double]
 R: [240x2 double]
 MSE: 0.4362
 SSE: 205.8690
 Weights: []
 LogLikelihood: -477.9195
 AIC: 971.8390
 BIC: 1.0052e+03
 DFE: 472
 DependentFiles: {1x3 cell}
 EstimatedParameterNames: {'Central' 'Peripheral' 'Q12' 'Cl_Central'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'lsqnonlin'

When fitting by category (or group), sbiofit always returns one results object, not one for each
category level. This is because both male and female individuals are considered to be part of the
same optimization using the same error model and error parameters, similarly for the young and old
individuals.

Plot Results

Plot the category-specific estimated results.

plot(categoryFit);

 EstimatedInfo object

2-245

For the Cl_Central and Q12 parameters, all males had the same estimates, and similarly for the
females. For the Central and Peripheral parameters, all young individuals had the same
estimates, and similarly for the old individuals.

Estimate Population-Wide Parameters

To better compare the results, fit the model to all of the data pooled together, that is, estimate one set
of parameters for all individuals by setting the 'Pooled' name-value pair argument to true. The
warning message tells you that this option will ignore any category-specific information (if they exist).

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Warning: CategoryVariableName property of the estimatedInfo object is ignored when using the 'Pooled' option.

Plot Results

Plot the fitted results versus the original data. Although a separate plot was generated for each
individual, the data was fitted using the same set of parameters (that is, all individuals had the same
fitted line).

plot(pooledFit);

2 Methods

2-246

Compare Residuals

Compare residuals of CentralConc and PeripheralConc responses for each fit.

t = gData.Time;
allResid(:,:,1) = pooledFit.R;
allResid(:,:,2) = categoryFit.R;
allResid(:,:,3) = vertcat(unpooledFit.R);

h = figure;
responseList = {'CentralConc', 'PeripheralConc'};
for i = 1:2
 subplot(2,1,i);
 oneResid = squeeze(allResid(:,i,:));
 plot(t,oneResid,'o');
 refline(0,0); % A reference line representing a zero residual
 title(sprintf('Residuals (%s)', responseList{i}));
 xlabel('Time');
 ylabel('Residuals');
 legend({'Pooled','Category-Specific','Unpooled'});
end
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 EstimatedInfo object

2-247

As shown in the plot, the unpooled fit produced the best fit to the data as it fit the data to each
individual. This was expected since it used the most number of degrees of freedom. The category-fit
reduced the number of degrees of freedom by fitting the data to two categories (sex and age). As a
result, the residuals were larger than the unpooled fit, but still smaller than the population-fit, which
estimated just one set of parameters for all individuals. The category-fit might be a good compromise
between the unpooled and pooled fitting provided that any hierarchical model exists within your data.

See Also
sbiofit | sbiofitmixed | groupedData object | CovariateModel object

Topics
“Fit Two-Compartment Model to PK Profiles of Multiple Individuals” on page 1-69
“Estimate Yeast G Protein Model Parameter” on page 1-84
“Parameter Transformations”
“Nonlinear Regression”

Introduced in R2014a

2 Methods

2-248

Event object
Store event information

Description
Events are used to describe sudden changes in model behavior. An event lets you specify discrete
transitions in model component values that occur when a user-specified condition become true. You
can specify that the event occurs at a particular time, or specify a time-independent condition.

For details on how events are handled during a simulation, see “Events in SimBiology Models”.

See “Property Summary” on page 2-250 for links to event property reference pages.

Properties define the characteristics of an object. For example, an event object includes properties
that allow you to specify the conditions to trigger an event (Trigger), and what to do after the event
is triggered (EventFcn). Use the get and set commands to list object properties and change their
values at the command line. You can graphically change object properties in the SimBiology desktop.

Tip If UnitConversion is on and your model has any event, follow the recommendation below.

Non-dimensionalize any parameters used in the event Trigger if they are not already dimensionless.
For example, suppose you have a trigger x > 1, where x is the species concentration in mole/liter.
Non-dimensionalize x by scaling (dividing) it with a constant such as x/x0 > 1, where x0 is a
parameter defined as 1.0 mole/liter. Note that x does not have to have the same unit as the constant
x0, but must be dimensionally consistent with it. For example, the unit of x can be picomole/liter
instead of mole/liter.

Constructor Summary
addevent (model) Add event object to model object

Method Summary
copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
rename Rename object and update expressions
set Set SimBiology object properties

 Event object

2-249

Property Summary
Active Indicate object in use during simulation
EventFcns Event expression
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Tag Specify label for SimBiology object
Trigger Event trigger
Type Display SimBiology object type
UserData Specify data to associate with object

See Also
AbstractKineticLaw object, Configset object, KineticLaw object, Model object,
Parameter object, Reaction object, Root object, Rule object, Species object

Introduced in R2007b

2 Methods

2-250

export (model)
Export SimBiology models for deployment and standalone applications

Syntax
exportedModel = export(model)
exportedModel = export(model,editobjs)
exportedModel = export(model,editobjs,modifiers)
exportedModel = export(model,editobjs,editdoses,variants)

Description
exportedModel = export(model) returns a SimBiology.export.Model object,
exportedModel, from a SimBiology model object, model including all doses which are editable in
the exported model. In addition, if the model has any active variants, they are automatically applied
to determine the default initial values in the exported model. By default, all species, parameters,
compartments, and doses are editable in the exported model. When you simulate the exported model,
you can specify different initial values or different dose conditions.

exportedModel = export(model,editobjs) specifies editobjs, which is a species, parameter,
compartment, or vector of these objects that are editable in the exported model. All doses are
exported and are editable in the exported model. If the model has any active variants, they are
automatically applied to determine the default initial values in the exported model. When you
simulate the exported model, you can specify different initial values for editobjs or different dose
conditions.

exportedModel = export(model,editobjs,modifiers) additionally specifies modifiers
which is a dose, variant, vector of these objects or an empty array [].

exportedModel = export(model,editobjs,editdoses,variants) additionally specifies
editdoses, a dose object or vector of dose objects and variants, a variant object or vector of
variant objects.

Method Summary
Methods for exported model objects

accelerate Prepare exported SimBiology model for acceleration
getdose Return exported SimBiology model dose object
getIndex Get indices into ValueInfo and InitialValues properties
isAccelerated Determine whether an exported SimBiology model is accelerated
simulate Simulate exported SimBiology model

Input Arguments
model — SimBiology model
SimBiology model object

 export (model)

2-251

SimBiology model, specified as a SimBiology model object.

editobjs — Editable model quantities in the exported model
species object | parameter object | compartment object | vector of objects

Editable model quantities in the exported model, specified as a species, parameter, or compartment
object or a vector of these objects.

modifiers — Model modifiers
dose object | variant object | vector of objects | []

Model modifiers, specified as a dose or variant object, a vector of these objects, or an empty array [].

If modifiers is a vector of dose objects, then only these doses are editable in the exported model.

If modifiers is an empty array [], then no doses are editable in the exported model, and all active
variants are applied to determine the default initial values of model quantities in the exported model.

If modifiers is a vector of variant objects, then specified variants are applied to determine the
default initial values. All doses in the model are exported.

When you simulate the exported model, you can specify different initial values for editobjs or
different dose conditions for editable doses.

editdoses — Editable doses
dose object | vector of objects

Editable doses, specified as a dose object or vector of dose objects. The specified dose objects are
editable in the exported model.

variants — Variants
variant object | vector of objects

Variants, specified as a variant object or a vector of objects. The specified variant objects are applied
to determine the default initial values in the exported model.

Output Arguments
exportedModel — Exported model
SimBiology.export.Model

Exported model, specified as a SimBiology.export.Model object.

Examples

Export a SimBiology Model

Export a SimBiology model object.

modelObj = sbmlimport('lotka');
exportedModel = export(modelObj)

exportedModel =
 Model with properties:

2 Methods

2-252

 Name: 'lotka'
 ExportTime: '26-Feb-2022 14:47:49'
 ExportNotes: ''

Display the editable values (compartments, species, and parameters) information for the exported
model object.

{exportedModel.ValueInfo.Name}

ans = 1x8 cell
 Columns 1 through 7

 {'unnamed'} {'x'} {'y1'} {'y2'} {'z'} {'c1'} {'c2'}

 Column 8

 {'c3'}

There are 8 editable values in the exported model. Export the model again, allowing only the
parameters (c1, c2, and c3) to be editable.

parameters = sbioselect(modelObj,'Type','parameter');
exportedModelParam = export(modelObj,parameters);
{exportedModelParam.ValueInfo.Name}

ans = 1x3 cell
 {'c1'} {'c2'} {'c3'}

Export the model a third time, allowing the parameters and species to be editable.

PS = sbioselect(modelObj,'Type',{'species','parameter'});
exportedModelPS = export(modelObj,PS);
{exportedModelPS.ValueInfo.Name}

ans = 1x7 cell
 {'x'} {'y1'} {'y2'} {'z'} {'c1'} {'c2'} {'c3'}

See Also
SimBiology.export.Model | Model object | Parameter object | Species object |
Compartment object

Topics
“PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
“Deploy a SimBiology Exported Model”

Introduced in R2012b

 export (model)

2-253

findUnusedComponents (model)
Find unused species, parameters, and compartments in a model

Syntax
unused = findUnusedComponents(model)
unused = findUnusedComponents(model,dose)
unused = findUnusedComponents(model,dose,variant)

Description
unused = findUnusedComponents(model) returns a vector of species, compartments, and
parameters that are not used in model, which is a SimBiology Model object. For details of what
SimBiology checks to decide whether a component is used, see “Component Usage”.

unused = findUnusedComponents(model,dose) also searches for unused components in dose,
which is a RepeatDose object, ScheduleDose object, or a vector of dose objects.

unused = findUnusedComponents(model,dose,variant) also searches for unused
components in variant, which is a Variant object or a vector of variant objects.

Input Arguments
model — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology Model object.

dose — Dose object
ScheduleDose object | RepeatDose object | vector

Dose object, specified as a ScheduleDose object, RepeatDose object, or vector of dose objects.

variant — Variant
variant object | vector

Variant, specified as a Variant object or vector of variant objects.

Output Arguments
unused — Unused components
vector

Unused components, returned as a vector of species, parameters, and compartments.

Examples

2 Methods

2-254

Find Unused Components in a Model

Load a sample project.

sbioloadproject gprotein.sbproj

Check if there is any unused species, compartments, or parameters.

unused = findUnusedComponents(m1)

unused =
 0x1 QuantityComponent array with properties:

 Constant
 Value
 Units
 BoundaryCondition
 Name
 Parent
 Notes
 Tag
 Type
 UserData

Add some parameters to the model that are not used.

p1 = addparameter(m1,'p1');
p2 = addparameter(m1,'p2');

Look for those unused parameters.

unused = findUnusedComponents(m1)

unused =
 SimBiology Parameter Array

 Index: Name: Value: Units:
 1 p1 1
 2 p2 1

See Also
findUsages | Model object

Topics
“Component Usage”

Introduced in R2016b

 findUnusedComponents (model)

2-255

findUsages
Find out how a species, parameter, or compartment is used in a model

Syntax
[componentList,usageTable] = findUsages(object)
[componentList,usageTable] = findUsages(object,dose)
[componentList,usageTable] = findUsages(object,dose,variant)

Description
[componentList,usageTable] = findUsages(object) returns a vector of components that
use the object and a table providing details about the usages. The object can be a species,
parameter, or compartment object. For details of what SimBiology checks to decide whether a
component is used, see “Component Usage”.

[componentList,usageTable] = findUsages(object,dose) also searches for usages of the
object in dose, which is a RepeatDose object, ScheduleDose object, or a vector of dose
objects.

[componentList,usageTable] = findUsages(object,dose,variant) also searches for
usages of the object in variant, which is a Variant object or a vector of variant objects.

Examples

Find Out How a Quantity is Used in a Model

Load a sample project.

sbioloadproject gprotein.sbproj

Check and see how the rate of G protein inactivation parameter kGd is used in the model.

kGd = sbioselect(m1,'Name','kGd');
[components,usages] = findUsages(kGd);

components is a vector of components that use the parameter kGd. Display these components.

for i = 1:length(components)
 components(i)
end

ans =
 SimBiology Reaction Array

 Index: Reaction:
 1 Ga -> Gd

ans =
 SimBiology Kinetic Law Array

2 Methods

2-256

 Index: KineticLawName:
 1 MassAction

Based on the information from the usages table, the parameter is being used as a reaction rate
parameter.

usages

usages=2×3 table
 Component Property Usage
 _____________________________ __________________________ __________

 1x1 SimBiology.ModelComponent {'ReactionRate' } {'kGd*Ga'}
 1x1 SimBiology.ModelComponent {'ParameterVariableNames'} {'kGd' }

Input Arguments
object — Species, parameter, compartment, unit, or unit prefix
species object | parameter object | compartment object

Species, parameter, compartment, unit, or unit prefix, specified as a Species object. Parameter
object, and Compartment object.

dose — Dose object
ScheduleDose object | RepeatDose object | vector

Dose object, specified as a ScheduleDose object, RepeatDose object, or vector of dose objects.

variant — Variant
variant object | vector

Variant, specified as a Variant object or vector of variant objects.

Output Arguments
componentList — List of model components that use the input object
vector

List of model components that use the input object, returned as a vector.

usageTable — Usage Information
table

Usage information, returned as a table. Table variables are:

• Component– a vector of components that use the object
• Property– a cell array of character vectors listing the corresponding properties that refer to the

object
• Usage– a cell array reporting the usages as follows:

 findUsages

2-257

• For rules, the value of the Rule property,
• For reactions, the value of the Reaction or ReactionRate property,
• For kinetic laws, the name stored in the SpeciesVariableNames or ParameterVariableNames,
• For events, the value of the Trigger property or the value of EventFcns{i}, where i the index

of an event function that use the component.
• For variants, the value of Content{i}, where i is the index of the content entry that use the

component.
• For doses, the value of the relevant property, that is, TargetName, DurationParameterName,

or LagParameterName.
• For species making use of a compartment, the name of the compartment listed in the Parent

property of the species.

See Also
findUnusedComponents | Species object | Parameter object | Compartment object

Topics
“Component Usage”

Introduced in R2016b

2 Methods

2-258

findUsages
Find out how an AbstractKineticLaw object is used

Syntax
rxnList= findUsages(aklObj,model)

Description
rxnList= findUsages(aklObj,model) returns a vector of reactions in model that use the
AbstractKineticLaw object aklObj. For details of what SimBiology checks to decide whether
an abstract kinetic law is used, see “Component Usage”.

Examples

Find Out How an Abstract Kinetic Law is Used in a Model

Load a sample project.

sbioloadproject gprotein.sbproj

List all reactions in the model that use the MassAction abstract kinetic law.

akl = sbioselect('Type','abstract_kinetic_law','Name','MassAction');
list = findUsages(akl,m1)

list =
 SimBiology Reaction Array

 Index: Reaction:
 1 L + R <-> RL
 2 Gd + Gbg -> G
 3 G + RL -> Ga + Gbg + RL
 4 R <-> null
 5 RL -> null
 6 Ga -> Gd

Input Arguments
aklObj — Abstract kinetic law
AbstractKineticLaw object

Abstract kinetic law, specified as a AbstractKineticLaw object.

model — SimBiology model
model object | vector

SimBiology model, specified as a model object, or vector of model objects.

 findUsages

2-259

Output Arguments
rxnList — List of reactions that use aklObj
vector

List of reactions that use aklObj, returned as a vector of reaction objects.

See Also
findUnusedComponents | abstractkineticlaw object | kineticlaw object | reaction
object | findUsages(species,parameter,compartment) | findUsages(unit,unitprefix)

Topics
“Component Usage”

Introduced in R2016b

2 Methods

2-260

findUsages
Find out how observable object is used in SimBiology model

Syntax
[componentList,usageTable] = findUsages(obsObj)

Description
[componentList,usageTable] = findUsages(obsObj) returns a vector of components that
use the observable object obsObj and a table providing details about the usages. For information
about how SimBiology determines whether a component is used, see “Component Usage”.

Examples

Find Usages of Observable Object

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Use the target occupancy (TO) as a response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Add an observable that calculates the maximum of the TO profile.

obs1 = addobservable(m1,'Max_TO','max(TO)');

Add another observable that references the first observable.

obs2 = addobservable(m1,'Max_Square','Max_TO.^2');

Find usages of the first observable.

[c,t] = findUsages(obs1)

c =
 SimBiology Observable Array

 Index: Name: Expression: Active: Units:
 1 Max_Square Max_TO.^2 true

t=1×3 table
 Component Property Usage
 _________________________ ______________ _____________

 1x1 SimBiology.Observable {'Expression'} {'Max_TO.^2'}

 findUsages

2-261

Input Arguments
obsObj — Observable object
observable object

Observable object, specified as an observable object.

Output Arguments
componentList — List of model components that use the input object
vector of model components

List of model components that use the input object, returned as a vector of model components.

usageTable — Usage Information
table

Usage information, returned as a table. Table variables are:

• Component – Vector of components that use the object
• Property – Cell array of character vectors listing the corresponding properties that refer to the

object
• Usage – Cell array of character vectors. Each character vector is the Expression property of

another observable object that references the input object.

See Also
Observable

Topics
“Component Usage”

Introduced in R2020a

2 Methods

2-262

findUsages
Find out how a unit or unit prefix is used

Syntax
[componentList,usageTable] = findUsages(obj)
[componentList,usageTable] = findUsages(obj,model)
[componentList,usageTable] = findUsages(obj,model,dose)

Description
[componentList,usageTable] = findUsages(obj) returns a vector of components that use
the unit or unit prefix object obj and a table providing details about how the obj is used in the
BuiltInLibrary and UserDefinedLibrary. For details of what SimBiology checks to decide
whether a unit or unit prefix is used by another component, see “Component Usage”.

[componentList,usageTable] = findUsages(obj,model) also searches for usages of the obj
in model, which is a SimBiology model, or a vector of model objects.

[componentList,usageTable] = findUsages(obj,model,dose) also searches for usages of
the obj in dose, which is a ScheduleDose object, RepeatDose object, or a vector of dose
objects.

Examples

Find Out How a Unit is Used in a Library

Create the unit object.

gram = sbioselect('Type','Unit','Name','gram');

Check and see how the gram unit is used in the built-in library. If you have a custom library, the
function also searches it.

gramUsage = findUsages(gram)

gramUsage =
 SimBiology Unit Array

 Index: Library: Name: Composition: Multiplier:
 1 BuiltIn gram gram 1
 2 BuiltIn joule (meter^2*kilogram)/second^2 1
 3 BuiltIn calorie (meter^2*kilogram)/second^2 4.1868
 4 BuiltIn pascal kilogram/(meter*second^2) 1
 5 BuiltIn watt (kilogram*meter^2)/second^3 1
 6 BuiltIn newton (kilogram*meter)/second^2 1
 7 BuiltIn dyne (gram*centimeter)/second^2 1
 8 BuiltIn volt (kilogram*meter^2)/(ampere*second^3) 1
 9 BuiltIn farad (ampere^2*second^4)/(kilogram*meter^2) 1
 10 BuiltIn ohm (kilogram*meter^2)/(ampere^2*second^3) 1

 findUsages

2-263

 11 BuiltIn siemens (ampere^2*second^3)/(kilogram*meter^2) 1
 12 BuiltIn weber (kilogram*meter^2)/(ampere*second^2) 1
 13 BuiltIn tesla kilogram/(second^2*ampere) 1
 14 BuiltIn henry (kilogram*meter^2)/(ampere^2*second^2) 1

Input Arguments
obj — Unit or unit prefix
unit object | unit prefix object

Unit or unit prefix, specified as a Unit object, or UnitPrefix object

model — SimBiology model
model object | vector

SimBiology model, specified as a Model object or vector of model objects.

dose — Dose object
ScheduleDose object | RepeatDose object | vector

Dose object, specified as a ScheduleDose object, RepeatDose object, or vector of dose objects.

Output Arguments
componentList — List of model components that use the unit or unit prefix
vector

List of model components that use the unit or unit prefix, returned as a vector.

usageTable — Usage Information
table

Usage information, returned as a table. Table variables are:

• Component– a vector of components that use the obj
• Property– a cell array of character vectors listing the corresponding properties that use the obj,

and
• Usage– a cell array of character vectors stored in the relevant properties, that is,

InitialAmountUnits, CapacityUnits, ValueUnits, TimeUnits, AmountUnits, RateUnits, or
Composition.

See Also

Introduced in R2016b

2 Methods

2-264

fit
Perform parameter estimation using SimBiology problem object

Syntax
fitResults = fit(problemObject)
[fitResults,simdataI] = fit(problemObject)
[fitResults,simdataI,simdataP] = fit(problemObject)

Description
fitResults = fit(problemObject) performs parameter estimation using the model, data, and
options defined by problemObject and returns the fitted results.

[fitResults,simdataI] = fit(problemObject) also returns simulation data simdataI using
the estimated parameter values. If problemObject.FitFunction is "sbiofitmixed", simulations
use the individual parameter estimates.

[fitResults,simdataI,simdataP] = fit(problemObject) also returns simulation results
using population parameter estimates. This syntax is supported only when
problemObject.FitFunction is "sbiofitmixed".

Examples

Fit PK Parameters Using SimBiology Problem-Based Workflow

This example shows how to estimate PK parameters of a SimBiology model using a problem-based
approach.

Load a synthetic data set. It contains drug plasma concentration data measured in both central and
peripheral compartments.

load('data10_32R.mat')

Convert the data set to a groupedData object.

gData = groupedData(data);
gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];

Display the data.

sbiotrellis(gData,"ID","Time",["CentralConc","PeripheralConc"],...
 Marker="+",LineStyle="none");

 fit

2-265

Use the built-in PK library to construct a two-compartment model with infusion dosing and first-order
elimination. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,"Central");
pkc1.DosingType = "Infusion";
pkc1.EliminationType = "linear-clearance";
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,"Peripheral");
model2cpt = construct(pkmd);
configset = getconfigset(model2cpt);
configset.CompileOptions.UnitConversion = true;

Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg
at a rate of 50 mg/hour. For details on setting up different dosing strategies, see “Doses in SimBiology
Models”.

dose = sbiodose("dose","TargetName","Drug_Central");
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = "milligram";
dose.TimeUnits = "hour";
dose.RateUnits = "milligram/hour";

Create a problem object.

problem = fitproblem

2 Methods

2-266

problem =
 fitproblem with properties:

 Required:
 Data: [0x0 groupedData]
 Estimated: [1x0 estimatedInfo]
 FitFunction: "sbiofit"
 Model: [0x0 SimBiology.Model]
 ResponseMap: [1x0 string]

 Optional:
 Doses: [0x0 SimBiology.Dose]
 FunctionName: "auto"
 Options: []
 ProgressPlot: 0
 UseParallel: 0
 Variants: [0x0 SimBiology.Variant]

 sbiofit options:
 ErrorModel: "constant"
 Pooled: "auto"
 SensitivityAnalysis: "auto"
 Weights: []

Define the required properties of the object.

problem.Data = gData;
problem.Estimated = estimatedInfo(["log(Central)","log(Peripheral)","Q12","Cl_Central"],InitialValue=[1 1 1 1]);
problem.Model = model2cpt;
problem.ResponseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];

Define the dose to be applied during fitting.

problem.Doses = dose;

Show the progress of the estimation.

problem.ProgressPlot = true;

Fit the model to all of the data pooled together: that is, estimate one set of parameters for all
individuals by setting the Pooled property to true.

problem.Pooled = true;

Perform the estimation using the fit function of the object.

pooledFit = fit(problem);

 fit

2-267

Display the estimated parameter values.

pooledFit.ParameterEstimates

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 {'Central' } 1.6627 0.16569
 {'Peripheral'} 2.6864 1.0644
 {'Q12' } 0.44945 0.19943
 {'Cl_Central'} 0.78497 0.095621

Plot the fitted results.

plot(pooledFit);

2 Methods

2-268

Estimate one set of parameters for each individual and see if the parameter estimates improve.

problem.Pooled = false;
unpooledFit = fit(problem);

 fit

2-269

Display the estimated parameter values.

unpooledFit.ParameterEstimates

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 {'Central' } 1.422 0.12334
 {'Peripheral'} 1.5619 0.36355
 {'Q12' } 0.47163 0.15196
 {'Cl_Central'} 0.5291 0.036978

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 {'Central' } 1.8322 0.019672

2 Methods

2-270

 {'Peripheral'} 5.3364 0.65327
 {'Q12' } 0.2764 0.030799
 {'Cl_Central'} 0.86035 0.026257

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 {'Central' } 1.6657 0.038529
 {'Peripheral'} 5.5632 0.37063
 {'Q12' } 0.78361 0.058657
 {'Cl_Central'} 1.0233 0.027311

plot(unpooledFit);

Generate a plot of the residuals over time to compare the pooled and unpooled fit results. The figure
indicates unpooled fit residuals are smaller than those of the pooled fit, as expected. In addition to
comparing residuals, other rigorous criteria can be used to compare the fitted results.

t = [gData.Time;gData.Time];
res_pooled = vertcat(pooledFit.R);
res_pooled = res_pooled(:);
res_unpooled = vertcat(unpooledFit.R);

 fit

2-271

res_unpooled = res_unpooled(:);
figure;
plot(t,res_pooled,"o",MarkerFaceColor="w",markerEdgeColor="b")
hold on
plot(t,res_unpooled,"o",MarkerFaceColor="b",markerEdgeColor="b")
refl = refline(0,0); % A reference line representing a zero residual
title("Residuals versus Time");
xlabel("Time");
ylabel("Residuals");
legend(["Pooled","Unpooled"]);

As illustrated, the unpooled fit accounts for variations due to the specific subjects in the study, and, in
this case, the model fits better to the data. However, the pooled fit returns population-wide
parameters. As an alternative, if you want to estimate population-wide parameters while considering
individual variations, you can perform nonlinear mixed-effects (NLME) estimation by setting
problem.FitFunction to sbiofitmixed.

problem.FitFunction = "sbiofitmixed";

NLMEResults = fit(problem);

2 Methods

2-272

Display the estimated parameter values.

NLMEResults.IndividualParameterEstimates

ans=12×3 table
 Group Name Estimate
 _____ ______________ ________

 1 {'Central' } 1.4623
 1 {'Peripheral'} 1.5306
 1 {'Q12' } 0.4587
 1 {'Cl_Central'} 0.53208
 2 {'Central' } 1.783
 2 {'Peripheral'} 6.6623
 2 {'Q12' } 0.3589
 2 {'Cl_Central'} 0.8039
 3 {'Central' } 1.7135
 3 {'Peripheral'} 4.2844
 3 {'Q12' } 0.54895
 3 {'Cl_Central'} 1.0708

Plot the fitted results.

plot(NLMEResults);

 fit

2-273

Plot the conditional weighted residuals (CWRES) and individual weighted residuals (IWRES) of model
predicted values.

plotResiduals(NLMEResults,'predictions')

2 Methods

2-274

Input Arguments
problemObject — SimBiology estimation problem
fitproblem object

SimBiology estimation problem, specified as a fitproblem object.

Output Arguments
fitResults — Estimation results
OptimResults object | NLINResults object | NLMEResults object | vector of results objects

Estimation results, returned as a scalar OptimResults on page 2-432 object, NLINResults on page
2-422 object, vector of OptimResults or NLINResults objects, or scalar NLMEResults on page
2-423 object.

The returned results object type varies depending on if you used
problemObject.FitFunction="sbiofit" or
problemObject.FitFunction="sbiofitmixed".

 fit

2-275

• If FitFunction="sbiofit" and FunctionName="nlinfit", the returned results object type is
NLINResults on page 2-422. For other optimization functions, the returned object type is
OptimResults on page 2-432 .

• If FitFunction="sbiofitmixed", the returned object type is always NLMEResults on page
2-423.

When you use FitFunction="sbiofit", the function returns either a scalar results object or
vector of results objects as follows.

For an unpooled fit, the function fits each group separately using group-specific parameters, and
fitResults is a vector of results objects with one results object for each group.

For a pooled fit, the function performs fitting for all individuals or groups simultaneously using the
same parameter estimates, and fitResults is a scalar results object.

When the pooled option is not specified, and CategoryVariableName values of estimatedInfo
objects are all <none>, fitResults is a single results object. This is the same behavior as a pooled
fit.

When the pooled option is not specified, and CategoryVariableName values of estimatedInfo
objects are all <GroupVariableName>, fitResults is a vector of results objects. This is the same
behavior as an unpooled fit.

In all other cases, fitResults is a scalar object containing estimated parameter values for different
groups or categories specified by CategoryVariableName.

See the “Pooled” on page 2-0 property for details on how to perform a pooled, unpooled, or
category fit.

When you use FitFunction="sbiofitmixed", the function always returns a scalar NLMEResults
object.

simdataI — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects representing simulation results for each
group (or individual) using individual-specific parameter estimates.

The states reported in simDataI are the states that are included in problemObject.ResponseMap
as well as any other states listed in the StatesToLog property of the runtime options
(RuntimeOptions) of the SimBiology model problemObject.Model.

simdataP — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects representing simulation results for each
group (or individual) using only fixed-effect estimates (population parameter estimates).

The states reported in simDataP are the states that are included in problemObject.ResponseMap
as well as any other states listed in the StatesToLog property of the runtime options
(RuntimeOptions) of the SimBiology model problemObject.Model.

See Also
fitproblem | sbiofit | sbiofitmixed

2 Methods

2-276

Introduced in R2021b

 fit

2-277

fitproblem
SimBiology problem object for parameter estimation

Description
Create a fitproblem object to estimate model parameters using nonlinear regression or nonlinear
mixed-effects modeling.

Creation
Create the object using fitproblem.

Properties
Required properties

Data — Data to fit
0-by-0 groupedData array (default) | groupedData object

Data to fit, specified as a groupedData on page 2-377 object.

The name of the time variable must be defined in the IndependentVariableName property of Data.
For instance, if the time variable name is 'TIME', then specify it as follows.

prob = fitproblem;
prob.Data = groupedData;
prob.Data.TIME = [1:1:10];
prob.Data.Properties.IndependentVariableName = 'TIME';

If the data contains more than one group of measurements, the grouping variable name must be
defined in the GroupVariableName property of Data. For example, if the grouping variable name is
'GROUP', then specify it as follows.

prob.Data.Properties.GroupVariableName = 'GROUP';

A group usually refers to a set of measurements that represent a single time course, often
corresponding to a particular individual or experimental condition.

Estimated — Estimated parameters
1-by-0 estimatedInfo array (default) | estimatedInfo object | vector of estimatedInfo objects
| CovariateModel object

Estimated parameters, specified as an estimatedInfo on page 2-229 object, a vector of
estimatedInfo objects, or a scalar CovariateModel on page 2-173 object.

This property defines the estimated parameters in the model and other optional information such as
their initial estimates, transformations, bound constraints, and categories. Supported transforms are
log, logit, and probit. For details, see “Parameter Transformations”.

When you perform nonlinear regression by setting object.FitFunction = "sbiofit", then:

2 Methods

2-278

• Using scattersearch as an optimization function on page 2-0 requires you to specify finite
transformed bounds for each estimated parameter.

• If you do not specify the “Pooled” on page 2-0 property, the software uses the
CategoryVariableName property of the estimatedInfo object to decide if parameters must be
estimated for each individual, group, category, or all individuals as a whole. Set the Pooled
property to override any CategoryVariableName values. For details about the
CategoryVariableName property, see EstimatedInfo object.

• The software uses the categorical function to identify groups. If any group values are
converted to the same value by categorical, then those observations are treated as belonging
to the same group. For instance, if some observations have no group information (that is, an empty
character vector ''), then categorical converts empty character vectors to <undefined>, and
these observations are treated as one group.

For nonlinear mixed-effects modeling with object.FitFunction="sbiofitmixed", the
CategoryVariablename property of estimatedInfo object is ignored.

FitFunction — Name of SimBiology estimation function
"sbiofit" (default) | "sbiofitmixed"

Name of a SimBiology estimation function to use, specified as "sbiofit" or "sbiofitmixed". Use
sbiofit for nonlinear regression problems and sbiofitmixed for nonlinear mixed-effects
problems.

Model — SimBiology model
0-by-0 Model array (default) | Model object

SimBiology model used to fit the data, specified as a Model on page 2-404 object.

ResponseMap — Mapping between model components and data variables
1-by-0 empty string array (default) | character vector | string | string vector | cell array of character
vectors

Mapping between model components and data variables, specified as a character vector, string,
string vector, or cell array of character vectors.

Each character vector or string is an equation-like expression, similar to assignment rules. It contains
the name (or qualified name) of a quantity (species, compartment, or parameter) or an observable
object in the model, followed by the character '=' and the name of a variable in Data. For clarity,
white spaces are allowed between names and '='.

For example, if you have the concentration data 'CONC' in Data for a species 'Drug_Central', you
can specify it as follows.

ResponseMap = 'Drug_Central = CONC';

To name a species unambiguously, use the qualified name, which includes the name of the
compartment. To name a reaction-scoped parameter, use the reaction name to qualify the parameter.

If the model component name or grpData variable name is not a valid MATLAB variable name,
surround it by square brackets, such as:

ResponseMap = '[Central 1].Drug = [Central 1 Conc]';

If a variable name itself contains square brackets, you cannot use it in the expression to define the
mapping information.

 fitproblem

2-279

If any (qualified) name matches two components of the same type, an error is issued when you run
the fit function of the object. To resolve the error, you can use a (qualified) name that matches two
components of different types, and the function first finds the species with the given name, followed
by compartments and then parameters.
Data Types: char | string | cell

Optional properties

Doses — Doses applied during fitting
0-by-0 Dose array (default) | RepeatDose | ScheduleDose object | object | 2-D matrix of dose
objects | cell vector of dose objects

Doses applied during fitting, specified as an empty array or 2-D matrix of dose objects
(ScheduleDose on page 2-747 object or RepeatDose on page 2-692 object). By default, the software
applies no doses even if the model has active doses.

For a matrix of dose objects, it must have a single row or one row per group in the input data. If it has
a single row, the same doses are applied to all groups during simulation. If it has multiple rows, each
row is applied to a separate group, in the same order as the groups appear in the input data. Multiple
columns are allowed so that you can apply multiple dose objects to each group.

For a cell vector of doses, it must have one element or one element per group in the input data. Each
element must be [] or a vector of doses. Each element of the cell is applied to a separate group, in
the same order as the groups appear in the input data.

In addition to manually constructing dose objects using sbiodose, if the input groupedData object
has dosing information, you can use the createDoses method to construct doses.

FunctionName — Name of optimization function
"auto" (default) | character vector | string

Name of an optimization function that is called by FitFunction (sbiofit or sbiofitmixed),
specified as a character vector or string.

If FitFunction="sbiofit", valid choices are as follows.

• "auto"
• "fminsearch"
• "nlinfit" (Statistics and Machine Learning Toolbox is required.)
• "fminunc" (Optimization Toolbox is required.)
• "fmincon" (Optimization Toolbox is required.)
• "lsqcurvefit" (Optimization Toolbox is required.)
• "lsqnonlin" (Optimization Toolbox is required.)
• "patternsearch" (Global Optimization Toolbox is required.)
• "ga" (Global Optimization Toolbox is required.)
• "particleswarm" (Global Optimization Toolbox is required.)
• "scattersearch" on page 1-100

By default (that is, FunctionName="auto" and FitFunction="sbiofit"), the fitproblem
object uses the first available estimation function among the following: lsqnonlin, nlinfit, or
fminsearch. The same priority applies to the default local solver choice for scattersearch.

2 Methods

2-280

If FitFunction="sbiofitmixed", the valid choices are:

• "auto"
• "nlmefit"
• "nlmefitsa"

When FunctionName="auto" and FitFunction="sbiofitmixed", the object uses "nlmefit" as
the optimization function.
Data Types: char | string

Options — Options for optimization function
[] (default) | struct | optimoptions object

Options for the optimization function, specified as a scalar struct, optimoptions object or empty
array [].

When FitFunction="sbiofit", you can use the following options:

• statset struct for nlinfit
• optimset struct for fminsearch
• optimoptions object for lsqcurvefit, lsqnonlin, fmincon, fminunc, particleswarm, ga,

and patternsearch
• struct for scattersearch

See “Default Options for Optimization Functions Called by sbiofit” on page 2-295 for more details and
default options associated with each estimation function.

When FitFunction="sbiofitmixed", define a structure as follows:

• The structure can contain fields and default values that are the name-value arguments accepted
by nlmefit and nlmefitsa, except the following that are not supported.

• 'FEConstDesign'
• 'FEGroupDesign’
• 'FEObsDesign'
• 'FEParamsSelect'
• 'ParamTransform'
• 'REConstDesign'
• 'REGroupDesign'
• 'REObsDesign'
• 'Vectorization'

'REParamsSelect' is only supported when you provide a vector of estimatedInfo objects
when specifying the estimated parameters.

• Use the statset function only to set the 'Options' field of the structure (opt), as follows.

opt.Options = statset('Display','iter','TolX',1e-3,'TolFun',1e-3);

• For other supported name-value arguments (see nlmefit and nlmefitsa), set them as follows.

 fitproblem

2-281

opt.ErrorModel = 'proportional';
opt.ApproximationType = 'LME';

ProgressPlot — Flag to show progress of parameter estimation
false or 0 (default) | true or 1

Flag to show the progress of parameter estimation, specified as a numeric or logical 1 (true) or 0
(false). If the flag is true, a new figure opens containing plots during fitting.

When FitFunction="sbiofit":

• Plots show the log-likelihood, termination criteria, and estimated parameters for each iteration.
This option is not supported for nlinfit.

• If you are using the Optimization Toolbox functions (fminunc, fmincon, lsqcurvefit,
lsqnonlin), the figure also shows the First Order Optimality (Optimization Toolbox) plot.

• For an unpooled fit, each line on the plots represents an individual. For a pooled fit, a single line
represents all individuals. The line becomes faded when the fit is complete. The plots also keep
track of the progress when you run sbiofit (for both pooled and unpooled fits) in parallel using
remote clusters. For details, see “Progress Plot”.

When FitFunction="sbiofitmixed", the plots show the values of fixed effects parameters
(theta), the estimates of the variance parameters, that is, the diagonal elements of the covariance
matrix of the random effects (Ψ), and the log-likelihood. For details, see “Progress Plot”.
Data Types: double | logical

UseParallel — Flag to enable parallelization
false or 0 (default) | true or 1

Flag to enable parallelization, specified as a numeric or logical 1 (true) or 0 (false). If the flag is
true and Parallel Computing Toolbox is available, the software enables the parallelization by doing
the following:

1 Create SimFunction objects with UseParallel=true.
2 Pass the flag UseParallel=true to the optimization function, such as lsqnonlin. Note that

some optimization functions do not support parallelization. See the reference page of the
corresponding optimization function to find out about the parallelization support.

3 When FitFunction="sbiofit", and you are performing an unpooled fit (Pooled=false) for
multiple groups, each fit is run in parallel. For a pooled fit (Pooled=true), parallelization
happens at the solver level. In other words, solver computations, such as objective function
evaluations, are run in parallel.

Data Types: double | logical

Variants — Variants applied during fitting
0-by-0 Variant array (default) | 2-D matrix of variants | cell vector of variants

Variants applied during fitting, specified as an empty array [] or a 2-D matrix or cell vector of variant
objects. By default, the software applies no variants even if the model has active variants.

For a matrix of variant objects, the number of rows must be one or must match the number of groups
in the input data. The ith row of variant objects is applied to the simulation of the ith group. The
variants are applied in order from the first column to the last. If this matrix has only one row of
variants, they are applied to all simulations.

2 Methods

2-282

For a cell vector of variant objects, the number of cells must be one or must match the number of
groups in the input data. Each element must be [] or a vector of variants. If this cell vector has a
single cell containing a vector of variants, they are applied to all simulations. If the cell vector has
multiple cells, the variants in the ith cell are applied to the simulation of the ith group.

In addition to manually constructing variant objects using sbiovariant, if the input groupedData
object has variant information, you can use createVariants to construct variants.

Optional properties for FitFunction="sbiofit" only

ErrorModel — Error model
"constant" (default) | character vector | string | string vector | cell array of character vector |
categorical vector | table

Error models used for estimation, specified as a character vector, string, string vector, cell array of
character vectors, categorical vector, or table.

If it is a table, it must contain a single variable that is a column vector of error model names. The
names can be a cell array of character vectors, string vector, or a vector of categorical variables. If
the table has more than one row, then the RowNames property must match the response variable
names specified in the right hand side of ResponseMap. If the table does not use the RowNames
property, the nth error is associated with the nth response.

If you specify only one error model, then sbiofit estimates one set of error parameters for all
responses.

If you specify multiple error models using a categorical vector, string vector, or cell array of character
vectors, the length of the vector or cell array must match the number of responses in ResponseMap.

You can specify multiple error models only if you are using these methods: lsqnonlin,
lsqcurvefit, fmincon, fminunc, fminsearch, patternsearch, ga, and particleswarm.

Four built-in error models are available. Each model defines the error using a standard mean-zero
and unit-variance (Gaussian) variable e, simulation results f, and one or two parameters a and b.

• "constant": y = f + ae
• "proportional": y = f + b f e
• "combined": y = f + (a + b f)e
• "exponential": y = f ∗ exp(ae)

Note

• If you specify an error model, you cannot specify weights except for the constant error model.
• If you use a proportional or combined error model during data fitting, avoid specifying data points

at times where the solution (simulation result) is zero or the steady state is zero. Otherwise, you
can run into division-by-zero problems. It is recommended that you remove those data points from
the data set. For details on the error parameter estimation functions, see “Maximum Likelihood
Estimation” on page 1-96.

Data Types: double | char | string | table | cell

 fitproblem

2-283

Pooled — Fit option flag
"auto" (default) | true or 1 | false or 0

Fit option flag to fit each individual or pool all individual data, specified as a numeric or logical 1
(true) or 0 (false), or "auto".

If Pooled is set to "auto", the software infers the value from the Estimated property as follows.

If Estimated is an estimatedInfo object with its CategoryVariableName property set to the
default value <GroupVariableName>, then the Pooled property is set to false. Otherwise, the
property is set to true.

• When the property is false, the fit function of the object estimates each group or individual
separately using group- or individual-specific parameters, and the returned fit result is a vector of
results objects with one result for each group.

• When the property is true, the fit function performs fitting for all individuals or groups
simultaneously using the same parameter estimates, and the returned result is a scalar results
object.

Note Use this option to override the CategoryVariableName value of an estimatedInfo object.

Data Types: char | string | double | logical

SensitivityAnalysis — Flag to use parameter sensitivities to determine gradients of the
objective function
"auto" (default) | true or 1 | false or 0

Flag to use parameter sensitivities to determine gradients of the objective function, specified as a
numeric or logical 1 (true) or 0 (false), or "auto".

The default behavior ("auto") is as follows.

• The property is true for fmincon, fminunc, lsqnonlin, lsqcurvefit, and scattersearch
methods.

• Otherwise, the property is false.

If it is true, the software always uses the sundials solver, regardless of what you have selected as
the SolverType property in the Configset object.

The software uses the complex-step approximation method to calculate parameter sensitivities. Such
calculated sensitivities can be used to determine gradients of the objective function during parameter
estimation to improve fitting. The default behavior of sbiofit is to use such sensitivities to
determine gradients whenever the algorithm is gradient-based and if the SimBiology model supports
sensitivity analysis. For details about the model requirements and sensitivity analysis, see “Sensitivity
Analysis in SimBiology”.
Data Types: double | logical | char | string

Weights — Weights used during fitting
[] (default) | matrix | function handle

2 Methods

2-284

Weights used for fitting, specified as an empty array [], matrix of real positive weights where the
number of columns corresponds to the number of responses, or a function handle that accepts a
vector of predicted response values and returns a vector of real positive weights.

If you specify an error model, you cannot use weights except for the constant error model. If neither
the ErrorModel or Weights is specified, by default, the software uses the constant error model with
equal weights.
Data Types: double | function_handle

Object Functions
fit Perform parameter estimation using SimBiology problem object
resetoptions Reset optional SimBiology fit problem properties

Examples

Fit PK Parameters Using SimBiology Problem-Based Workflow

This example shows how to estimate PK parameters of a SimBiology model using a problem-based
approach.

Load a synthetic data set. It contains drug plasma concentration data measured in both central and
peripheral compartments.

load('data10_32R.mat')

Convert the data set to a groupedData object.

gData = groupedData(data);
gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];

Display the data.

sbiotrellis(gData,"ID","Time",["CentralConc","PeripheralConc"],...
 Marker="+",LineStyle="none");

 fitproblem

2-285

Use the built-in PK library to construct a two-compartment model with infusion dosing and first-order
elimination. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,"Central");
pkc1.DosingType = "Infusion";
pkc1.EliminationType = "linear-clearance";
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,"Peripheral");
model2cpt = construct(pkmd);
configset = getconfigset(model2cpt);
configset.CompileOptions.UnitConversion = true;

Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg
at a rate of 50 mg/hour. For details on setting up different dosing strategies, see “Doses in SimBiology
Models”.

dose = sbiodose("dose","TargetName","Drug_Central");
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = "milligram";
dose.TimeUnits = "hour";
dose.RateUnits = "milligram/hour";

Create a problem object.

problem = fitproblem

2 Methods

2-286

problem =
 fitproblem with properties:

 Required:
 Data: [0x0 groupedData]
 Estimated: [1x0 estimatedInfo]
 FitFunction: "sbiofit"
 Model: [0x0 SimBiology.Model]
 ResponseMap: [1x0 string]

 Optional:
 Doses: [0x0 SimBiology.Dose]
 FunctionName: "auto"
 Options: []
 ProgressPlot: 0
 UseParallel: 0
 Variants: [0x0 SimBiology.Variant]

 sbiofit options:
 ErrorModel: "constant"
 Pooled: "auto"
 SensitivityAnalysis: "auto"
 Weights: []

Define the required properties of the object.

problem.Data = gData;
problem.Estimated = estimatedInfo(["log(Central)","log(Peripheral)","Q12","Cl_Central"],InitialValue=[1 1 1 1]);
problem.Model = model2cpt;
problem.ResponseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];

Define the dose to be applied during fitting.

problem.Doses = dose;

Show the progress of the estimation.

problem.ProgressPlot = true;

Fit the model to all of the data pooled together: that is, estimate one set of parameters for all
individuals by setting the Pooled property to true.

problem.Pooled = true;

Perform the estimation using the fit function of the object.

pooledFit = fit(problem);

 fitproblem

2-287

Display the estimated parameter values.

pooledFit.ParameterEstimates

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 {'Central' } 1.6627 0.16569
 {'Peripheral'} 2.6864 1.0644
 {'Q12' } 0.44945 0.19943
 {'Cl_Central'} 0.78497 0.095621

Plot the fitted results.

plot(pooledFit);

2 Methods

2-288

Estimate one set of parameters for each individual and see if the parameter estimates improve.

problem.Pooled = false;
unpooledFit = fit(problem);

 fitproblem

2-289

Display the estimated parameter values.

unpooledFit.ParameterEstimates

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 {'Central' } 1.422 0.12334
 {'Peripheral'} 1.5619 0.36355
 {'Q12' } 0.47163 0.15196
 {'Cl_Central'} 0.5291 0.036978

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 {'Central' } 1.8322 0.019672

2 Methods

2-290

 {'Peripheral'} 5.3364 0.65327
 {'Q12' } 0.2764 0.030799
 {'Cl_Central'} 0.86035 0.026257

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 {'Central' } 1.6657 0.038529
 {'Peripheral'} 5.5632 0.37063
 {'Q12' } 0.78361 0.058657
 {'Cl_Central'} 1.0233 0.027311

plot(unpooledFit);

Generate a plot of the residuals over time to compare the pooled and unpooled fit results. The figure
indicates unpooled fit residuals are smaller than those of the pooled fit, as expected. In addition to
comparing residuals, other rigorous criteria can be used to compare the fitted results.

t = [gData.Time;gData.Time];
res_pooled = vertcat(pooledFit.R);
res_pooled = res_pooled(:);
res_unpooled = vertcat(unpooledFit.R);

 fitproblem

2-291

res_unpooled = res_unpooled(:);
figure;
plot(t,res_pooled,"o",MarkerFaceColor="w",markerEdgeColor="b")
hold on
plot(t,res_unpooled,"o",MarkerFaceColor="b",markerEdgeColor="b")
refl = refline(0,0); % A reference line representing a zero residual
title("Residuals versus Time");
xlabel("Time");
ylabel("Residuals");
legend(["Pooled","Unpooled"]);

As illustrated, the unpooled fit accounts for variations due to the specific subjects in the study, and, in
this case, the model fits better to the data. However, the pooled fit returns population-wide
parameters. As an alternative, if you want to estimate population-wide parameters while considering
individual variations, you can perform nonlinear mixed-effects (NLME) estimation by setting
problem.FitFunction to sbiofitmixed.

problem.FitFunction = "sbiofitmixed";

NLMEResults = fit(problem);

2 Methods

2-292

Display the estimated parameter values.

NLMEResults.IndividualParameterEstimates

ans=12×3 table
 Group Name Estimate
 _____ ______________ ________

 1 {'Central' } 1.4623
 1 {'Peripheral'} 1.5306
 1 {'Q12' } 0.4587
 1 {'Cl_Central'} 0.53208
 2 {'Central' } 1.783
 2 {'Peripheral'} 6.6623
 2 {'Q12' } 0.3589
 2 {'Cl_Central'} 0.8039
 3 {'Central' } 1.7135
 3 {'Peripheral'} 4.2844
 3 {'Q12' } 0.54895
 3 {'Cl_Central'} 1.0708

Plot the fitted results.

plot(NLMEResults);

 fitproblem

2-293

Plot the conditional weighted residuals (CWRES) and individual weighted residuals (IWRES) of model
predicted values.

plotResiduals(NLMEResults,'predictions')

2 Methods

2-294

More About
Default Options for Optimization Functions Called by sbiofit

The following table summarizes the default options for various estimation functions.

Function Default Options
nlinfit sbiofit uses the default options structure associated with nlinfit, except

for:
FunValCheck = 'off'
DerivStep = max(eps^(1/3),
min(1e-4,SolverOptions.RelativeTolerance)), where the
SolverOptions property corresponds to the model’s active configset
object.

 fitproblem

2-295

Function Default Options
fmincon sbiofit uses the default options structure associated with fmincon, except

for:
Display = 'off'
FunctionTolerance = 1e-6*abs(f0), where f0 is the initial value of the
objective function.
OptimalityTolerance = 1e-6*abs(f0), where f0 is the initial value of
the objective function.
Algorithm = 'trust-region-reflective' when
'SensitivityAnalysis' is true, or 'interior-point' when
'SensitivityAnalysis' is false.
FiniteDifferenceStepSize =
max(eps^(1/3),min(1e-4,SolverOptions.RelativeTolerance)),
where the SolverOptions property corresponds to the model active
configset object.
TypicalX = 1e-6*x0, where x0 is an array of transformed initial
estimates.

fminunc sbiofit uses the default options structure associated with fminunc, except
for:
Display = 'off'
FunctionTolerance = 1e-6*abs(f0), where f0 is the initial value of the
objective function.
OptimalityTolerance = 1e-6*abs(f0), where f0 is the initial value of
the objective function.
Algorithm = 'trust-region' when 'SensitivityAnalysis' is true,
or 'quasi-newton' when 'SensitivityAnalysis' is false.
FiniteDifferenceStepSize =
max(eps^(1/3),min(1e-4,SolverOptions.RelativeTolerance)),
where the SolverOptions property corresponds to the model active
configset object.
TypicalX = 1e-6*x0, where x0 is an array of transformed initial
estimates.

fminsearch sbiofit uses the default options structure associated with fminsearch,
except for:
Display = 'off'
TolFun = 1e-6*abs(f0), where f0 is the initial value of the objective
function.

2 Methods

2-296

Function Default Options
lsqcurvefit,
lsqnonlin

Requires Optimization Toolbox.

sbiofit uses the default options structure associated with lsqcurvefit
and lsqnonlin, except for:
Display = 'off'
FunctionTolerance = 1e-6*norm(f0), where f0 is the initial value of
the objective function.
OptimalityTolerance = 1e-6*norm(f0), where f0 is the initial value of
the objective function.
FiniteDifferenceStepSize =
max(eps^(1/3),min(1e-4,SolverOptions.RelativeTolerance)) ,
where the SolverOptions property corresponds to the model active
configset object.
TypicalX = 1e-6*x0, where x0 is an array of transformed initial
estimates.

patternsearch Requires Global Optimization Toolbox.

sbiofit uses the default options object (optimoptions) associated with
patternsearch, except for:
Display = 'off'
FunctionTolerance = 1e-6*abs(f0), where f0 is the initial value of the
objective function.
MeshTolerance = 1.0e-3
AccelerateMesh = true

ga Requires Global Optimization Toolbox.

sbiofit uses the default options object (optimoptions) associated with
ga, except for:
Display = 'off'
FunctionTolerance = 1e-6*abs(f0), where f0 is the initial value of the
objective function.
MutationFcn = @mutationadaptfeasible

particleswarm Requires Global Optimization Toolbox.

sbiofit uses the following default options for the particleswarm
algorithm, except for:
Display = 'off'
FunctionTolerance = 1e-6*abs(f0), where f0 is the initial value of the
objective function.
InitialSwarmSpan = 2000 or 8; 2000 for estimated parameters with no
transform; 8 for estimated parameters with log, logit, or probit
transforms.

scattersearch See “Scatter Search Algorithm” on page 1-100.

See Also
sbiofit | sbiofitmixed | EstimatedInfo object | groupedData object |
LeastSquaresResults object | NLINResults object | OptimResults object |
sbiofitmixed | nlinfit | fmincon | fminunc | fminsearch | lsqcurvefit | lsqnonlin |
patternsearch | ga | particleswarm

 fitproblem

2-297

Topics
“What is Nonlinear Regression?”
“What Is a Nonlinear Mixed-Effects Model?”
“Parameter Transformations”
“Maximum Likelihood Estimation”
“Supported Methods for Parameter Estimation in SimBiology”
“Sensitivity Analysis in SimBiology”
“Create Data File with SimBiology Definitions”

Introduced in R2021b

2 Methods

2-298

fitted
Return simulation results of SimBiology model fitted using least-squares regression

Syntax
[yfit,parameterEstimates] = fitted(resultsObj)

Description
[yfit,parameterEstimates] = fitted(resultsObj) returns simulation results yfit and
parameter estimates parameterEstimates from a fitted SimBiology model.

Tip Use this method to retrieve simulation results from the fitted model if you did not specify the
second optional output argument that corresponds to simulation results when you first ran sbiofit.

Examples

Estimate Yeast G Protein Model Parameter

This example uses the yeast heterotrimeric G protein model and experimental data reported by [1].
For details about the model, see the Background section in “Parameter Scanning, Parameter
Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle”.

Load the G protein model.

sbioloadproject gprotein

Store the experimental data containing the time course for the fraction of active G protein.

time = [0 10 30 60 110 210 300 450 600]';
GaFracExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';

Create a groupedData object based on the experimental data.

tbl = table(time,GaFracExpt);
grpData = groupedData(tbl);

Map the appropriate model component to the experimental data. In other words, indicate which
species in the model corresponds to which response variable in the data. In this example, map the
model parameter GaFrac to the experimental data variable GaFracExpt from grpData.

responseMap = 'GaFrac = GaFracExpt';

Use an estimatedInfo object to define the model parameter kGd as a parameter to be estimated.

estimatedParam = estimatedInfo('kGd');

Perform the parameter estimation.

fitResult = sbiofit(m1,grpData,responseMap,estimatedParam);

 fitted

2-299

View the estimated parameter value of kGd.

fitResult.ParameterEstimates

ans=1×3 table
 Name Estimate StandardError
 _______ ________ _____________

 {'kGd'} 0.11307 3.4439e-05

Suppose you want to plot the model simulation results using the estimated parameter value. You can
either rerun the sbiofit function and specify to return the optional second output argument, which
contains simulation results, or use the fitted method to retrieve the results without rerunning
sbiofit.

[yfit,paramEstim] = fitted(fitResult);

Plot the simulation results.

sbioplot(yfit);

Input Arguments
resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

2 Methods

2-300

Estimation results, specified as an OptimResults object, NLINResults object, or vector of
results objects which contains estimation results from running sbiofit.

Output Arguments
yfit — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects. The states reported in yfit are the
states that were included in the responseMap input argument of sbiofit as well as any other
states listed in the StatesToLog property of the runtime options (RuntimeOptions) of the
SimBiology model.

parameterEstimates — Estimated parameter values
table

Estimated parameter values, returned as a table. This argument is identical to the
resultsObj.ParameterEstimates property.

References
[1] Yi, T-M., Kitano, H., and Simon, M. (2003). A quantitative characterization of the yeast

heterotrimeric G protein cycle. PNAS. 100, 10764–10769.

See Also
NLINResults object | OptimResults object | sbiofit

Introduced in R2014a

 fitted

2-301

fitted(NLMEResults)
Return the simulation results of a fitted nonlinear mixed-effects model

Syntax
[yfit,parameterEstimates]= fitted(resultsObj)
[yfit,parameterEstimates]= fitted(resultsObj,'ParameterType',value)

Description
[yfit,parameterEstimates]= fitted(resultsObj) returns simulation results yfit and
parameter estimates parameterEstimates from a fitted nonlinear mixed-effect model.

[yfit,parameterEstimates]= fitted(resultsObj,'ParameterType',value) returns
simulation results that are simulated using either individual or population parameter estimates. The
two choices for value are 'population' or 'individual' (default).

Tip Use this method to retrieve simulation results from the fitted model if you did not specify the
second or third optional output argument that corresponds to simulation results when you first ran
sbiofitmixed.

Input Arguments
resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation results
returned by sbiofitmixed.

value — Parameter type
character vector | string

Parameter type, specified as 'population' or 'individual' (default). If 'population', the
method returns the model simulation results using the population parameter estimates. If
'individual', it returns simulation results using the individual-specific parameter estimates.

Output Arguments
yfit — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects. The states reported in yfit are the
states that were included in the responseMap input argument of sbiofitmixed as well as any
other states listed in the StatesToLog property of the runtime options (RuntimeOptions) of the
SimBiology model.

parameterEstimates — Estimated parameter values
table

2 Methods

2-302

Estimated parameter values, returned as a table. This is identical to
resultsObj.IndividualParameterEstimates property when the value argument is
'individual' or resultsObj.PopulationParameterEstimates property when the value is
'population'.

See Also
NLMEResults object | sbiofitmixed

Introduced in R2014a

 fitted(NLMEResults)

2-303

generate
Generate scenarios from SimBiology.Scenarios object and return table

Syntax
scenariosTable = generate(sObj)
scenariosTable = generate(sObj,n)
scenariosTable = generate(___ ,'StandardizedOutput',tf)

Description
scenariosTable = generate(sObj) generates scenarios from the SimBiology.Scenarios
object sObj and returns a table, where each row represents a scenario and each column represents
an entry.

scenariosTable = generate(sObj,n) returns only the specified nth row (scenario) of the
scenarios table.

scenariosTable = generate(___ ,'StandardizedOutput',tf) enables standardization of
doses in the output table.

Examples

Generate Different Simulation Scenarios for Glucose-Insulin Response

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo','m1');

The model contains different parameter values and initial conditions that represents different insulin
impairments (such as Type 2 diabetes, low insulin sensitivity, and so on) stored in five variants.

variants = getvariant(m1)

variants =
 SimBiology Variant Array

 Index: Name: Active:
 1 Type 2 diabetic false
 2 Low insulin se... false
 3 High beta cell... false
 4 Low beta cell ... false
 5 High insulin s... false

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Select a dose that represents a single meal of 78 grams of glucose.

2 Methods

2-304

singleMeal = sbioselect(m1,'Name','Single Meal');

Create a Scenarios object to represent different initial conditions combined with the dose. That is,
create a scenario object where each variant is paired (or combined) with the dose, for a total of five
simulation scenarios.

sObj = SimBiology.Scenarios;
add(sObj,'cartesian','variants',variants);
add(sObj,'cartesian','dose',singleMeal)

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ________ ___________________ ______

 Entry 1 variants SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

sObj contains two entries. Use the generate function to combine the entries and generate five
scenarios. The function returns a scenarios table, where each row represents a scenario and each
column represents an entry of the Scenarios object.

scenariosTbl = generate(sObj)

scenariosTbl=5×2 table
 variants dose
 ______________________ _________________________

 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose

Change the entry name of the first entry.

rename(sObj,1,'Insulin Impairements')

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ____________________ ___________________ ______

 Entry 1 Insulin Impairements SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

Create a SimFunction object to simulate the generated scenarios. Use the Scenarios object as the
input and specify the plasma glucose and insulin concentrations as reponses (outputs of the function
to be plotted). Specify [] for the dose input argument since the Scenarios object already has the
dosing information.

 generate

2-305

f = createSimFunction(m1,sObj,{'[Plasma Glu Conc]','[Plasma Ins Conc]'},[])

f =
SimFunction

Parameters:

 Name Value Type Units
 _________________________ ______ _____________ ___

 {'Plasma Volume (Glu)' } 1.88 {'parameter'} {'deciliter' }
 {'k1' } 0.065 {'parameter'} {'1/minute' }
 {'k2' } 0.079 {'parameter'} {'1/minute' }
 {'Plasma Volume (Ins)' } 0.05 {'parameter'} {'liter' }
 {'m1' } 0.19 {'parameter'} {'1/minute' }
 {'m2' } 0.484 {'parameter'} {'1/minute' }
 {'m4' } 0.1936 {'parameter'} {'1/minute' }
 {'m5' } 0.0304 {'parameter'} {'minute/picomole' }
 {'m6' } 0.6469 {'parameter'} {'dimensionless' }
 {'Hepatic Extraction' } 0.6 {'parameter'} {'dimensionless' }
 {'kmax' } 0.0558 {'parameter'} {'1/minute' }
 {'kmin' } 0.008 {'parameter'} {'1/minute' }
 {'kabs' } 0.0568 {'parameter'} {'1/minute' }
 {'kgri' } 0 {'parameter'} {'1/minute' }
 {'f' } 0.9 {'parameter'} {'dimensionless' }
 {'a' } 0 {'parameter'} {'1/milligram' }
 {'b' } 0.82 {'parameter'} {'dimensionless' }
 {'c' } 0 {'parameter'} {'1/milligram' }
 {'d' } 0.01 {'parameter'} {'dimensionless' }
 {'kp1' } 2.7 {'parameter'} {'milligram/minute' }
 {'kp2' } 0.0021 {'parameter'} {'1/minute' }
 {'kp3' } 0.009 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'kp4' } 0.0618 {'parameter'} {'(milligram/minute)/picomole' }
 {'ki' } 0.0079 {'parameter'} {'1/minute' }
 {'[Ins Ind Glu Util]' } 1 {'parameter'} {'milligram/minute' }
 {'Vm0' } 2.5129 {'parameter'} {'milligram/minute' }
 {'Vmx' } 0.047 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'Km' } 225.59 {'parameter'} {'milligram' }
 {'p2U' } 0.0331 {'parameter'} {'1/minute' }
 {'K' } 2.28 {'parameter'} {'picomole/(milligram/deciliter)' }
 {'alpha' } 0.05 {'parameter'} {'1/minute' }
 {'beta' } 0.11 {'parameter'} {'(picomole/minute)/(milligram/deciliter)'}
 {'gamma' } 0.5 {'parameter'} {'1/minute' }
 {'ke1' } 0.0005 {'parameter'} {'1/minute' }
 {'ke2' } 339 {'parameter'} {'milligram' }
 {'Basal Plasma Glu Conc'} 91.76 {'parameter'} {'milligram/deciliter' }
 {'Basal Plasma Ins Conc'} 25.49 {'parameter'} {'picomole/liter' }

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

2 Methods

2-306

 TargetName TargetDimension
 __________ _____________________

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

Simulate the model for 24 hours and plot the simulation data. The data contains five runs, where each
run represents a scenario in the Scenarios object.

sd = f(sObj,24);
sbioplot(sd)

ans =
 Axes (SbioPlot) with properties:

 XLim: [0 30]
 YLim: [0 450]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.0920 0.1100 0.2956 0.8150]
 Units: 'normalized'

 Show all properties

 generate

2-307

If you have Statistics and Machine Learning Toolbox™, you can also draw sample values for model
quantities from various probability distributions. For instance, suppose that the parameters Vmx and
kp3, which are known for the low and high insulin sensitivity, follow the lognormal distribution. You
can generate sample values for these parameters from such a distribution, and perform a scan to
explore model behavior.

Define the lognormal probability distribution object for Vmx.

pd_Vmx = makedist('lognormal')

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = 0
 sigma = 1

By definition, the parameter mu is the mean of logarithmic values. To vary the parameter value
around the base (model) value of the parameter, set mu to log(model_value). Set the standard
deviation (sigma) to 0.2. For a small sigma value, the mean of a lognormal distribtion is
approximately equal to log(model_value). For details, see “Lognormal Distribution” (Statistics and
Machine Learning Toolbox).

Vmx = sbioselect(m1,'Name','Vmx');
pd_Vmx.mu = log(Vmx.Value);
pd_Vmx.sigma = 0.2

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = -3.05761
 sigma = 0.2

Similarly define the probability distribution for kp3.

pd_kp3 = makedist('lognormal');
kp3 = sbioselect(m1,'Name','kp3');
pd_kp3.mu = log(kp3.Value);
pd_kp3.sigma = 0.2

pd_kp3 =
 LognormalDistribution

 Lognormal distribution
 mu = -4.71053
 sigma = 0.2

Now define a joint probability distribution to draw sample values for Vmx and kp3, with a rank
correlation to specify some correlation between these two parameters. Note that this correlation
assumption is for the illustration purposes of this example only and may not be biologically relevant.

First remove the variants entry (entry 1) from sObj.

remove(sObj,1)

2 Methods

2-308

ans =
 Scenarios (1 scenarios)

 Name Content Number
 ____ _______________ ______

 Entry 1 dose SimBiology dose 1

 See also Expression property.

Add an entry that defines the joint probability distribution with a rank correlation matrix.

add(sObj,'cartesian',["Vmx","kp3"],[pd_Vmx, pd_kp3],'RankCorrelation',[1,0.5;0.5,1])

ans =
 Scenarios (2 scenarios)

 Name Content Number
 ____ ______________________ ___________

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 2 (default)
 + Entry 2.2) kp3 Lognormal distribution 2 (default)

 See also Expression property.

By default, the number of samples to draw from the joint distribution is set to 2. Increase the number
of samples.

updateEntry(sObj,2,'Number',50)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Verify that the Scenarios object can be simulated with the model. The verify function throws an
error if any entry does not resolve uniquely to an object in the model or the entry contents have
inconsistent lengths (sample sizes). The function throws a warning if multiple entries resolve to the
same object in the model.

verify(sObj,m1)

Generate the simulation scenarios. Plot the sample values using plotmatrix. You can see the value
of Vmx is varied around its model value 0.047 and that of kp3 around 0.009.

sTbl = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl.Vmx,sTbl.kp3]);

 generate

2-309

ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios using the same SimFunction you created previously. You do not need to create
a new SimFunction object even though the Scenarios object has been updated.

sd2 = f(sObj,24);
sbioplot(sd2);

2 Methods

2-310

By default, SimBiology uses the random sampling method. You can change it to the Latin hypercube
sampling (or sobol or halton) for a more systematic space-filling approach.

entry2struct = getEntry(sObj,2)

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'random'
 SamplingOptions: [0x0 struct]

entry2struct.SamplingMethod = 'lhs'

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'lhs'
 SamplingOptions: [0x0 struct]

You can now use the updated structure to modify entry 2.

 generate

2-311

updateEntry(sObj,2,entry2struct)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Visualize the sample values.

sTbl2 = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl2.Vmx,sTbl2.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios.

sd3 = f(sObj,24);
sbioplot(sd3);

2 Methods

2-312

Restore warning settings.

warning(warnSettings);

Input Arguments
sObj — Simulation scenarios
SimBiology.Scenarios object

Simulation scenarios, specified as a SimBiology.Scenarios object.

n — Index of scenario
positive integer

Index of a scenario to return as the output, specified as a positive integer. n must be less than or
equal to the total number of scenarios (rows) in the scenarios table.
Example: 4
Data Types: double

tf — Flag to enable standardization of doses
false (default) | true

Flag to enable standardization of doses in the output, specified as true or false.

 generate

2-313

Set tf to true if you plan to pass in a dose table as an input on page 2-0 to a SimFunction
object. The standardization procedure expands the dose samples to a cell array of dose tables with
consistent target names within each column. For example, let d1 and d2 have different dose targets.
The doses get standardized to:

{getTable(d1),[];[],getTable(d2)}

Example: true
Data Types: logical

Output Arguments
scenariosTable — Table of simulation scenarios
table

Table of simulation scenarios, returned as a table. Each row represents a scenario and each column
represents an entry.

See Also
SimBiology.Scenarios | SimFunction object | createSimFunction (model)

Topics
“SimBiology.Scenarios Terminology” on page 2-744
“Combine Simulation Scenarios in SimBiology”

Introduced in R2019b

2 Methods

2-314

get
Get SimBiology object properties

Syntax
S = get(sobj)
propertyValues = get(sobj,propertyNames)

Description
S = get(sobj) returns a structure containing a field for each property of sobj, a SimBiology
object.

propertyValues = get(sobj,propertyNames) returns the values of the properties specified by
propertyNames.

Examples

Get Model Dosing Information

Load the bioavailability model.

sbioloadproject('Bioavailability.sbproj');

Retrieve the name of the model.

modelName = get(m1,'Name')

modelName =
'Bioavailability Model'

Check the dosing information.

m1.Doses

ans =
 SimBiology Dose Array

 Index: Name: Type:
 1 Oral dose schedule
 2 IV Dose schedule

Retrieve the TimeUnits and AmountUnits properties of the first dose (Oral).

propValues = get(m1.Doses(1),{'TimeUnits','AmountUnits'})

propValues = 1x2 cell
 {'hour'} {'milligram'}

Retrieve the properties of both the Oral and IV doses.

 get

2-315

propValues = get(m1.Doses,{'TimeUnits','AmountUnits'})

propValues = 2x2 cell
 {'hour'} {'milligram'}
 {'hour'} {'milligram'}

Input Arguments
sobj — Object
SimBiology object | array of SimBiology objects

Object, specified as a SimBiology object or array of SimBiology objects.

propertyNames — Names of object properties
character vector | string | string vector | cell array of character vectors

Names of the object properties, specified as a character vector, string, string vector, or cell array of
character vectors.
Example: {'Name','Type'}

Output Arguments
S — Object property data
structure | structure array

Object property data, returned as a structure or structure array containing a field for each property
of the object in sobj.

propertyValues — Property values
property value | cell array

Property values, returned as a property value or cell array of property values. If propertyNames is a
cell array, propertyValues is an m-by-n cell array, where m is the number of objects in sobj and n
is the number of names in propertyNames.

See Also
set | SimData

Introduced in R2008b

2 Methods

2-316

getadjacencymatrix (model)
Get adjacency matrix from model object

Note The order of species in the output arguments (M and Headings) matches the order of species
returned by modelObj.Species.

Syntax
M = getadjacencymatrix(modelObj)
[M, Headings] = getadjacencymatrix(modelObj)
[M, Headings, Mask] = getadjacencymatrix(modelObj)

Arguments
M Adjacency matrix for modelObj.
modelObj Specify the model object.
Headings Return row and column headings.

If species are in multiple compartments, species names are qualified
with the compartment name in the form
compartmentName.speciesName. For example, nucleus.DNA,
cytoplasm.mRNA.

Mask Return 1 for the species object and 0 for the reaction object to Mask.

Description
M = getadjacencymatrix(modelObj) returns an adjacency matrix (M) for the model object
(modelObj).

An adjacency matrix is defined by listing all species contained by modelObj and all reactions
contained by modelObj column-wise and row-wise in a matrix. The reactants of the reactions are
represented in the matrix with a 1 at the location of [row of species, column of reaction]. The
products of the reactions are represented in the matrix with a 1 at the location of [row of reaction,
column of species]. All other locations in the matrix are 0.

[M, Headings] = getadjacencymatrix(modelObj) returns the adjacency matrix to M and the
row and column headings to Headings. Headings is defined by listing all Name property values of
species contained by modelObj and all Name property values of reactions contained by modelObj.

[M, Headings, Mask] = getadjacencymatrix(modelObj) returns an array of 1s and 0s to
Mask, where a 1 represents a species object and a 0 represents a reaction object.

Examples
1 Read inm1, a model object, using sbmlimport:

m1 = sbmlimport('lotka.xml');

 getadjacencymatrix (model)

2-317

2 Get the adjacency matrix for m1:

[M, Headings] = getadjacencymatrix(m1)

See Also
getstoichmatrix, model object

Compatibility Considerations
The function returns species in a new order
Behavior changed in R2019b

The order of species in the output arguments (M and Headings) matches the order of species
returned by modelObj.Species.

Introduced in R2006a

2 Methods

2-318

getComponents
Get model components associated with SimBiology model comparison results

Syntax
tbl = getComponents(diffResults)
tbl = getComponents(diffResults,rowIdx)

Description
tbl = getComponents(diffResults) returns a table of model components associated with the
comparison results diffResults, a SimBiology.DiffResults object. Specifically, the function
returns the model components listed in the diffResults.Comparisons table.

tbl = getComponents(diffResults,rowIdx) specifies a vector of row indices rowIdx to return
the model components associated with the requested rows from the diffResults.Comparisons
table.

Examples

Compare SimBiology Models

Load a source model.

model1 = sbmlimport("lotka");
y1 = sbioselect(model1, "Type", "species", "Name", "y1");
y1.Value = 880;

Load a target model to compare against the source model.

model2 = sbmlimport("lotka");
y1 = sbioselect(model2, "Type", "species", "Name", "y1");
y1.Value = 920;

Compare the models using sbiodiff and display the comparison table.

diffResults = sbiodiff(model1,model2);
diffTable = diffResults.Comparisons

diffTable=1×6 table
 Class Source Target Property SourceValue TargetValue
 _________ ______ ______ ________ ___________ ___________

 1 "Species" "y1" "y1" "Value" {[880]} {[920]}

You can also view the comparison results graphically in the Comparison tool.

visdiff(diffResults);

Get a table of model components associated with the changes reported in the comparison table.

 getComponents

2-319

tbl = getComponents(diffResults)

tbl=1×2 table
 Source Target
 ________________________ ________________________

 1 {1x1 SimBiology.Species} {1x1 SimBiology.Species}

Input Arguments
diffResults — Model comparison results
SimBiology.DiffResults object (default)

Model comparison results, specified as a SimBiology.DiffResults object. Use sbiodiff to
generate this object.

rowIdx — Row indices for diffResults.Comparisons table
1:height(diffResults.Comparisons) (default) | vector of positive integers

Row indices for the diffResults.Comparisons table, specified as a vector of positive integers.
Example: [2 5 10]
Data Types: double

Output Arguments
tbl — Model components from comparison results
table

Model components from the comparison results, returned as a table.

The table has two columns Source and Target. Each column is a cell array and contains the model
components that were changed between the source and target models. If a component was inserted
or deleted, then the value of the corresponding entry in the Source or Target column is <missing>.
Changes made to the components in this table do not affect the components reported in the
diffResults.Comparisons table.

See Also
sbiodiff | SimBiology.DiffResults

Introduced in R2022a

2 Methods

2-320

getconfigset (model)
Get configuration set object from model object

Syntax
configsetObj = getconfigset(modelObj, 'NameValue')
configsetObj = getconfigset(modelObj)
configsetObj = getconfigset(modelObj,'active')

Arguments
modelObj Model object. Enter a variable name for a model object.
NameValue Name of the configset object.
configsetObj Object holding the simulation-specific information.

Description
configsetObj = getconfigset(modelObj, 'NameValue') returns the configuration set
attached to modelObj that is named NameValue, to configsetObj.

configsetObj = getconfigset(modelObj) returns a vector of all attached configuration sets, to
configsetObj.

configsetObj = getconfigset(modelObj,'active') retrieves the active configuration set.

A configuration set object stores simulation-specific information. A SimBiology model can contain
multiple configsets with one being active at any given time. The active configuration set contains
the settings that are used during the simulation.

Use the setactiveconfigset function to define the active configset. modelObj always contains
at least one configset object with the name configured to 'default'. Additional configset
objects can be added to modelObj with the method addconfigset.

Examples
1 Retrieve the default configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

 Configuration Settings - default (active)
 SolverType: ode15s
 StopTime: 10

 SolverOptions:
 AbsoluteTolerance: 1.000000e-06
 RelativeTolerance: 1.000000e-03
 SensitivityAnalysis: false

 getconfigset (model)

2-321

 RuntimeOptions:
 StatesToLog: all

 CompileOptions:
 UnitConversion: false
 DimensionalAnalysis: true

 SensitivityAnalysisOptions:
 Inputs: 0
 Outputs: 0

2 Configure the SolverType to ssa.

set(configsetObj, 'SolverType', 'ssa')
get(configsetObj)

 Active: 1
 CompileOptions: [1x1 SimBiology.CompileOptions]
 Name: 'default'
 Notes: ''
 RuntimeOptions: [1x1 SimBiology.RuntimeOptions]
 SensitivityAnalysisOptions: [1x1 SimBiology.SensitivityAnalysisOptions]
 SolverOptions: [1x1 SimBiology.SSASolverOptions]
 SolverType: 'ssa'
 StopTime: 10
 MaximumNumberOfLogs: Inf
 MaximumWallClock: Inf
 TimeUnits: 'second'
 Type: 'configset'

See Also
model object, addconfigset, removeconfigset, setactiveconfigset

Introduced in R2006a

2 Methods

2-322

getCovariateData (pkdata)
Create design matrix needed for fit

Syntax
CovData = getCovariateData(PKDataObj)

Description
CovData = getCovariateData(PKDataObj) creates CovData, a dataset (Statistics and Machine
Learning Toolbox) array containing only the covariate data from the data set in PKDataObj, a
PKData object. CovData contains one row for each individual and one column for each covariate.

Tip Use the getCovariateData method to view the covariate data when writing equations for the
Expression on page 3-68 property of a CovariateModel on page 2-173 object.

See Also
CovariateModel on page 2-173 | Expression on page 3-68 | PKData on page 2-436

Topics
“Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”
“Specify a Covariate Model”

Introduced in R2011b

 getCovariateData (pkdata)

2-323

getdata
Get simulation data from SimData object

Syntax
[t,x,names] = getdata(simdata)
sdOut = getdata(simdata)
___ = getdata(simdata,format)

Description
[t,x,names] = getdata(simdata) returns the simulation time points t, the simulation data x,
and corresponding names for the data columns.

sdOut = getdata(simdata) returns the simulation results as a SimData object sdOut.

___ = getdata(simdata,format) returns the simulation data in the specified format.

Examples

Extract Data from SimData Object

Load the G-protein model.

sbioloadproject('gprotein.sbproj');

Simulate the model.

sdObj = sbiosimulate(m1);
sbioplot(sdObj);

2 Methods

2-324

The plot shows all the states together. Plot each state separately on its own axes in a subplot.

First, extract the simulation data from the SimData object.

[time,data,names] = getdata(sdObj);

Calculate the number of rows and columns needed for the subplot.

sqrtnames = sqrt(numel(names));
nrows = round(sqrtnames);
ncolumns = ceil(sqrtnames);

Create a subplot and plot each state on its own axes.

figure
for(i = 1:numel(names))
 subplot(nrows,ncolumns,i)
 plot(time,data(:,i));
 title(names(i));
end

 getdata

2-325

Input Arguments
simdata — Simulation data
SimData object | array of SimData objects

Simulation data, specified as a SimData object or array of SimData objects.

format — Simulation data format
character vector | string

Simulation data format, specified as a character vector or string. Some formats require you to specify
only one output argument. The valid formats follow.

• 'num' — This format returns simulation time points and simulation data in numeric arrays and
the names of quantities and sensitivities as a cell array. This format is the default when you run
getdata with multiple output arguments.

• 'nummetadata' — This format returns a cell array of metadata structures instead of the names
of quantities and sensitivities as the third output argument.

• 'numqualnames' — This format returns qualified names in the third output argument to resolve
ambiguities.

You must specify only one output argument for the following formats.

2 Methods

2-326

• 'simdata' — This format returns data in a new SimData object or an array of SimData objects.
This format is the default when you specify a single output argument.

• 'struct' — This format returns a structure or structure array that contains both data and
metadata.

• 'ts' — This format returns data as a cell array.

• If simdata is scalar, the cell array is an m-by-1 array, where each element is a timeseries
object. m is the number of quantities and sensitivities logged during the simulation.

• If simdata is not scalar, the cell array is k-by-1, where each element of the cell array is an m-
by-1 cell array of timeseries objects. k is the size of simdata, and m is the number of
quantities or sensitivities in each SimData object in simdata. In other words, the function
returns an individual time series for each state or column and for each SimData object in
simdata.

• 'tslumped' — This format returns the data as a cell array of timeseries objects, combining
data from each SimData object into a single time series.

Output Arguments
t — Simulation time points
numeric vector | cell array

Simulation time points, returned as a numeric vector or cell array. If simdata is scalar, t is an n-by-1
vector, where n is the number of time points. If simdata is an array of objects, t is a k-by-1 cell array,
where k is the size of simdata.

x — Simulation data
numeric matrix | cell array

Simulation data, returned as a numeric matrix or cell array. If simdata is scalar, x is an n-by-m
matrix, where n is the number of time points and m is the number of quantities and sensitivities
logged during the simulation. If simdata is an array of objects, x is a k-by-1 cell array, where k is the
size of simdata.

names — Names of quantities and sensitivities
cell array

Names of quantities and sensitivities logged during the simulation, returned as a cell array. If
simdata is scalar, names is an m-by-1 cell array. If simdata is an array of objects, names is a k-by-1
cell array, where k is the size of simdata.

sdOut — Simulation results
SimData object

Simulation results, returned as a SimData object.

See Also
get | set | SimData

Introduced in R2008b

 getdata

2-327

getdose
Class: SimBiology.export.Model

Return exported SimBiology model dose object

Syntax
doses = getdose(model)
doses = getdose(model,doseName)

Description
doses = getdose(model) returns all the SimBiology.export.Dose objects associated with the
exported model.

doses = getdose(model,doseName) returns the export dose object with the Name property
matching doseName.

Input Arguments
model

SimBiology.export.Model object.

doseName

String containing a dose name to match against the Name property of the export dose objects in
model.

Default: All dose objects.

Output Arguments
doses

Export dose objects in model, or the export dose object with Name property doseName.

Examples

Retrieve SimBiology Model Dose Objects

Open a sample SimBiology model project, and export the included model object.

sbioloadproject('AntibacterialPKPD')
em = export(m1);

Display the editable doses in the exported model object.

doses = getdose(em)

2 Methods

2-328

doses =

 1x4 RepeatDose array with properties:

 Interval
 RepeatCount
 StartTime
 TimeUnits
 Amount
 AmountUnits
 DurationParameterName
 LagParameterName
 Name
 Notes
 Parent
 Rate
 RateUnits
 TargetName

The exported model has 4 repeated dose objects. Display the dose names.

{doses.Name}

ans =

 '250 mg bid' '250 mg tid' '500 mg bid' '500 mg tid'

Extract only the 3rd dose object from the exported model object.

dose3 = getdose(em,'500 mg bid')

dose3 =

 RepeatDose with properties:

 Interval: 12
 RepeatCount: 27
 StartTime: 0
 TimeUnits: 'hour'
 Amount: 500
 AmountUnits: 'milligram'
 DurationParameterName: 'TDose'
 LagParameterName: ''
 Name: '500 mg bid'
 Notes: ''
 Parent: 'Antibacterial'
 Rate: 0
 RateUnits: ''
 TargetName: 'Central.Drug'

See Also
SimBiology.export.Model | SimBiology.export.Dose | export

Topics
“PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
“Deploy a SimBiology Exported Model”

 getdose

2-329

getdose (model)
Return SimBiology dose object

Syntax
doseObj = getdose(modelObj)
doseObj = getdose(modelObj, 'DoseName')

Arguments
modelObj Selects a model object that contains a dose object.
DoseName Name of a dose object contained in a model object. DoseName is

from the dose object property, Name.

Outputs
doseObj ScheduleDose or RepeatDose object retrieved from a model

object. A RepeatDose or ScheduleDose object defines an increase
(dose) to a species amount during a simulation.

Description
doseObj = getdose(modelObj) returns a Simbiology dose object (doseObj) contained in a
Simbiology model object (modelObj).

doseObj = getdose(modelObj, 'DoseName') returns a SimBiology dose object (modelObj)
with the name DoseName.

Examples
Get a dose object from a model object.

1 Create a model object, and then add a dose object to the model object.

modelObj = sbiomodel('mymodel');
dose1Obj = adddose(modelObj, 'dose1');

2 Get the dose object from a model object.

myModelDose = getdose(modelObj);

See Also
Model methods:

• adddose — add a dose object to a model object
• getdose — get dose information from a model object

2 Methods

2-330

• removedose — remove a dose object from a model object

Dose object constructor sbiodose.

ScheduleDose object and RepeatDose object methods:

• copyobj — copy a dose object from one model object to another model object
• get — view properties for a dose object
• set — define or modify properties for a dose object

Introduced in R2012b

 getdose (model)

2-331

getEntry
Get entry contents from SimBiology.Scenarios object

Syntax
entryStruct = getEntry(sObj,entryNameOrIndex)
entryStruct = getEntry(sObj,entryIndex,subIndex)

Description
entryStruct = getEntry(sObj,entryNameOrIndex) returns a structure containing the
contents of the entry (or subentry on page 2-744) specified by entryNameOrIndex.

entryStruct = getEntry(sObj,entryIndex,subIndex) returns a structure containing the
contents of a subentry specified by entryIndex and subIndex.

Examples

Generate Different Simulation Scenarios for Glucose-Insulin Response

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo','m1');

The model contains different parameter values and initial conditions that represents different insulin
impairments (such as Type 2 diabetes, low insulin sensitivity, and so on) stored in five variants.

variants = getvariant(m1)

variants =
 SimBiology Variant Array

 Index: Name: Active:
 1 Type 2 diabetic false
 2 Low insulin se... false
 3 High beta cell... false
 4 Low beta cell ... false
 5 High insulin s... false

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Select a dose that represents a single meal of 78 grams of glucose.

singleMeal = sbioselect(m1,'Name','Single Meal');

2 Methods

2-332

Create a Scenarios object to represent different initial conditions combined with the dose. That is,
create a scenario object where each variant is paired (or combined) with the dose, for a total of five
simulation scenarios.

sObj = SimBiology.Scenarios;
add(sObj,'cartesian','variants',variants);
add(sObj,'cartesian','dose',singleMeal)

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ________ ___________________ ______

 Entry 1 variants SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

sObj contains two entries. Use the generate function to combine the entries and generate five
scenarios. The function returns a scenarios table, where each row represents a scenario and each
column represents an entry of the Scenarios object.

scenariosTbl = generate(sObj)

scenariosTbl=5×2 table
 variants dose
 ______________________ _________________________

 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose

Change the entry name of the first entry.

rename(sObj,1,'Insulin Impairements')

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ____________________ ___________________ ______

 Entry 1 Insulin Impairements SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

Create a SimFunction object to simulate the generated scenarios. Use the Scenarios object as the
input and specify the plasma glucose and insulin concentrations as reponses (outputs of the function
to be plotted). Specify [] for the dose input argument since the Scenarios object already has the
dosing information.

f = createSimFunction(m1,sObj,{'[Plasma Glu Conc]','[Plasma Ins Conc]'},[])

 getEntry

2-333

f =
SimFunction

Parameters:

 Name Value Type Units
 _________________________ ______ _____________ ___

 {'Plasma Volume (Glu)' } 1.88 {'parameter'} {'deciliter' }
 {'k1' } 0.065 {'parameter'} {'1/minute' }
 {'k2' } 0.079 {'parameter'} {'1/minute' }
 {'Plasma Volume (Ins)' } 0.05 {'parameter'} {'liter' }
 {'m1' } 0.19 {'parameter'} {'1/minute' }
 {'m2' } 0.484 {'parameter'} {'1/minute' }
 {'m4' } 0.1936 {'parameter'} {'1/minute' }
 {'m5' } 0.0304 {'parameter'} {'minute/picomole' }
 {'m6' } 0.6469 {'parameter'} {'dimensionless' }
 {'Hepatic Extraction' } 0.6 {'parameter'} {'dimensionless' }
 {'kmax' } 0.0558 {'parameter'} {'1/minute' }
 {'kmin' } 0.008 {'parameter'} {'1/minute' }
 {'kabs' } 0.0568 {'parameter'} {'1/minute' }
 {'kgri' } 0 {'parameter'} {'1/minute' }
 {'f' } 0.9 {'parameter'} {'dimensionless' }
 {'a' } 0 {'parameter'} {'1/milligram' }
 {'b' } 0.82 {'parameter'} {'dimensionless' }
 {'c' } 0 {'parameter'} {'1/milligram' }
 {'d' } 0.01 {'parameter'} {'dimensionless' }
 {'kp1' } 2.7 {'parameter'} {'milligram/minute' }
 {'kp2' } 0.0021 {'parameter'} {'1/minute' }
 {'kp3' } 0.009 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'kp4' } 0.0618 {'parameter'} {'(milligram/minute)/picomole' }
 {'ki' } 0.0079 {'parameter'} {'1/minute' }
 {'[Ins Ind Glu Util]' } 1 {'parameter'} {'milligram/minute' }
 {'Vm0' } 2.5129 {'parameter'} {'milligram/minute' }
 {'Vmx' } 0.047 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'Km' } 225.59 {'parameter'} {'milligram' }
 {'p2U' } 0.0331 {'parameter'} {'1/minute' }
 {'K' } 2.28 {'parameter'} {'picomole/(milligram/deciliter)' }
 {'alpha' } 0.05 {'parameter'} {'1/minute' }
 {'beta' } 0.11 {'parameter'} {'(picomole/minute)/(milligram/deciliter)'}
 {'gamma' } 0.5 {'parameter'} {'1/minute' }
 {'ke1' } 0.0005 {'parameter'} {'1/minute' }
 {'ke2' } 339 {'parameter'} {'milligram' }
 {'Basal Plasma Glu Conc'} 91.76 {'parameter'} {'milligram/deciliter' }
 {'Basal Plasma Ins Conc'} 25.49 {'parameter'} {'picomole/liter' }

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

2 Methods

2-334

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

Simulate the model for 24 hours and plot the simulation data. The data contains five runs, where each
run represents a scenario in the Scenarios object.

sd = f(sObj,24);
sbioplot(sd)

ans =
 Axes (SbioPlot) with properties:

 XLim: [0 30]
 YLim: [0 450]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.0920 0.1100 0.2956 0.8150]
 Units: 'normalized'

 Show all properties

If you have Statistics and Machine Learning Toolbox™, you can also draw sample values for model
quantities from various probability distributions. For instance, suppose that the parameters Vmx and

 getEntry

2-335

kp3, which are known for the low and high insulin sensitivity, follow the lognormal distribution. You
can generate sample values for these parameters from such a distribution, and perform a scan to
explore model behavior.

Define the lognormal probability distribution object for Vmx.

pd_Vmx = makedist('lognormal')

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = 0
 sigma = 1

By definition, the parameter mu is the mean of logarithmic values. To vary the parameter value
around the base (model) value of the parameter, set mu to log(model_value). Set the standard
deviation (sigma) to 0.2. For a small sigma value, the mean of a lognormal distribtion is
approximately equal to log(model_value). For details, see “Lognormal Distribution” (Statistics and
Machine Learning Toolbox).

Vmx = sbioselect(m1,'Name','Vmx');
pd_Vmx.mu = log(Vmx.Value);
pd_Vmx.sigma = 0.2

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = -3.05761
 sigma = 0.2

Similarly define the probability distribution for kp3.

pd_kp3 = makedist('lognormal');
kp3 = sbioselect(m1,'Name','kp3');
pd_kp3.mu = log(kp3.Value);
pd_kp3.sigma = 0.2

pd_kp3 =
 LognormalDistribution

 Lognormal distribution
 mu = -4.71053
 sigma = 0.2

Now define a joint probability distribution to draw sample values for Vmx and kp3, with a rank
correlation to specify some correlation between these two parameters. Note that this correlation
assumption is for the illustration purposes of this example only and may not be biologically relevant.

First remove the variants entry (entry 1) from sObj.

remove(sObj,1)

ans =
 Scenarios (1 scenarios)

2 Methods

2-336

 Name Content Number
 ____ _______________ ______

 Entry 1 dose SimBiology dose 1

 See also Expression property.

Add an entry that defines the joint probability distribution with a rank correlation matrix.

add(sObj,'cartesian',["Vmx","kp3"],[pd_Vmx, pd_kp3],'RankCorrelation',[1,0.5;0.5,1])

ans =
 Scenarios (2 scenarios)

 Name Content Number
 ____ ______________________ ___________

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 2 (default)
 + Entry 2.2) kp3 Lognormal distribution 2 (default)

 See also Expression property.

By default, the number of samples to draw from the joint distribution is set to 2. Increase the number
of samples.

updateEntry(sObj,2,'Number',50)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Verify that the Scenarios object can be simulated with the model. The verify function throws an
error if any entry does not resolve uniquely to an object in the model or the entry contents have
inconsistent lengths (sample sizes). The function throws a warning if multiple entries resolve to the
same object in the model.

verify(sObj,m1)

Generate the simulation scenarios. Plot the sample values using plotmatrix. You can see the value
of Vmx is varied around its model value 0.047 and that of kp3 around 0.009.

sTbl = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl.Vmx,sTbl.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";

 getEntry

2-337

ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios using the same SimFunction you created previously. You do not need to create
a new SimFunction object even though the Scenarios object has been updated.

sd2 = f(sObj,24);
sbioplot(sd2);

2 Methods

2-338

By default, SimBiology uses the random sampling method. You can change it to the Latin hypercube
sampling (or sobol or halton) for a more systematic space-filling approach.

entry2struct = getEntry(sObj,2)

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'random'
 SamplingOptions: [0x0 struct]

entry2struct.SamplingMethod = 'lhs'

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'lhs'
 SamplingOptions: [0x0 struct]

You can now use the updated structure to modify entry 2.

 getEntry

2-339

updateEntry(sObj,2,entry2struct)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Visualize the sample values.

sTbl2 = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl2.Vmx,sTbl2.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios.

sd3 = f(sObj,24);
sbioplot(sd3);

2 Methods

2-340

Restore warning settings.

warning(warnSettings);

Input Arguments
sObj — Simulation scenarios
SimBiology.Scenarios object

Simulation scenarios, specified as a SimBiology.Scenarios object.

entryNameOrIndex — Entry name or index
character vector | string | scalar positive integer

Entry name or index, specified as a character vector, string, or scalar positive integer. You can also
specify the name of a subentry.

If you are specifying an index, it must be smaller than or equal to the number of entries in the object.
Data Types: double | char | string

entryIndex — Entry index
scalar positive integer

Entry index, specified as a scalar positive integer. The entry index must be smaller than or equal to
the number of entries in the object.

 getEntry

2-341

Data Types: double

subIndex — Entry subindex
scalar positive integer

Entry subindex, specified as a scalar positive integer. The subindex must be smaller than or equal to
the number of subentries in the entry.
Data Types: double

Output Arguments
entryStruct — Entry content
structure

Entry content, returned as a structure.

entryStruct has the following fields:

• Name – Character vector or cell array of character vectors specifying the names of entries.
• Content – Vector of numeric values, dose objects, variant objects, or probability distribution

objects.

If you query a random sampling entry without specifying a subentry, or if the random sampling entry
references only one model component, entryStruct has the following additional fields:

• Number – Number of samples drawn from the distribution. If this field is empty [], the number of
samples is inferred from other entries. The default value is 2.

• RankCorrelation – Rank correlation matrix. This field is empty [] if no correlation matrix is
specified.

• Covariance – Covariance matrix. This field is empty [] if no covariance matrix is specified.
• SamplingMethod – Character vector specifying the sampling method. Values are:

• 'random' – Random sampling (default).
• 'lhs' – Latin hypercube sampling.
• 'copula' – Multivariate sample using a copula.
• 'sobol' – Sobol quasirandom sample set.
• 'halton' – Halton quasirandom sample set.

For details, see Sampling Methods on page 2-0 .

See Also
SimBiology.Scenarios | SimFunction object | createSimFunction (model)

Topics
“SimBiology.Scenarios Terminology” on page 2-744
“Combine Simulation Scenarios in SimBiology”

Introduced in R2019b

2 Methods

2-342

getequations
Return system of equations for model object

Syntax
equations = getequations(modelobj)
equations = getequations(modelobj,configsetobj,variantobj,doseobj)

Description
equations = getequations(modelobj) returns equations, a character vector containing the
system of equations that represent modelobj, a model object. The function uses any active
configset, active variants, and active doses, if any, and generates the system of equations. You must
specify a deterministic solver.

equations = getequations(modelobj,configsetobj,variantobj,doseobj) returns the
system of equations that represent the model specified by a Model object, Variant objects, and dose
objects (RepeatDose or ScheduleDose). The function uses only the specified configset, doses, and
variants to generate the equations. Any other configset, doses, and variants are ignored. You must
specify a deterministic solver.

If you set csObj to [], then the function uses the active configset object.

If you set variantObj to [], then the function uses no variants.

If you set doseObj to [], then the function uses no doses.

Input Arguments
modelobj

Object of the Model on page 2-404 class.

Note If using modelobj as the only input argument, the active Configset object must specify a
deterministic solver.

Default:

configsetobj

Object of the Configset on page 2-166 class. This object must specify a deterministic solver.

Default: [] (Empty, which specifies the active Configset object for modelobj)

variantobj

Object or array of objects of the Variant on page 2-850 class.

Default: [] (Empty, which specifies no variant object)

 getequations

2-343

doseobj

Object or array of objects of the RepeatDose on page 2-692 or ScheduleDose on page 2-747 class.

Default: [] (Empty, which specifies no dose object)

Output Arguments
equations

Character vector containing the system of equations that represent a model. Equations for reactions,
rules, events, variants, and doses are included.

Examples

View System of Equations for Simple Model

View system of equations that represent a simple model, containing only reactions.

Import the lotka model, included with SimBiology, into a variable named model1:

model1 = sbmlimport('lotka');

View all equations that represent the model1 model and its active configset:

m1equations = getequations(model1)

m1equations =

ODEs:
d(y1)/dt = 1/unnamed*(ReactionFlux1 - ReactionFlux2)
d(y2)/dt = 1/unnamed*(ReactionFlux2 - ReactionFlux3)
d(z)/dt = 1/unnamed*(ReactionFlux3)

Fluxes:
ReactionFlux1 = c1*y1*x
ReactionFlux2 = c2*y1*y2
ReactionFlux3 = c3*y2

Parameter Values:
c1 = 10
c2 = 0.01
c3 = 10
unnamed = 1

Initial Conditions:
x = 1
y1 = 900
y2 = 900
z = 0

MATLAB displays the ODEs, fluxes, parameter values, and initial conditions for the reactions in
model1.

2 Methods

2-344

View System of Equations for Model and Dose

View system of equations that represent a model, containing only reactions, and a repeated dose.

Import the lotka model, included with SimBiology, into a variable named model1:

model1 = sbmlimport('lotka');

Add a repeated dose to the model:

doseObj1 = adddose(model1,'dose1','repeat');

Set the properties of the dose to administer 3 mg, at a rate of 10 mg/hour, 6 times, at an interval of
every 24 hours, to species y1:

doseObj1.Amount = 0.003;
doseObj1.AmountUnits = 'gram';
doseObj1.Rate = 0.010;
doseObj1.RateUnits = 'gram/hour';
doseObj1.Repeat = 6;
doseObj1.Interval = 24;
doseObj1.TimeUnits = 'hour';
doseObj1.TargetName = 'y1';

View all equations that represent the model1 model, its active configset, and the repeated dose:

m1_with_dose_equations = getequations (model1,[],[],doseObj1)

m1_with_dose_equations =

ODEs:
d(y1)/dt = 1/unnamed*(ReactionFlux1 - ReactionFlux2) + dose1
d(y2)/dt = 1/unnamed*(ReactionFlux2 - ReactionFlux3)
d(z)/dt = 1/unnamed*(ReactionFlux3)

Fluxes:
ReactionFlux1 = c1*y1*x
ReactionFlux2 = c2*y1*y2
ReactionFlux3 = c3*y2

Parameter Values:
c1 = 10
c2 = 0.01
c3 = 10
unnamed = 1

Initial Conditions:
y1 = 900
y2 = 900
z = 0
x = 1

Doses:
Variable Type Units
dose1 repeatdose gram

 getequations

2-345

MATLAB displays the ODEs, fluxes, parameter values, and initial conditions for the reactions and the
dose in model1.

Tips
Use getequations to see the system of equations that represent a model for:

• Publishing purposes
• Model debugging

See Also
Model object | Configset object | Variant object | RepeatDose object | ScheduleDose
object

Topics
“Show Model Equations and Initial Conditions”

2 Methods

2-346

getIndex
Class: SimBiology.export.Model

Get indices into ValueInfo and InitialValues properties

Syntax
indices = getIndex(model,name)
indices = getIndex(model,name,type)

Description
indices = getIndex(model,name) returns the indices of all ValueInfo objects in a
SimBiology.export.Model object that have a QualifiedName or Name property that match the
specified name input argument.

• getIndex first tries to match the QualifiedName property. If there are matches, then getIndex
returns their indices.

• If there are no matches based on QualifiedName, then getIndex tries to match the Name
property. If there are matches, then getIndex returns their indices.

• If there are no matches based on QualifiedName or Name, then getIndex returns [].

indices = getIndex(model,name,type) returns indices for only the ValueInfo objects with a
Type property that matches the type input argument.

Input Arguments
model

SimBiology.export.Model object.

name

Character vector containing a name to match against the QualifiedName, then Name, properties of
the ValueInfo objects in model.

type

Character vector containing a name to match against the Type property of the ValueInfo objects in
model.

Default: All types.

Output Arguments
indices

Vector of indices indicating which ValueInfo objects in a SimBiology.export.Model object
match on the specified name and type.

 getIndex

2-347

Examples

Index Exported SimBiology Editable Values

Load a sample SimBiology model object, and export.

modelObj = sbmlimport('lotka');
em = export(modelObj);

Get the index of the editable value with name y1.

ix = getIndex(em,'y1')

ix =

 3

Display the type of value.

em.ValueInfo(ix).Type

ans =

species

The name y1 corresponds to an editable species.

See Also
SimBiology.export.Model | SimBiology.export.ValueInfo | export

Topics
“PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
“Deploy a SimBiology Exported Model”

2 Methods

2-348

getNumberScenarios
Return number of scenarios from SimBiology.Scenarios object

Syntax
numScenarios = getNumberScenarios(sObj)

Description
numScenarios = getNumberScenarios(sObj) returns the number of scenarios from the
SimBiology.Scenarios object sObj.

Examples

Get Number of Simulation Scenarios

Create a SimBiology.Scenarios object for a parameter (k1) with sample values of 1.3 and 1.4.

sObj = SimBiology.Scenarios('k1',[1.3;1.4]);

Add a species (s1) with initial sample amounts of 2.7, 3.1, and 3.4. Use the cartesian combination
method to combine entries.

add(sObj,'cartesian','s1',[2.7; 3.1; 3.4]);

Get the number of simulation sceanarios that the object has after combining the entries.

n = getNumberScenarios(sObj)

n = 6

Input Arguments
sObj — Simulation scenarios
SimBiology.Scenarios object

Simulation scenarios, specified as a SimBiology.Scenarios object.

Output Arguments
numScenarios — Number of scenarios
nonnegative integer

Total number of scenarios, returned as a nonnegative integer.

See Also
SimBiology.Scenarios | SimFunction object | createSimFunction (model)

 getNumberScenarios

2-349

Topics
“SimBiology.Scenarios Terminology” on page 2-744
“Combine Simulation Scenarios in SimBiology”

Introduced in R2019b

2 Methods

2-350

getparameters (kineticlaw)
Get specific parameters in kinetic law object

Syntax
parameterObj = getparameters(kineticlawObj)
parameterObj = getparameters(kineticlawObj, ParameterVariablesValue)

Arguments

kineticlawObj Retrieve parameters used by the kinetic law object.
ParameterVariablesValue Retrieve parameters used by the kinetic law object

corresponding to the specified parameter in the
ParameterVariables property of the kinetic law
object. Specify a character vector, string scalar,
string vector, or cell array of character vectors.

Description
parameterObj = getparameters(kineticlawObj) returns the parameters used by the kinetic
law object kineticlawObj to parameterObj.

parameterObj = getparameters(kineticlawObj, ParameterVariablesValue) returns the
parameter in the ParameterVariableNames property that corresponds to the parameter specified
in the ParameterVariables property of kineticlawObj, to parameterObj.
ParameterVariablesValue is the name of the parameter as it appears in the
ParameterVariables property of kineticlawObj. ParameterVariablesValue can be a
character vector, string scalar, string vector, or cell array of character vectors.

If you change the name of a parameter, you must configure all applicable elements such as rules that
use the parameter, any user-specified ReactionRate, or the kinetic law object property
ParameterVariableNames. Use the method setparameter to configure
ParameterVariableNames.

Examples
Create a model, add a reaction, and assign the ParameterVariableNames for the reaction rate
equation.

1 Create the model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type 'Henri-Michaelis-Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Add two parameter objects.

 getparameters (kineticlaw)

2-351

parameterObj1 = addparameter(kineticlawObj,'Va');
parameterObj2 = addparameter(kineticlawObj,'Ka');

4 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm and Km) that
should to be set. To set these variables:

setparameter(kineticlawObj,'Vm', 'Va');
setparameter(kineticlawObj,'Km', 'Ka');

5 To retrieve a parameter variable:

parameterObj3 = getparameters(kineticlawObj, 'Vm')

MATLAB returns:

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
 1 Va 1

parameterObj4 = getparameters (kineticlawObj, 'Km')

See Also
addparameter, getspecies, setparameter

Introduced in R2006a

2 Methods

2-352

getsensmatrix
Get 3-D sensitivity matrix from SimData object

Syntax
[t,r,outputFactors,inputFactors] = getsensmatrix(simdata)
[t,r,outputFactors,inputFactors] = getsensmatrix(simdata,outputFactorNames,
inputFactorNames)

Description
[t,r,outputFactors,inputFactors] = getsensmatrix(simdata) returns the time t and
sensitivity data r as well as all the outputFactors and inputFactors (sensitivity outputs and
inputs) from the SimData object simdata.

[t,r,outputFactors,inputFactors] = getsensmatrix(simdata,outputFactorNames,
inputFactorNames) returns the sensitivity data for only the outputs and inputs specified by
outputFactorNames and inputFactorNames, respectively.

Examples

Calculate Sensitivities Using SimFunctionSensitivity Object

This example shows how to calculate the sensitivities of some species in the Lotka-Volterra model
using the SimFunctionSensitivity object.

Load the sample project.

sbioloadproject lotka;

Define the input parameters.

params = {'Reaction1.c1', 'Reaction2.c2'};

Define the observed species, which are the outputs of simulation.

observables = {'y1', 'y2'};

Create a SimFunctionSensitivity object. Set the sensitivity output factors to all species (y1 and
y2) specified in the observables argument and input factors to those in the params argument (c1
and c2) by setting the name-value pair argument to 'all'.

f = createSimFunction(m1,params,observables,[],'SensitivityOutputs','all','SensitivityInputs','all','SensitivityNormalization','Full')

f =
SimFunction

Parameters:

 Name Value Type
 ________________ _____ _____________

 getsensmatrix

2-353

 {'Reaction1.c1'} 10 {'parameter'}
 {'Reaction2.c2'} 0.01 {'parameter'}

Observables:

 Name Type
 ______ ___________

 {'y1'} {'species'}
 {'y2'} {'species'}

Dosed: None

Sensitivity Input Factors:

 Name Type
 ________________ _____________

 {'Reaction1.c1'} {'parameter'}
 {'Reaction2.c2'} {'parameter'}

Sensitivity Output Factors:

 Name Type
 ______ ___________

 {'y1'} {'species'}
 {'y2'} {'species'}

Sensitivity Normalization:

Full

Calculate sensitivities by executing the object with c1 and c2 set to 10 and 0.1, respectively. Set the
output times from 1 to 10. t contains time points, y contains simulation data, and sensMatrix is the
sensitivity matrix containing sensitivities of y1 and y2 with respect to c1 and c2.

[t,y,sensMatrix] = f([10,0.1],[],[],1:10);

Retrieve the sensitivity information at time point 5.

temp = sensMatrix{:};
sensMatrix2 = temp(t{:}==5,:,:);
sensMatrix2 = squeeze(sensMatrix2)

sensMatrix2 = 2×2

 37.6987 -6.8447
 -40.2791 5.8225

The rows of sensMatrix2 represent the output factors (y1 and y2). The columns represent the input
factors (c1 and c2).

2 Methods

2-354

sensMatrix2 =

∂y1
∂c1

∂y2
∂c1

∂y1
∂c2

∂y2
∂c2

Set the stop time to 15, without specifying the output times. In this case, the output times are the
solver time points by default.

sd = f([10,0.1],15);

Retrieve the calculated sensitivities from the SimData object sd.

[t,y,outputs,inputs] = getsensmatrix(sd);

Plot the sensitivities of species y1 and y2 with respect to c1.

figure;
plot(t,y(:,:,1));
legend(outputs);
title('Sensitivities of species y1 and y2 with respect to parameter c1');
xlabel('Time');
ylabel('Sensitivity');

Plot the sensitivities of species y1 and y2 with respect to c2.

figure;
plot(t,y(:,:,2));

 getsensmatrix

2-355

legend(outputs);
title('Sensitivities of species y1 and y2 with respect to parameter c2');
xlabel('Time');
ylabel('Sensitivity');

Alternatively, you can use sbioplot.

sbioplot(sd);

2 Methods

2-356

You can also plot the sensitivity matrix using the time integral for the calculated sensitivities of y1
and y2. The plot indicates y1 and y2 are more sensitive to c1 than c2.

[~, in, out] = size(y);
result = zeros(in, out);
for i = 1:in
 for j = 1:out
 result(i,j) = trapz(t(:),abs(y(:,i,j)));
 end
end
figure;
hbar = bar(result);
haxes = hbar(1).Parent;
haxes.XTick = 1:length(outputs);
haxes.XTickLabel = outputs;
legend(inputs,'Location','NorthEastOutside');
ylabel('Sensitivity');

 getsensmatrix

2-357

Input Arguments
simdata — Simulation data
SimData object | array of SimData objects

Simulation data, specified as a SimData object or array of SimData objects. If simdata is an array
of objects, the outputs are cell arrays in which each cell contains data for the corresponding object in
the SimData array.

outputFactorNames — Names of sensitivity outputs
[] (default) | character vector | string | string vector | cell array of character vectors

Names of sensitivity outputs, specified as an empty array [], character vector, string, string vector,
or cell array of character vectors.

By default, the function uses an empty array [] to return sensitivity data for all output factors in
simdata.

inputFactorNames — Names of sensitivity inputs
[] (default) | character vector | string | string vector | cell array of character vectors

Names of sensitivity inputs, specified as an empty array [], character vector, string, string vector, or
cell array of character vectors.

2 Methods

2-358

By default, the function uses an empty array [] to return sensitivity data on all input factors in
simdata.

Output Arguments
t — Simulation time points
m-by-1 numeric vector | cell array

Simulation time points for the sensitivity data, returned as an m-by-1 numeric vector or cell array. m
is the number of time points.

r — Sensitivity data
m-by-n-by-p array | cell array

Sensitivity data, returned as an m-by-n-by-p array or cell array. m is the number of time points, n is
the number of sensitivity outputs, and p is the number of sensitivity inputs.

The outputFactors output argument labels the second dimension of r and inputFactors labels
the third dimension of r. For example, r(:,i,j) is the time course for the sensitivity of the state
outputFactors{i} to the input inputFactor{j}.

The function returns only the sensitivity data already in the SimData object. It does not calculate the
sensitivities. For details on setting up and performing a sensitivity calculation, see “Local Sensitivity
Analysis (LSA)”. During setup, you can also specify how to normalize the sensitivity data.

outputFactors — Names of sensitivity outputs
n-by-1 cell array

Names of sensitivity outputs, returned as an n-by-1 cell array. n is the number of sensitivity outputs.

The output factors are the states for which you calculated the sensitivities. In other words, the
sensitivity outputs are the numerators. For more information, see “Local Sensitivity Analysis (LSA)”.

inputFactors — Names of sensitivity inputs
p-by-1 cell array

Names of sensitivity inputs, returned as an p-by-1 cell array. p is the number of input factors.

The input factors are the states with respect to which you calculated the sensitivities. In other words,
the sensivity inputs are the denominators as explained in “Local Sensitivity Analysis (LSA)”.

See Also
SimData | sbiosimulate | SimFunctionSensitivity object

Topics
“Local Sensitivity Analysis (LSA)”
“Calculate Local Sensitivities Using sbiosimulate”
“Calculate Local Sensitivities Using SimFunctionSensitivity object”

Introduced in R2008b

 getsensmatrix

2-359

getSimulationResults
Retrieve model simulation results and sample values used for computing Sobol indices

Syntax
[samplesTable,simdata,validRuns] = getSimulationResults(sobolObj,idx)

Description
[samplesTable,simdata,validRuns] = getSimulationResults(sobolObj,idx) returns
the simulation results and sample values in the SimBiology.gsa.Sobol object sobolObj for the
specified index idx. The index represents the ith column in sobolObj.SimulationInfo.SimData
on page 2-0 . This function is useful when you want to troubleshoot or find out which parameter
samples generated the simulation data that resulted in failed model simulations.

Examples

Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with the estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

2 Methods

2-360

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, retrieve model parameters of interest that are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1','k2'};
outputName = 'tumor_weight';

Then perform GSA by computing the first- and total-order Sobol indices using sbiosobol. Set
'ShowWaitBar' to true to show the simulation progress. By default, the function uses 1000
parameter samples to compute the Sobol indices [1].

rng('default');
sobolResults = sbiosobol(m1,modelParamNames,outputName,Variants=v,Doses=d,ShowWaitBar=true)

sobolResults =
 Sobol with properties:

 Time: [444x1 double]
 SobolIndices: [5x1 struct]
 Variance: [444x1 table]
 ParameterSamples: [1000x5 table]
 Observables: {'[Tumor Growth Model].tumor_weight'}
 SimulationInfo: [1x1 struct]

 getSimulationResults

2-361

You can change the number of samples by specifying the 'NumberSamples' name-value pair
argument. The function requires a total of (number of input parameters + 2) *
NumberSamples model simulations.

Show the mean model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(sobolResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying 'Alphas' for the lower
and upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100 * alpha and 100 * (1 - alpha) quantiles of all simulated model responses.

plotData(sobolResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

2 Methods

2-362

Plot the time course of the first- and total-order Sobol indices.

h = plot(sobolResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 getSimulationResults

2-363

The first-order Sobol index of an input parameter gives the fraction of the overall response variance
that can be attributed to variations in the input parameter alone. The total-order index gives the
fraction of the overall response variance that can be attributed to any joint parameter variations that
include variations of the input parameter.

From the Sobol indices plots, parameters L1 and w0 seem to be the most sensitive parameters to the
tumor weight before the dose was applied at t = 7. But after the dose is applied, k1 and k2 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
total variance plot also shows a larger variance for the after-dose stage at t > 35 than for the before-
dose stage of the tumor growth, indicating that k1 and k2 might be more important parameters to
investigate further. The fraction of unexplained variance shows some variance at around t = 33, but
the total variance plot shows little variance at t = 33, meaning the unexplained variance could be
insignificant. The fraction of unexplained variance is calculated as 1 - (sum of all the first-order Sobol
indices), and the total variance is calculated using var(response), where response is the model
response at every time point.

You can also display the magnitudes of the sensitivities in a bar plot. Darker colors mean that those
values occur more often over the whole time course.

bar(sobolResults);

2 Methods

2-364

You can specify more samples to increase the accuracy of the Sobol indices, but the simulation can
take longer to finish. Use addsamples to add more samples. For example, if you specify 1500
samples, the function performs 1500 * (2 + number of input parameters) simulations.

gsaMoreSamples = addsamples(gsaResults,1500)

The “SimulationInfo” on page 2-0 property of the result object contains various information for
computing the Sobol indices. For instance, the model simulation data (SimData) for each simulation
using a set of parameter samples is stored in the SimData field of the property. This field is an array
of SimData objects.

sobolResults.SimulationInfo.SimData

 SimBiology SimData Array : 1000-by-7

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 7000 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(sobolResults.SimulationInfo.ValidSample)

 getSimulationResults

2-365

ans = 1x7 logical array

 1 1 1 1 1 1 1

SimulationInfo.ValidSample is a table of logical values. It has the same size as
SimulationInfo.SimData. If ValidSample indicates that any simulations failed, you can get more
information about those simulation runs and the samples used for those runs by extracting
information from the corresponding column of SimulationInfo.SimData. Suppose that the fourth
column contains one or more failed simulation runs. Get the simulation data and sample values used
for that simulation using getSimulationResults.

[samplesUsed,sd,validruns] = getSimulationResults(sobolResults,4);

You can add custom expressions as observables and compute Sobol indices for the added observables.
For example, you can compute the Sobol indices for the maximum tumor weight by defining a custom
expression as follows.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
sobolObs = addobservable(sobolResults,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(sobolObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1280 800];

2 Methods

2-366

You can also remove the observable by specifying its name.

gsaNoObs = removeobservable(sobolObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Input Arguments
sobolObj — Results containing Sobol indices
SimBiology.gsa.Sobol object

Results containing the first- and total-order Sobol indices, specified as a SimBiology.gsa.Sobol
object.

idx — Index
positive integer

Index to extract the simulation results in sobolObj.SimulationInfo.SimData on page 2-0 ,
specified as a positive integer. The index must be smaller than “params” on page 1-0 + 2,
where params is the number of input parameters. For more information, see “Retrieve Simulation
Results and Sample Values Using getSimulationResults” on page 2-367.
Data Types: double

Output Arguments
samplesTable — Table containing parameter sample values
table

Table containing parameter sample values, returned as a table.

simdata — Simulation results
vector of SimData objects

Simulation results obtained using the samples in samplesTable, returned as a vector of SimData
objects.

validRuns — Indicators of run success or failure
logical vector

Indicators of run success or failure, returned as a logical vector. Each element indicates the success
or failure of the corresponding simulation run in simdata.

More About
Retrieve Simulation Results and Sample Values Using getSimulationResults

getSimulationResults returns the ith column from the SimData array
sobolObj.SimulationInfo.SimData on page 2-0 , which is one of the object properties.

 getSimulationResults

2-367

As explained in “Saltelli Method to Compute Sobol Indices” on page 1-280, A and B are sample

matrices. AB
i
 is a matrix where all columns are from A except the ith column, which is from B for i =

1, 2,…,“params” on page 1-0 . params is the number of input parameters.

The simulation data used to compute Sobol indices is stored in
sobolObj.SimulationInfo.SimData. The array size is NumberSamples-by-params + 2, where
NumberSamples on page 1-0 is the number of samples. The number of columns is 2 + params
because the first two columns correspond to simulation results from A and B. The rest of the columns

correspond to AB
1
, AB

2
, …, AB

params
. In other words, you can consider the following:

sobolObj.SimulationInfo.SimData = SimData A , SimData B , SimData AB
1

, SimData AB
2

, ...,

SimData AB
params

Here, the first column corresponds to simulation data using the sample matrix A, the second column
corresponds to simulation data using the sample matrix B, the third column corresponds to

simulation data using the matrix AB
1
, and so on.

For instance, getSimulationResults(sobolObj,3) returns:

•
samplesTable (first output), which is AB

1
.

•
simdata (second output), which contains simulation results using the samples from AB

1
. This is

the third column of sobolObj.SimulationInfo.SimData.
• validRuns (third output), which contains logical values that indicate the success or failure of

each simulation run in simdata (second output). validRuns corresponds to the ith column of
sobolObj.SimulationInfo.ValidSample on page 2-0 .

References
[1] Saltelli, Andrea, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano

Tarantola. “Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the
Total Sensitivity Index.” Computer Physics Communications 181, no. 2 (February 2010): 259–
70. https://doi.org/10.1016/j.cpc.2009.09.018.

See Also
SimBiology.gsa.Sobol | sbiosobol | plot | plotData | bar

Introduced in R2020a

2 Methods

2-368

getspecies (kineticlaw)
Get specific species in kinetic law object

Syntax
speciesObj = getspecies(kineticlawObj)
speciesObj = getspecies(kineticlawObj, SpeciesVariablesValue)

Arguments

kineticlawObj Retrieve species used by the kinetic law object.
SpeciesVariablesValue Retrieve species used by the kinetic law object

corresponding to the specified species in the
SpeciesVariables property of the kinetic law
object. Specify a character vector, string scalar,
string vector, or cell array of character vectors.

Description
speciesObj = getspecies(kineticlawObj) returns the species used by the kinetic law object
kineticlawObj to speciesObj.

speciesObj = getspecies(kineticlawObj, SpeciesVariablesValue) returns the species
in the SpeciesVariableNames property to speciesObj.

SpeciesVariablesValue is the name of the species as it appears in the SpeciesVariables
property of kineticlawObj. SpeciesVariablesValue can be a character vector, string scalar,
string vector, or cell array of character vectors.

Species names are referenced by reaction objects, kinetic law objects, and model objects. If you
change the name of a species, the reaction updates to use the new name. You must, however,
configure all other applicable elements such as rules that use the species, and the kinetic law object
SpeciesVariableNames. Use the method setspecies to configure SpeciesVariableNames.

Examples
Create a model, add a reaction, and then assign the SpeciesVariableNames for the reaction rate
equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type 'Henri-Michaelis-Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

 getspecies (kineticlaw)

2-369

3 The 'Henri-Michaelis-Menten' kinetic law has one species variable (S) that should to be set.
To set this variable:

setspecies(kineticlawObj,'S', 'a');
4 Retrieve the species variable using getspecies.

speciesObj = getspecies (kineticlawObj, 'S')

MATLAB returns:

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:
 1 unnamed a 0

See Also
addspecies, getparameters, setparameter, setspecies

Introduced in R2006a

2 Methods

2-370

getstoichmatrix (model)
Get stoichiometry matrix from model object

Note The order of species in the output arguments (M and objSpecies) matches the order of
species returned by modelObj.Species.

Syntax
M = getstoichmatrix(modelObj)
[M,objSpecies] = getstoichmatrix(modelObj)
[M,objSpecies,objReactions] = getstoichmatrix(modelObj)

Arguments

M Stoichiometry matrix for modelObj.
modelObj Specify the model object.
objSpecies Return the list of modelObj species by Name property

of the species.

If the species are in multiple compartments, species
names are qualified with the compartment name in
the form compartmentName.speciesName. For
example, nucleus.DNA, cytoplasm.mRNA.

objReactions Return the list of modelObj reactions by the Name
property of reactions.

Description
getstoichmatrix returns a stoichiometry matrix for a model object.

M = getstoichmatrix(modelObj) returns a stoichiometry matrix for a SimBiology model object
(modelObj) to M.

A stoichiometry matrix is defined by listing all reactions contained by modelObj column-wise and all
species contained by modelObj row-wise in a matrix. The species of the reaction are represented in
the matrix with the stoichiometric value at the location of [row of species, column of reaction].
Reactants have negative values. Products have positive values. All other locations in the matrix are 0.

For example, if modelObj is a model object with two reactions with names R1 and R2 and Reaction
values of 2 A + B -> 3 C and B + 3 D -> 4 A, the stoichiometry matrix would be defined as:

 R1 R2
A -2 4
B -1 -1
C 3 0
D 0 -3

 getstoichmatrix (model)

2-371

[M,objSpecies] = getstoichmatrix(modelObj) returns the stoichiometry matrix to M and the
species to objSpecies. objSpecies is defined by listing all Name property values of species
contained by Obj. In the above example, objSpecies would be {'A', 'B', 'C', 'D'};.

[M,objSpecies,objReactions] = getstoichmatrix(modelObj) returns the stoichiometry
matrix to M and the reactions to objReactions. objReactions is defined by listing all Name
property values of reactions contained by modelObj. In the above example, objReactions would be
{'R1', 'R2'}.

Examples
1 Read in m1, a model object, using sbmlimport:

m1 = sbmlimport('lotka.xml');
2 Get the stoichiometry matrix for the m1:

[M,objSpecies,objReactions] = getstoichmatrix(m1)

See Also
model object, getadjacencymatrix, “Determining the Stoichiometry Matrix for a Model”

Compatibility Considerations
The function returns species in a new order
Behavior changed in R2019b

The order of species in the output arguments (M and objSpecies) matches the order of species
returned by modelObj.Species.

Introduced in R2006a

2 Methods

2-372

getTable(ScheduleDose,RepeatDose)
Return data from SimBiology dose object as table

Syntax
tbl = getTable(doseObj)

Description
tbl = getTable(doseObj) returns dosing data from the dose object doseObj as a table tbl.

Input Arguments
doseObj — Dose object
ScheduleDose object | RepeatDose object | array of dose objects

Dose object, specified as a ScheduleDose object or RepeatDose object or array of these
objects.

Output Arguments
tbl — Dosing data
table | cell array of tables

Dosing data, returned as a table or cell array of tables. If doseObj is an array of dose objects, then
tbl is a cell array of tables with the same size as doseObj.

If doseObj is a RepeatDose object and any of the StartTime, Amount, Rate, Interval, and
RepeatCount properties are parameterized, the table shows the name of the parameter in the
corresponding column instead.

Examples

Retrieve a Table of Dosing Information from a RepeatDose Object

Create a RepeatDose object with some dosing information.

rdose = sbiodose('rd','repeat');
rdose.TargetName = 'x';
rdose.StartTime = 5;
rdose.TimeUnits = 'second';
rdose.Amount = 300;
rdose.AmountUnits = 'molecule';
rdose.Rate = 1;
rdose.RateUnits = 'molecule/second';
rdose.Interval = 100;
rdose.RepeatCount = 2;

Get a table of such dosing information.

 getTable(ScheduleDose,RepeatDose)

2-373

tbl = getTable(rdose)

tbl =

 StartTime Amount Rate Interval RepeatCount
 _________ ______ ____ ________ ___________

 5 300 1 100 2

Note that the units are also copied over and assigned to tbl.Properties.VariableUnits
property.

tbl.Properties

ans =

 Description: ''
 VariableDescriptions: {}
 VariableUnits: {'second' 'molecule' 'molecule/second' 'second' ''}
 DimensionNames: {'Row' 'Variable'}
 UserData: []
 RowNames: {}
 VariableNames: {'StartTime' 'Amount' 'Rate' 'Interval' 'RepeatCount'}

Retrieve a Table of Dosing Information from a Schedule Object

Create a ScheduleDose object with some dosing information.

sdose = sbiodose('sdose','schedule');
sdose.Amount = [100 200 300];
sdose.Time = [5 10 15];

Get a table of such dosing information.

tbl = getTable(sdose)

tbl =

 Time Amount
 ____ ______

 5 100
 10 200
 15 300

See Also
setTable | ScheduleDose object | RepeatDose object

Introduced in R2014a

2 Methods

2-374

getvariant (model)
Get variant from model

Syntax
variantObj = getvariant(modelObj)

variantObj = getvariant(modelObj, 'NameValue')

Arguments
variantObj Variant object returned by the getvariant method.
modelObj Model object from which to get the variant.
'NameValue' Name of the variant to get from the model object modelObj.

Description
variantObj = getvariant(modelObj) returns SimBiology variant objects contained by the
SimBiology model object modelObj to variantObj.

A SimBiology variant object stores alternate values for properties on a SimBiology model. For more
information on variants, see Variant object.

variantObj = getvariant(modelObj, 'NameValue') returns the SimBiology variant object
with the name NameValue, contained by the SimBiology model object, modelObj.

View properties for a variant object with the get command, and modify properties for a variant object
with the set command.

Note Remember to use the addcontent method instead of using the set method on the Content
property, because the set method replaces the data in the Content property whereas addcontent
appends the data.

To copy a variant object to another model, use copyobj. To remove a variant object from a
SimBiology model, use the delete method.

Examples
1 Create a model containing several variants.

modelObj = sbiomodel('mymodel');
variantObj1 = addvariant(modelObj, 'v1');
variantObj2 = addvariant(modelObj, 'v2');

2 Get all variants in the model.

vObjs = getvariant(modelObj)

 getvariant (model)

2-375

SimBiology Variant Array

 Index: Name: Active:
 1 v1 false
 2 v2 false

3 Get the variant object named 'v2' from the model.

vObjv2 = getvariant(modelObj, 'v2');

See Also
Model object, Variant object, addvariant, removevariant

Introduced in R2007b

2 Methods

2-376

groupedData
Table-like collection of data and metadata

Description
The groupedData object is the required data format to store data needed for fitting using sbiofit
and sbiofitmixed. It is a table-like object with a few differences.

• The groupedData object has two additional properties to identify the independent variable and
an optional grouping variable.

• The groupedData object has two additional methods that let you create doses from data set
containing dosing data and convert a groupedData object to a table.

• groupedData.Properties is a structure.

Creation
Syntax
grpData = groupedData
grpData = groupedData(tbl)
grpData = groupedData(tbl,groupVarName)
grpData = groupedData(tbl,groupVarName,independentVarName)

Description

grpData = groupedData creates an empty groupedData object.

grpData = groupedData(tbl) creates a groupedData object by copying a table or dataset object
tbl. The GroupVariableName and IndependentVariableName properties of the grpData object
are implicitly determined by looking for the first case-insensitive match to a list of variable names of
tbl (tbl.Properties.VariableNames). For the grouping variable, the list of names is ID, Group,
I, and Run. For the independent variable, the list of names is Time, T, and IDV. If there are no
matches, GroupVariableName and IndependentVariableName are set to empty character vectors
''.

grpData = groupedData(tbl,groupVarName) sets the GroupVariableName property of the
grpData object to groupVarName. The IndependentVariableName property is implicitly set as in
the previous syntax.

grpData = groupedData(tbl,groupVarName,independentVarName) additionally sets the
IndependentVariableName property of the grpData object to independentVarName.

Input Arguments

tbl — Data
table | dataset

Data, specified as a table or dataset.

 groupedData

2-377

groupVarName — Grouping variable name
character vector | string

Grouping variable name, specified as a character vector or string. An empty character vector '' or
string "" indicates that there is no group variable.

independentVarName — Independent variable name
character vector | string

Independent variable name, specified as a character vector or string. An empty character vector ''
or string "" indicates that there is no independent variable.

Output Arguments

grpData — Grouped data
groupedData object

Grouped data, returned as a groupedData object.

Properties
The groupedData object supports all properties of table and provides the following additional
properties.

GroupVariableName — Name of grouping variable
character vector

Name of the grouping variable that indicates the groups in the data, specified as a character vector.
To indicate that there are no groups (or just one group), set the property to the empty character
vector ''.
Example: 'ID'

IndependentVariableName — Name of independent variable
'' (default) | character vector

Name of the independent variable in the data such as time, specified as a character vector.
Example: 'TIME'

Object Functions
The groupedData object supports every function of table and provides the following additional
functions.
createDoses Create dose objects from groupedData object
createVariants Create variant objects from groupedData object
groupedData2table Convert groupedData object to table

Examples

Create groupedData from Existing Data Set

Load the sample data set.

2 Methods

2-378

load pheno.mat ds

Create a groupedData object from the data set ds.

grpData = groupedData(ds);

Display the object properties.

grpData.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Observations' 'Variables'}
 VariableNames: {'ID' 'TIME' 'DOSE' 'WEIGHT' 'APGAR' 'CONC'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'TIME'

GroupVariableName and IndpendentVariableName have been automatically assigned to 'ID' and
'Time', respectively.

See Also
sbiofit | sbiofitmixed | table

Topics
“Importing Data”
“Importing Data — Supported Files and Data Types”
“Create Data File with SimBiology Definitions”

Introduced in R2014a

 groupedData

2-379

groupedData2table
Convert groupedData object to table

Syntax
tbl = groupedData2table(grpData)

Description
tbl = groupedData2table(grpData) converts a groupedData object grpData to a table.

Examples

Convert groupedData to Table

Load the sample data set.

load pheno.mat ds

Create a groupedData object from the data set ds.

grpData = groupedData(ds);

Display the object properties.

grpData.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Observations' 'Variables'}
 VariableNames: {'ID' 'TIME' 'DOSE' 'WEIGHT' 'APGAR' 'CONC'}
 VariableDescriptions: {}
 VariableUnits: {}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'TIME'

GroupVariableName and IndpendentVariableName have been automatically assigned to 'ID' and
'Time', respectively.

Convert the groupedData to a table.

tbl = groupedData2table(grpData);

Display the first 5 rows of the table.

tbl(1:5,:)

2 Methods

2-380

ans=5×6 table
 ID TIME DOSE WEIGHT APGAR CONC
 __ ____ ____ ______ _____ ____

 1 0 25 1.4 7 NaN
 1 2 NaN 1.4 7 17.3
 1 12.5 3.5 1.4 7 NaN
 1 24.5 3.5 1.4 7 NaN
 1 37 3.5 1.4 7 NaN

Input Arguments
grpData — Grouped data
groupedData object

Grouped data, specified as a groupedData object.

Output Arguments
tbl — Data table
table

Data table, returned as a table.

See Also
table | groupedData | sbiofit | sbiofitmixed

Introduced in R2014a

 groupedData2table

2-381

histogram
Plot histogram of multiparametric global sensitivity analysis results

Syntax
h = histogram(mpgsaObj)
h = histogram(mpgsaObj,Name,Value)

Description
h = histogram(mpgsaObj) plots a histogram of multiparametric global sensitivity analysis
(MPGSA) results and returns the figure handle h.

h = histogram(mpgsaObj,Name,Value) uses additional options specified by one or more name-
value pair arguments.

Examples

Perform Multiparametric Global Sensitivity Analysis (MPGSA)

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Get the active configset and set the target occupancy (TO) as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Simulate the model and plot the TO profile.

sbioplot(sbiosimulate(m1,cs));

2 Methods

2-382

Define an exposure (area under the curve of the TO profile) threshold for the target occupancy.

classifier = 'trapz(time,TO) <= 0.1';

Perform MPGSA to find sensitive parameters with respect to the TO. Vary the parameter values
between predefined bounds to generate 10,000 parameter samples.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
rng(0,'twister'); % For reproducibility
params = {'kel','ksyn','kdeg','km'};
bounds = [0.1, 1;
 0.1, 1;
 0.1, 1;
 0.1, 1];
mpgsaResults = sbiompgsa(m1,params,classifier,Bounds=bounds,NumberSamples=10000)

mpgsaResults =
 MPGSA with properties:

 Classifiers: {'trapz(time,TO) <= 0.1'}
 KolmogorovSmirnovStatistics: [4x1 table]
 ECDFData: {4x4 cell}
 SignificanceLevel: 0.0500
 PValues: [4x1 table]
 SupportHypothesis: [10000x1 table]
 ParameterSamples: [10000x4 table]
 Observables: {'TO'}

 histogram

2-383

 SimulationInfo: [1x1 struct]

Plot the quantiles of the simulated model response.

plotData(mpgsaResults,ShowMedian=true,ShowMean=false);

Plot the empirical cumulative distribution functions (eCDFs) of the accepted and rejected samples.
Except for km, none of the parameters shows a significant difference in the eCDFs for the accepted
and rejected samples. The km plot shows a large Kolmogorov-Smirnov (K-S) distance between the
eCDFs of the accepted and rejected samples. The K-S distance is the maximum absolute distance
between two eCDFs curves.

h = plot(mpgsaResults);
% Resize the figure.
pos = h.Position(:);
h.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

2 Methods

2-384

To compute the K-S distance between the two eCDFs, SimBiology uses a two-sided test based on the
null hypothesis that the two distributions of accepted and rejected samples are equal. See kstest2
(Statistics and Machine Learning Toolbox) for details. If the K-S distance is large, then the two
distributions are different, meaning that the classification of the samples is sensitive to variations in
the input parameter. On the other hand, if the K-S distance is small, then variations in the input
parameter do not affect the classification of samples. The results suggest that the classification is
insensitive to the input parameter. To assess the significance of the K-S statistic rejecting the null-
hypothesis, you can examine the p-values.

bar(mpgsaResults)

 histogram

2-385

The bar plot shows two bars for each parameter: one for the K-S distance (K-S statistic) and another
for the corresponding p-value. You reject the null hypothesis if the p-value is less than the
significance level. A cross (x) is shown for any p-value that is almost 0. You can see the exact p-value
corresponding to each parameter.

[mpgsaResults.ParameterSamples.Properties.VariableNames',mpgsaResults.PValues]

ans=4×2 table
 Var1 trapz(time,TO) <= 0.1
 ________ _____________________

 {'kel' } 0.0021877
 {'ksyn'} 1
 {'kdeg'} 0.99983
 {'km' } 0

The p-values of km and kel are less than the significance level (0.05), supporting the alternative
hypothesis that the accepted and rejected samples come from different distributions. In other words,
the classification of the samples is sensitive to km and kel but not to other parameters (kdeg and
ksyn).

You can also plot the histograms of accepted and rejected samples. The historgrams let you see
trends in the accepted and rejected samples. In this example, the histogram of km shows that there
are more accepted samples for larger km values, while the kel histogram shows that there are fewer
rejected samples as kel increases.

2 Methods

2-386

h2 = histogram(mpgsaResults);
% Resize the figure.
pos = h2.Position(:);
h2.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

Restore the warning settings.

warning(warnSettings);

Input Arguments
mpgsaObj — Multiparametric global sensitivity analysis results
SimBiology.gsa.MPGSA object

Multiparametric global sensitivity analysis results, specified as a SimBiology.gsa.MPGSA object.

 histogram

2-387

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: h = histogram(results,'Classifier',1) specifies to plot histograms of MPGSA
results of the first classifier.

Parameters — Input model quantities to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Input model quantities, namely parameters, species, or compartments, to plot, specified as the
comma-separated pair consisting of 'Parameters' and a character vector, string, string vector, cell
array of character vectors, or a vector of positive integers indexing into the columns of the
mpgsaObj.ParameterSamples table.
Example: 'Parameters','k1'
Data Types: double | char | string | cell

Classifiers — Classifiers to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Classifiers to plot, specified as the comma-separated pair consisting of 'Classifiers' and a
character vector, string, string vector, cell array of character vectors, or a vector of positive integers.

Specify the expressions of classifiers to plot as a character vector, string, string vector, cell array of
character vectors. Alternatively, you can specify a vector of positive integers indexing into
mpgsaObj.Classifiers.
Example: 'Classifiers',[1 3]
Data Types: double | char | string | cell

AcceptedSamplesColor — Color of eCDFs of accepted samples
three-element row vector

Color of eCDFs of accepted samples, specified as the comma-separated pair consisting of
'AcceptedSamplesColor' and a three-element row vector. By default, the function uses the first
MATLAB default color. To view the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Example: 'AcceptedSamplesColor',[0.4,0.3,0.2]
Data Types: double

RejectedSamplesColor — Color of eCDFs of rejected samples
three-element row vector

Color of eCDFs of rejected samples, specified as the comma-separated pair consisting of
'RejectedSamplesColor' and a three-element row vector. By default, the function uses the second
MATLAB default color for the first order and the second default color for the total order. To view the
default color order, enter get(groot,'defaultAxesColorOrder') or see the “ColorOrder”
property.

2 Methods

2-388

Example: 'RejectedSamplesColor',[0.9,0.5,0.2]
Data Types: double

Output Arguments
h — Handle
figure handle

Handle to the figure, specified as a figure handle.

References
[1] Tiemann, Christian A., Joep Vanlier, Maaike H. Oosterveer, Albert K. Groen, Peter A. J. Hilbers, and

Natal A. W. van Riel. “Parameter Trajectory Analysis to Identify Treatment Effects of
Pharmacological Interventions.” Edited by Scott Markel. PLoS Computational Biology 9, no. 8
(August 1, 2013): e1003166. https://doi.org/10.1371/journal.pcbi.1003166.

See Also
SimBiology.gsa.MPGSA | sbiompgsa | plotData | bar | histogram | kstest2 | ecdf

Introduced in R2020a

 histogram

2-389

isAccelerated(SimFunction)
Determine if SimFunction object is accelerated

Syntax
tf = isaccelerated(F)
tf = isaccelerated(F,computerType)

Arguments
F SimFunction object created by the createSimFunction

method of a SimBiology model.
computerType Character vector specifying a computer type. You can specify any

valid archstr supported by the function computer.

Description
tf = isaccelerated(F) returns true if SimFunction object F is accelerated for the current
type of computer or false otherwise.

tf = isaccelerated(F,computerType) returns true if F is accelerated for the specified type of
computer or false otherwise.

Note F is automatically accelerated at the first function execution. However, manually accelerate the
object if you want it accelerated in your deployment applications.

Examples

Simulate SimFunction Object

This example uses the Lotka-Volterra (predator-prey) model described by Gillespie [1].

Load the sample project containing the lotka model.

sbioloadproject lotka;

Create a SimFunction object f with c1 and c2 as input parameters to be scanned, and y1 and y2 as
the output of the function with no dose.

f = createSimFunction(m1,{'Reaction1.c1', 'Reaction2.c2'},{'y1', 'y2'}, [])

f =

SimFunction

Parameters:

2 Methods

2-390

 Name Value Type
 ______________ _____ ___________

 'Reaction1.c1' 10 'parameter'
 'Reaction2.c2' 0.01 'parameter'

Observables:

 Name Type
 ____ _________

 'y1' 'species'
 'y2' 'species'

Dosed: None

The SimFunction object f is not set for acceleration at the time of creation. But it will be
automatically accelerated when executed.

f.isAccelerated

ans =

 0

Define an input matrix that contains parameter values for c1 and c2.

phi = [10 0.01];

Run simulations until the stop time is 5 and plot the simulation results.

sbioplot(f(phi,5))

 isAccelerated(SimFunction)

2-391

Confirm the SimFunction object f was accelerated during execution.

f.isAccelerated

ans =

 1

See Also
createSimFunction, SimFunction object

References
[1] Gillespie D.T. "Exact Stochatic Simulation of Coupled Chemical Reactions," (1977) The Journal of

Physical Chemistry, 81(25), 2340-2361.

Introduced in R2012b

2 Methods

2-392

isAccelerated
Class: SimBiology.export.Model

Determine whether an exported SimBiology model is accelerated

Syntax
tf = isAccelerated(model)
tf = isAccelerated(model,computerType)

Description
tf = isAccelerated(model) returns true if model is accelerated for the current type of
computer, and false otherwise.

tf = isAccelerated(model,computerType) returns true if model is accelerated for the
specified computer type.

Input Arguments
model

SimBiology.export.Model object.

computerType

String specifying a computer type. You can specify any valid archstr supported by the function
computer.

Output Arguments
tf

Logical value true if model is accelerated for the current computer type, or computer type specified
by computerType. Logical value false if the exported model is not accelerated for the specified
computer type.

Examples

Accelerate Exported SimBiology Model

Load a sample SimBiology model object, and export.

modelObj = sbmlimport('lotka');
em = export(modelObj)

em =

 Model with properties:

 isAccelerated

2-393

 Name: 'lotka'
 ExportTime: '12-Dec-2012 15:20:13'
 ExportNotes: ''

Accelerate the exported model.

accelerate(em);
em.isAccelerated

ans =

 1

The logical value 1 indicates that the exported model is accelerated.

See Also
SimBiology.export.Model | accelerate | computer

Topics
“PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
“Deploy a SimBiology Exported Model”

2 Methods

2-394

KineticLaw object
Kinetic law information for reaction

Description
The kinetic law object holds information about the abstract kinetic law applied to a reaction and
provides a template for the reaction rate. In the model, the SimBiology software uses the information
you provide in a fully defined kinetic law object to determine the ReactionRate property in the
reaction object.

When you first create a kinetic law object, you must specify the name of the abstract kinetic law to
use. The SimBiology software fills in the KineticLawName property and the Expression property in
the kinetic law object with the name of the abstract kinetic law you specified and the mathematical
expression respectively. The software also fills in the ParameterVariables property and the
SpeciesVariables property of the kinetic law object with the values found in the corresponding
properties of the abstract kinetic law object.

To obtain the reaction rate, you must fully define the kinetic law object:

1 In the ParameterVariableNames property, specify the parameters from the model that you want
to substitute in the expression (Expression on page 3-70 property).

2 In the SpeciesVariableNames property, specify the species from the model that you want to
substitute in the expression.

The SimBiology software substitutes in the expression, the names of parameter variables and
species variables in the order specified in the ParameterVariables and SpeciesVariables
properties respectively.

The software then shows the substituted expression as the reaction rate in the ReactionRate
property of the reaction object. If the kinetic law object is not fully defined, the ReactionRate
property remains ' ' (empty).

For links to kinetic law object property reference pages, see “Property Summary” on page 2-398.

Properties define the characteristics of an object. Use the get and set commands to list object
properties and change their values at the command line. You can interactively change object
properties in the SimBiology Model Builder app.

For an explanation of how relevant properties relate to one another, see “Command Line” on page 2-
396.

The following sections use a kinetic law example to show how you can fully define your kinetic law
object to obtain the reaction rate in the SimBiology Model Builder app and at the command line.

The Henri-Michaelis-Menten kinetic law is expressed as follows:

Vm * S/(Km + S)

In the SimBiology software Henri-Michaelis-Menten is a built-in abstract kinetic law, where Vm
and Km are defined in the ParameterVariables property of the abstract kinetic law object, and S is
defined in the SpeciesVariables property of the abstract kinetic law object.

 KineticLaw object

2-395

SimBiology Model Builder app

To fully define a kinetic law in the app, define the names of the species variables and parameter
variables that participate in the reaction rate. For an example, see “Add and Configure Reactions”.

Command Line

To fully define the kinetic law object at the command line, define the names of the parameters in the
ParameterVariableNames property of the kinetic law object, and define the species names in the
SpeciesVariableNames property of the kinetic law object. For example, to apply the Henri-
Michaelis-Menten abstract kinetic law to a reaction

 A -> B
 where Vm = Va, Km = Ka
 and S = A

Define Va and Ka in the ParameterVariableNames property to substitute the variables that are in
the ParameterVariables property (Vm and Km). Define A in the SpeciesVariableName property
to be used to substitute the species variable in the SpeciesVariables property (S). Specify the
order of the model parameters to be used for substitution in the same order that the parameter
variables are listed in the ParameterVariables property. Similarly, specify species order if more
than one species variable is represented.

% Find the order of the parameter variables
% in the kinetic law expression.

get(kineticlawObj, 'ParameterVariables')

ans =

 'Vm' 'Km'

% Find the species variable in the
% kinetic law expression

get(kineticlawObj, 'SpeciesVariables')
ans =

 'S'

% Specify the parameters and species variables
% to be used in the substitution.
% Remember to specify order, for example Vm = Va
% Vm is listed first in 'ParameterVariables',
% therefore list Va first in 'ParameterVariableNames'.

set(kineticlawObj,'ParameterVariableNames', {'Va' 'Ka'});
set(kineticlawObj,'SpeciesVariableNames', {'A'});

The rate equation is assigned in the reaction object as follows:

Va*A/(Ka + A)

For a detailed procedure, see “Examples” on page 2-398.

The following table summarizes the relationships between the properties in the abstract kinetic law
object and the kinetic law object in the context of the above example.

2 Methods

2-396

Property Property Purpose Abstract Kinetic
Law Object

Kinetic Law Object

Name (abstract kinetic law
object)
KineticLawName (kinetic law
object)

Name of abstract kinetic
law applied to a reaction.
For example:

Henri-Michaelis
-Menten

Read-only for built-in
abstract kinetic law.
User-determined for
user-defined abstract
kinetic law.

Read-only

Expression Mathematical expression
used to determine the
reaction rate equation.

For example:

Vm * S/(Km + S)

Read-only for built-in
abstract kinetic law.
User-determined for
user-defined abstract
kinetic law.

Read-only; depends on
abstract kinetic law
applied to reaction.

ParameterVariables Variables in Expression
that are parameters. For
example:

Vm and Km

Read-only for built-in
abstract kinetic law.
User-determined for
user-defined abstract
kinetic law.

Read-only; depends on
abstract kinetic law
applied to reaction.

SpeciesVariables Variables in Expression
that are species. For
example:

S

Read-only for built-in
abstract kinetic law.
User-determined for
user-defined abstract
kinetic law.

Read-only; depends on
abstract kinetic law
applied to reaction.

ParameterVariableNames Variables in
ReactionRate that are
parameters. For example:

Va and Ka

Not applicable Define these variables
corresponding to
ParameterVariables.

SpeciesVariablesNames Variables in
ReactionRate that are
species. For example:

A

Not applicable Define these variables
corresponding to
SpeciesVariables.

Constructor Summary
addkineticlaw (reaction) Create kinetic law object and add to reaction object

 KineticLaw object

2-397

Method Summary

addparameter (model, kineticlaw)
Create parameter object and add to model or kinetic law object

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
getparameters (kineticlaw) Get specific parameters in kinetic law object
getspecies (kineticlaw) Get specific species in kinetic law object
rename Rename object and update expressions
reorder (model, compartment,
kinetic law)

Reorder component lists

set Set SimBiology object properties
setparameter (kineticlaw) Specify specific parameters in kinetic law object
setspecies (kineticlaw) Specify species in kinetic law object

Property Summary

Expression Expression to determine reaction rate equation or expression of
observable object

KineticLawName Name of kinetic law applied to reaction
Name Specify name of object
Notes HTML text describing SimBiology object
Parameters Array of parameter objects
ParameterVariableNames Cell array of reaction rate parameters
ParameterVariables Parameters in kinetic law definition
Parent Indicate parent object
SpeciesVariableNames Cell array of species in reaction rate equation
SpeciesVariables Species in abstract kinetic law
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

Examples
This example shows how to define the reaction rate for a reaction.

1 Create a model object, and add a reaction object to the model.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'A -> B');

2 Define a kinetic law for the reaction object.

2 Methods

2-398

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Query the parameters and species variables defined in the kinetic law.

get(kineticlawObj, 'ParameterVariables')

ans =

 'Vm' 'Km'

get(kineticlawObj, 'SpeciesVariables')
ans =

 'S'
4 Define Va and Ka as ParameterVariableNames, which correspond to the

ParameterVariables Vm and Km. To set these variables, first create the parameter variables as
parameter objects (parameterObj1, parameterObj2) with the names Va and Ka, and then
add them to kineticlawObj. The species object with Name A is created when reactionObj is
created and need not be redefined.

parameterObj1 = addparameter(kineticlawObj, 'Va');
parameterObj2 = addparameter(kineticlawObj, 'Ka');

5 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Va' 'Ka'});
set(kineticlawObj,'SpeciesVariableNames', {'A'});

6 Verify that the reaction rate is expressed correctly in the reaction object ReactionRate
property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Va*A/(Ka+A)

See Also
AbstractKineticLaw object, Configset object, Model object, Parameter object,
Reaction object, Root object, Rule object, Species object

SimBiology property Expression(AbstractKineticLaw, KineticLaw)

Introduced in R2006b

 KineticLaw object

2-399

LeastSquaresResults object
Package: SimBiology.fit

Results object containing estimation results from least-squares regression

Description
The LeastSquaresResults object is a superclass of two results objects: NLINResults object
and OptimResults object. These objects contain estimation results from fitting a SimBiology
model to data using sbiofit with any supported algorithm.

If sbiofit uses the nlinfit estimation algorithm, the results object is the NLINResults object. If
sbiofit uses any other supporting algorithm, then the results object is an OptimResults object.
See the sbiofit function for the list of supported algorithms.

Method Summary
boxplot Create box plot showing the variation of estimated SimBiology model

parameters
fitted Return simulation results of SimBiology model fitted using least-squares

regression
plot Compare simulation results to the training data, creating a time-course

subplot for each group
plotActualVersusPredicted Compare predictions to actual data, creating a subplot for each response
plotResiduals Plot residuals for each response, using time, group, or prediction as x-

axis
plotResidualDistribution Plot the distribution of the residuals
predict Simulate and evaluate fitted SimBiology model
random Simulate SimBiology model, adding variations by sampling error model
summary Return structure array that contains estimated values and fit quality

statistics

Property Summary
GroupName Categorical variable representing the name of the group

associated with the results, or [] if the 'Pooled' name-value
pair argument was set to true when you ran sbiofit.

2 Methods

2-400

Beta Table of estimated parameters where the jth row represents the
jth estimated parameter βj. It contains transformed values of
parameter estimates if any parameter transform is specified.

Standard errors of these parameter estimates (StandardError)
are calculated as: sqrt(diag(COVB)).

It can also contain the following variables:

• Bounds — the values of transformed parameter bounds that
you specified during fitting

• CategoryVariableName — the names of categories or
groups that you specified during fitting

• CategoryValue — the values of category variables specified
by CategoryVariableName

This table contains one row per distinct parameter value.
ParameterEstimates Table of estimated parameters where the jth row represents the

jth estimated parameter βj. This table contains untransformed
values of parameter estimates.

Standard errors of these parameter estimates (StandardError)
are calculated as: sqrt(diag(CovarianceMatrix)).

It can also contain the following variables:

• Bounds — the values of parameter bounds that you specified
during fitting

• CategoryVariableName — the names of categories or
groups that you specified during fitting

• CategoryValue — the values of category variables specified
by CategoryVariableName

This table contains sets of parameter values that are identified for
each individual or group.

J Jacobian matrix of the model, with respect to an estimated
parameter, that is,

J(i, j, k) =
∂yk
∂β j ti

where ti is the ith time point, βj is the jth estimated parameter in
the transformed space, and yk is the kth response in the group of
data.

COVB Estimated covariance matrix for Beta, which is calculated as:
COVB = inv(J'*J)*MSE.

 LeastSquaresResults object

2-401

CovarianceMatrix Estimated covariance matrix for ParameterEstimates, which is
calculated as: CovarianceMatrix = T'*COVB*T, where T =
diag(JInvT(Beta)).

JInvT(Beta) returns a Jacobian matrix of Beta which is inverse
transformed accordingly if you specified any transform to
estimated parameters.

For instance, suppose you specified the log-transform for an
estimated parameter x when you ran sbiofit. The inverse
transform is: InvT = exp(x), and its Jacobian is: JInvT =
exp(x) since the derivative of exp is also exp.

R Residuals matrix where Rij is the residual for the ith time point
and the jth response in the group of data.

LogLikelihood Maximized loglikelihood for the fitted model.
AIC Akaike Information Criterion (AIC), calculated as AIC = 2*(-

LogLikelihood + P), where P is the number of parameters.
BIC Bayes Information Criterion (BIC), calculated as BIC =

-2*LogLikelihood + P*log(N), where N is the number of
observations, and P is the number of parameters.

DFE Degrees of freedom for error, calculated as DFE = N-P, where N
is the number of observations and P is the number of parameters.

MSE Mean squared error.
SSE Sum of squared (weighted) errors or residuals.
Weights Matrix of weights with one column per response and one row per

observation.
EstimatedParameterNames Cell array of character vectors specifying estimated parameter

names.

2 Methods

2-402

ErrorModelInfo Table describing the error models and estimated error model
parameters.

• It has one row per error model.
• The ErrorModelInfo.Properties.RowsNames property
identifies which responses the row applies to.

• The table contains three variables: ErrorModel, a, and b. The
ErrorModel variable is categorical. The variables a and b can
be NaN when they do not apply to a particular error model.

There are four built-in error models. Each model defines the error
using a standard mean-zero and unit-variance (Gaussian) variable
e, the function value f, and one or two parameters a and b. In
SimBiology, the function f represents simulation results from a
SimBiology model.

• 'constant': y = f + ae
• 'proportional': y = f + b f e
• 'combined': y = f + (a + b f)e
• 'exponential': y = f ∗ exp(ae)

EstimationFunction Name of the estimation function.
DependentFiles File names to include for deployment.

Note Loglikelihood, AIC, and BIC properties are empty for LeastSquaresResults objects that
were obtained before R2016a.

See Also
NLINResults object | OptimResults object | sbiofit | sbiofitmixed

Introduced in R2014a

 LeastSquaresResults object

2-403

Model object
Model and component information

Description
The SimBiology model object represents a model, which is a collection of interrelated reactions and
rules that transform, transport, and bind species. The model includes model components such as
compartments, reactions, parameters, rules, and events. Each of the components is represented as a
property of the model object. A model object also has a default configuration set object to define
simulation settings. You can also add more configuration set objects to a model object.

See “Property Summary” on page 2-406 for links to model property reference pages.

Properties define the characteristics of an object. Use the get and set commands to list object
properties and change their values at the command line. You can graphically change object properties
in the SimBiology desktop.

You can retrieve SimBiology model objects from the SimBiology root object. A SimBiology model
object has its Parent property set to the SimBiology root object. The root object contains a list of
model objects that are accessible from the MATLAB command line and from the SimBiology desktop.
Because both the command line and the desktop point to the same model object in the Root object,
any changes you make to the model at the command line are reflected in the desktop, and vice versa.

Constructor Summary
sbiomodel Construct model object

2 Methods

2-404

Method Summary

addcompartment (model,
compartment)

Create compartment object

addconfigset (model) Create configuration set object and add to model object
adddose (model) Add dose object to model
addevent (model) Add event object to model object
addobservable Add observable object to SimBiology model
addparameter (model, kineticlaw)

Create parameter object and add to model or kinetic law
object

addreaction (model) Create reaction object and add to model object
addrule (model) Create rule object and add to model object
addspecies (model, compartment)

Create species object and add to compartment object within
model object

addvariant (model) Add variant to model
copyobj Copy SimBiology object and its children
createSimFunction (model) Create SimFunction object
delete Delete SimBiology object
display Display summary of SimBiology object
export (model) Export SimBiology models for deployment and standalone

applications
findUnusedComponents (model) Find unused species, parameters, and compartments in a

model
get Get SimBiology object properties
getadjacencymatrix (model) Get adjacency matrix from model object
getconfigset (model) Get configuration set object from model object
getdose (model) Return SimBiology dose object
getequations Return system of equations for model object
getstoichmatrix (model) Get stoichiometry matrix from model object
getvariant (model) Get variant from model
removeconfigset (model) Remove configuration set from model
removedose (model) Remove dose object from model
removevariant (model) Remove variant from model
rename Rename object and update expressions
reorder (model, compartment, kinetic
law)

Reorder component lists

set Set SimBiology object properties
setactiveconfigset (model) Set active configuration set for model object
verify (model, variant) Validate and verify SimBiology model

 Model object

2-405

Property Summary
Compartments Array of compartments in model or compartment
Events Contain all event objects
Name Specify name of object
Notes HTML text describing SimBiology object
Observables Array of observable objects
Parameters Array of parameter objects
Parent Indicate parent object
Reactions Array of reaction objects
Rules Array of rules in model object
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

See Also
AbstractKineticLaw object, Configset object, KineticLaw object, Parameter object,
Reaction object, Root object, Rule object, Species object

Introduced in R2006b

2 Methods

2-406

move
Move SimBiology species or parameter object to new parent

Syntax
spObj = move(spObj,parentObj)
spObj = move(spObj,parentObj,conflictOption)

Description
spObj = move(spObj,parentObj) moves a SimBiology species or parameter object spObj to a
new parent SimBiology object parentObj. The function automatically updates the corresponding
expressions, observables, variants, and parameterized dose properties that reference spObj.
Expressions include reactions, kinetic laws, rules, and events.

spObj = move(spObj,parentObj,conflictOption) specifies how to handle naming conflicts if
parentObj is already the parent of another object with the same name as spObj.

Examples

Move SimBiology Species or Parameter Object to New Parent

Create a model with two compartments.

m = sbiomodel('cell');
c1 = addcompartment(m,'c1');
c2 = addcompartment(m,'c2');
B_c1 = addspecies(c1,'B');
B_c2 = addspecies(c2,'B');
p = addparameter(m,'k1',5);
r = addreaction(m,'c1.A + c1.B -> c2.B');
k = addkineticlaw(r,'MassAction');
k.ParameterVariableNames = 'k1';

The parameter is scoped to the model, which is the parent.

p.Parent

ans =
 SimBiology Model - cell

 Model Components:
 Compartments: 2
 Events: 0
 Parameters: 1
 Reactions: 1
 Rules: 0
 Species: 3
 Observables: 0

 move

2-407

Move the model-scoped parameter to the kinetic law.

p = move(p,k);

The parent is now the kinetic law object instead of the model object.

p.Parent

ans =
 SimBiology Kinetic Law Array

 Index: KineticLawName:
 1 MassAction

Move species B from compartment c1 to c2. c2 already has another species with the same name, so
use the 'force' option to resolve the naming conflict. The move function renames B to B_1.

B = move(B_c1,c2,'force')

B =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 c2 B_1 0

Input Arguments
spObj — SimBiology species or parameter
species object | parameter object

SimBiology species or parameter, specified as a species object or parameter object.

If spObj is a:

• Parameter object, parentObj must be a model, reaction, or kinetic law object.
• Species object, parentObj must be a compartment object.

If you move a parameter to a reaction, the reaction kinetic law is the new parent of the parameter.
The function creates an unknown kinetic law if the reaction does not already have a kinetic law.

parentObj — Parent object
model object | reaction object | kinetic law object | compartment object

Parent object, specified as a model object, reaction object, kinetic law object, or compartment object.

conflictOption — Method to resolve naming conflicts
'strict' (default) | 'force'

Method to resolve naming conflicts, specified as a character vector or string. Valid options are:

• 'strict' — The function throws an error if parentObj is already the parent of another object
with the same name as spObj.

• 'force' — The function changes the name of spObj by appending '_N', where N is the smallest
number such that the new name of spObj is unique among all objects parented to parentObj.

2 Methods

2-408

See Also
move | copyobj | Compartment | Species | Parameter | Model | Reaction | KineticLaw |
Observable

Introduced in R2020b

 move

2-409

move
Move SimBiology compartment object to new owner

Syntax
compObj = move(compObj,newOwner)

Description
compObj = move(compObj,newOwner) moves a SimBiology compartment object compObj to a
new owner newOwner.

Examples

Move SimBiology Compartment to New Owner

Create a model with two compartments.

m = sbiomodel('cell');
c1 = addcompartment(m,'c1');
c2 = addcompartment(m,'c2');
p = addparameter(m,'k1',5);
r = addreaction(m,'c1.A + c1.B -> c2.B');
k = addkineticlaw(r,'MassAction');
k.ParameterVariableNames = 'k1';

Move compartment c1 to c2.

c1 = move(c1,c2);

The owner of c1 is now c2.

c1.Owner

ans =
 SimBiology Compartment - c2

 Compartment Components:
 Value: 1
 Units:
 Compartments: 1
 Constant: true
 Owner:
 Species: 1

Input Arguments
compObj — SimBiology compartment
compartment object

2 Methods

2-410

SimBiology compartment, specified as a compartment object.

newOwner — New owner object
model object | compartment object

New owner object, specified as a model object or compartment object.

See Also
copyobj | move | Compartment | Species | Parameter | Model | Reaction | KineticLaw |
Observable

Introduced in R2020b

 move

2-411

SimBiology.gsa.MPGSA
Object containing multiparametric global sensitivity analysis (MPGSA) results

Description
The SimBiology.gsa.MPGSA object contains multiparametric global sensitivity analysis [1] results
returned by sbiompgsa.

Creation
Create a SimBiology.gsa.MPGSA object using sbiompgsa.

Properties
Classifiers — Expressions of model responses
cell array of character vectors

This property is read-only.

Expressions of model responses, specified as a cell array of character vectors.
Data Types: cell

KolmogorovSmirnovStatistics — Kolmogorov-Smirnov statistics
table

This property is read-only.

Kolmogorov-Smirnov statistics, specified as a table. The table size is [params,classifiers], where
params is the number of input parameters and classifiers is the number of classifiers. Entry [i,j]
contains the Kolmogorov-Smirnov statistic returned by kstest2 comparing the two eCDFs of the ith
parameter accepted and rejected by the jth classifier. If all samples are accepted or rejected by the
classifier, entry [i,j] is set to NaN.

The VariableNames property contains the classifier expressions specified as the input to
sbiompgsa. Long expressions are truncated with the addition of '(classifier i)', where i is the
classifier index. The VariableDescriptions property contains the untruncated classifier
expressions.
Data Types: table

ECDFData — Computed eCDF data
cell array of numeric vectors

This property is read-only.

Computed eCDF data, specified as a cell array of numeric vectors. The size of the array is
[params,4,classifiers], where params is the number of input parameters and classifiers is the
number of classifiers.

2 Methods

2-412

Cells [i,1:2,j] contain the “f” (Statistics and Machine Learning Toolbox) and “x” (Statistics and
Machine Learning Toolbox) outputs from the ecdf function for the samples of parameter i accepted
by the classifier j.

Cells [i,3:4,j] contain the corresponding outputs for the samples of parameter i rejected by the
classifier j.

If the classifier accepts all samples or rejects all samples, the corresponding eCDF data is empty.
Data Types: cell

SignificanceLevel — Significance level of two-sided Kolmogorov-Smirnov test
0.05 (default) | scalar value in the range (0,1)

This property is read-only.

Significance level of the two-sided Kolmogorov-Smirnov test, specified as a scalar value in the range
(0,1). For details, see kstest2 .
Data Types: double

PValues — Asymptotic p-values
table

This property is read-only.

Asymptotic p-values for the Kolmogorov-Smirnov tests, specified as a table. The table size is
[params,classifiers], where params is the number of input parameters and classifiers is the number of
classifiers.

Entry [i,j] contains the p-values returned by kstest2 comparing the two eCDFs of the ith
parameter being accepted and rejected by the jth classifier. If all samples are accepted or rejected by
the classifier, entry [i,j] is set to NaN.

The VariableNames property contains the classifier expressions specified as the input to
sbiompgsa. Long expressions are truncated with the addition of '(classifier i)', where i is the
classifier index. The VariableDescriptions property contains the untruncated classifier
expressions.
Data Types: table

SupportHypothesis — Flags indicating if samples are accepted by classifiers
table

This property is read-only.

Flags indicating if the samples are accepted by the classifiers, specified as a table. The table size is
[NumberSamples,classifiers], where NumberSamples is the number of parameter samples and
classifiers is the number of classifiers.

The VariableNames property contains the classifier expressions specified as the input to
sbiompgsa. Long expressions are truncated with the addition of '(classifier i)', where i is the
classifier index. The VariableDescriptions property contains the untruncated classifier
expressions.
Data Types: table

 SimBiology.gsa.MPGSA

2-413

Observables — Names of model responses or observables
cell array of character vectors

This property is read-only.

Names of model responses or observables, specified as a cell array of character vectors.
Data Types: char

ParameterSamples — Sampled parameter values
table

This property is read-only.

Sampled parameter values, specified as a table. Each row represents one parameter set and each
column represents one input parameter. For details, see “Multiparametric Global Sensitivity Analysis
(MPGSA)” on page 2-420.
Data Types: table

SimulationInfo — Simulation information used for multiparametric global sensitivity
analysis
structure

This property is read-only.

Simulation information, such as simulation data and parameter samples, used for multiparametric
global sensitivity analysis, specified as a structure. The structure contains the following fields.

• SimFunction — SimFunction object used for simulating model responses or observables.
• SimData — SimData array of size [NumberSamples,1], where “NumberSamples” on page 1-

0 is the number of samples. The array contains simulation results from ParameterSamples.
• OutputTimes — Numeric column vector containing the common time vector of all SimData

objects.
• Bounds — Numeric matrix of size [params,2]. params is the number of input parameters. The
first column contains the lower bounds and the second column contains the upper bounds for
sensitivity inputs.

This field is set to [] if you provided parameter sample values as input when you called
sbiompgsa.

• DoseTables — Cell array of dose tables used for the SimFunction evaluation. DoseTables is
the output of getTable(doseInput), where doseInput is the value specified for the 'Doses'
name-value pair argument in the call to sbiosobol, sbiompgsa, or sbioelementaryeffects.
If no doses are applied, this field is set to [].

• ValidSample — Logical vector of size [NumberSamples,1] indicating whether a simulation for
a particular sample failed. Resampling of the simulation data (SimData) can result in NaN values if
the data is extrapolated. Such SimData are indicated as invalid.

• InterpolationMethod — Name of the interpolation method for SimData.
• SamplingMethod — Name of the sampling method used to draw ParameterSamples. When you

call sbiompgsa with samples (sampled model quantities) as the input, this field of the
corresponding results object is set to 'unknown'.

2 Methods

2-414

• RandomState — Structure containing the state of rng before drawing ParameterSamples.
When you call sbiompgsa with samples (parameter sample values) as an input, this property of
the corresponding results object is [].

Data Types: struct

Object Functions
plotData Plot quantile summary of model simulations from global sensitivity analysis (requires

Statistics and Machine Learning Toolbox)
plot Plot empirical CDF of multiparametric global sensitivity analysis
bar Create bar plot of multiparametric global sensitivity analysis statistics
histogram Plot histogram of multiparametric global sensitivity analysis results

Examples

Perform Multiparametric Global Sensitivity Analysis (MPGSA)

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Get the active configset and set the target occupancy (TO) as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Simulate the model and plot the TO profile.

sbioplot(sbiosimulate(m1,cs));

 SimBiology.gsa.MPGSA

2-415

Define an exposure (area under the curve of the TO profile) threshold for the target occupancy.

classifier = 'trapz(time,TO) <= 0.1';

Perform MPGSA to find sensitive parameters with respect to the TO. Vary the parameter values
between predefined bounds to generate 10,000 parameter samples.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
rng(0,'twister'); % For reproducibility
params = {'kel','ksyn','kdeg','km'};
bounds = [0.1, 1;
 0.1, 1;
 0.1, 1;
 0.1, 1];
mpgsaResults = sbiompgsa(m1,params,classifier,Bounds=bounds,NumberSamples=10000)

mpgsaResults =
 MPGSA with properties:

 Classifiers: {'trapz(time,TO) <= 0.1'}
 KolmogorovSmirnovStatistics: [4x1 table]
 ECDFData: {4x4 cell}
 SignificanceLevel: 0.0500
 PValues: [4x1 table]
 SupportHypothesis: [10000x1 table]
 ParameterSamples: [10000x4 table]
 Observables: {'TO'}

2 Methods

2-416

 SimulationInfo: [1x1 struct]

Plot the quantiles of the simulated model response.

plotData(mpgsaResults,ShowMedian=true,ShowMean=false);

Plot the empirical cumulative distribution functions (eCDFs) of the accepted and rejected samples.
Except for km, none of the parameters shows a significant difference in the eCDFs for the accepted
and rejected samples. The km plot shows a large Kolmogorov-Smirnov (K-S) distance between the
eCDFs of the accepted and rejected samples. The K-S distance is the maximum absolute distance
between two eCDFs curves.

h = plot(mpgsaResults);
% Resize the figure.
pos = h.Position(:);
h.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

 SimBiology.gsa.MPGSA

2-417

To compute the K-S distance between the two eCDFs, SimBiology uses a two-sided test based on the
null hypothesis that the two distributions of accepted and rejected samples are equal. See kstest2
(Statistics and Machine Learning Toolbox) for details. If the K-S distance is large, then the two
distributions are different, meaning that the classification of the samples is sensitive to variations in
the input parameter. On the other hand, if the K-S distance is small, then variations in the input
parameter do not affect the classification of samples. The results suggest that the classification is
insensitive to the input parameter. To assess the significance of the K-S statistic rejecting the null-
hypothesis, you can examine the p-values.

bar(mpgsaResults)

2 Methods

2-418

The bar plot shows two bars for each parameter: one for the K-S distance (K-S statistic) and another
for the corresponding p-value. You reject the null hypothesis if the p-value is less than the
significance level. A cross (x) is shown for any p-value that is almost 0. You can see the exact p-value
corresponding to each parameter.

[mpgsaResults.ParameterSamples.Properties.VariableNames',mpgsaResults.PValues]

ans=4×2 table
 Var1 trapz(time,TO) <= 0.1
 ________ _____________________

 {'kel' } 0.0021877
 {'ksyn'} 1
 {'kdeg'} 0.99983
 {'km' } 0

The p-values of km and kel are less than the significance level (0.05), supporting the alternative
hypothesis that the accepted and rejected samples come from different distributions. In other words,
the classification of the samples is sensitive to km and kel but not to other parameters (kdeg and
ksyn).

You can also plot the histograms of accepted and rejected samples. The historgrams let you see
trends in the accepted and rejected samples. In this example, the histogram of km shows that there
are more accepted samples for larger km values, while the kel histogram shows that there are fewer
rejected samples as kel increases.

 SimBiology.gsa.MPGSA

2-419

h2 = histogram(mpgsaResults);
% Resize the figure.
pos = h2.Position(:);
h2.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

Restore the warning settings.

warning(warnSettings);

More About
Multiparametric Global Sensitivity Analysis (MPGSA)

Multiparametric global sensitivity analysis lets you study the relative importance of parameters with
respect to a classifier defined by model responses. A classifier is an expression of model responses
that evaluates to a logical vector. sbiompgsa implements the MPSA method described by Tiemann
et. al. (see supporting information text S2) [1].

sbiompgsa performs the following steps.

2 Methods

2-420

1 Generate N parameter samples using a sampling method. sbiompgsa stores these samples as a
table in a property, mpgsaResults.ParameterSamples, of the returned object. The number of
rows is equal to the number of samples and the number of columns is equal to the number of
input parameters.

Tip You can specify N and the sampling method using the 'NumberSamples' and
'SamplingMethod' name-value pair arguments, respectively, when you call sbiompgsa.

2 Calculate the model response by simulating the model for each parameter set, which is a single
realization of the model parameter values. In this case, a parameter set is equal to a row in the
ParameterSamples table.

3 Evaluate the classifier. A classifier is an expression that evaluates to a logical vector. For
instance, if your model response is the AUC of plasma drug concentration, you can define a
classifier with a toxicity threshold of 0.8 where the AUC of the drug concentration above that
threshold is considered toxic.

4 Parameter sets are then separated into two different groups, such as accepted (nontoxic) and
rejected (toxic) groups.

5 For each input parameter, compute the empirical cumulative distribution functions (ecdf) of
accepted and rejected sample values.

6 Compare the two eCDFs of accepted and rejected groups using the “Two-Sample Kolmogorov-
Smirnov Test” (Statistics and Machine Learning Toolbox) to compute the Kolmogorov-Smirnov
distance. The default significance level of the Kolmogorov-Smirnov test is 0.05. If two eCDFs are
similar, the distance is small, meaning the model response is not sensitive with respect to the
input parameter. If two eCDFs are different, the distance is large, meaning the model response is
sensitive to the parameter.

Note The Kolmogorov-Smirnov test assumes that the samples follow a continuous distribution.
Make sure that the eCDF plots are continuous as you increase the number of samples. If eCDFs
are not continuous but step-like in the limit of infinite samples, then the results might not reflect
the true sensitivities.

References
[1] Tiemann, Christian A., Joep Vanlier, Maaike H. Oosterveer, Albert K. Groen, Peter A. J. Hilbers, and

Natal A. W. van Riel. “Parameter Trajectory Analysis to Identify Treatment Effects of
Pharmacological Interventions.” Edited by Scott Markel. PLoS Computational Biology 9, no. 8
(August 1, 2013): e1003166. https://doi.org/10.1371/journal.pcbi.1003166.

See Also
sbiosobol | sbiompgsa | kstest2 | ecdf | Observable

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2020a

 SimBiology.gsa.MPGSA

2-421

NLINResults object
Estimation results object, subclass of LeastSquaresResults

Description
The NLINResults object contains estimation results from fitting a SimBiology model to data using
sbiofit with nlinfit as a choice of estimation algorithm. See the sbiofit function for a list of
other supported algorithms.

Method Summary
The NLINResults object shares all methods of the LeastSquaresResults object.

Property Summary
The NLINResults object shares all properties of the LeastSquaresResults object .

See Also
LeastSquaresResults object | OptimResults object | sbiofit | sbiofitmixed

Introduced in R2014a

2 Methods

2-422

NLMEResults object
Results object containing estimation results from nonlinear mixed-effects modeling

Description
The NLMEResults object contains estimation results from fitting a nonlinear mixed-effects model
using sbiofitmixed.

Method Summary

boxplot(NLMEResults) Create box plot showing the variation of estimated
SimBiology model parameters

covariateModel(NLMEResults) Return a copy of the covariate model that was used for
the nonlinear mixed-effects estimation using
sbiofitmixed

fitted(NLMEResults) Return the simulation results of a fitted nonlinear mixed-
effects model

plot(NLMEResults) Compare simulation results to the training data, creating
a time-course subplot for each group

plotActualVersusPredicted(NLMEResults)
Compare predictions to actual data, creating a subplot for
each response

plotResiduals(NLMEResults) Plot the residuals for each response, using the time,
group, or prediction as the x-axis

plotResidualDistribution(NLMEResults)
Plot the distribution of the residuals

predict(NLMEResults) Simulate and evaluate fitted SimBiology model
random(NLMEResults) Simulate a SimBiology model, adding variations by

sampling the error model

Property Summary
FixedEffects Table of the estimated fixed effects and their standard errors.
RandomEffects Table of the estimated random effects for each group.
IndividualParameterEstima
tes

Table of estimated parameter values, including fixed and random
effects.

PopulationParameterEstima
tes

Table of estimated parameter values, including only fixed effects.

RandomEffectCovarianceMat
rix

Table of the covariance matrix of the random effects.

stats Struct of statistics returned by the nlmefit and nlmefitsa
algorithm.

 NLMEResults object

2-423

CovariateNames Cell array of character vectors specifying covariate names.
EstimatedParameterNames Cell array of character vectors specifying estimated parameter

names.
ErrorModelInfo Table describing the error models and estimated error model

parameters.

The table has one row with three variables: ErrorModel, a, and
b. The ErrorModel variable is categorical. The variables a and b
can be NaN when they do not apply to a particular error model.

There are four built-in error models. Each model defines the error
using a standard mean-zero and unit-variance (Gaussian) variable
e, the function value f, and one or two parameters a and b. In
SimBiology, the function f represents simulation results from a
SimBiology model.

• 'constant': y = f + ae
• 'proportional': y = f + b f e
• 'combined': y = f + (a + b f)e
• 'exponential': y = f ∗ exp(ae)

EstimationFunction Name of the estimation function which must be either 'nlmefit'
or 'nlmefitsa'.

LogLikelihood Maximized loglikelihood for the fitted model.
AIC Akaike Information Criterion (AIC), calculated as AIC = 2*(-

LogLikelihood + P), where P is the number of parameters.
For details, see nlmefit.

BIC Bayes Information Criterion (BIC), calculated as BIC =
-2*LogLikelihood + P*log(N), where N is the number of
observations or groups, and P is the number of parameters. For
details, see nlmefit.

DFE Degrees of freedom for error, calculated as DFE = N-P, where N
is the number of observations and P is the number of parameters.

Note If you are using the nlmefitsa method, Loglikelihood, AIC, and BIC properties are empty
by default. To calculate these values, specify the 'LogLikMethod' option of nlmefitsa when you
run sbiofitmixed as follows.

opt.LogLikMethod = 'is';
fitResults = sbiofitmixed(...,'nlmefitsa',opt);

See Also
sbiofitmixed | sbiofit | nlmefit | nlmefitsa

Introduced in R2014a

2 Methods

2-424

Observable
Object containing expression for post-simulation calculations

Description
An observable object is a mathematical expression that lets you perform post-simulation calculations.
For example, you can define an observable expression to compute the fraction of a ligand that is
bound to a receptor at each time step, or compute some statistics such as area under the curve (AUC)
of a drug concentration profile. You can also use an observable object as a response in simulation,
data fitting, and global sensitivity analysis.

The name of each observable object in a SimBiology model must be unique, meaning no observable
object can have the same name as another observable, species, compartment, parameter, reaction,
variant, or dose in the model. An observable object can reference any model quantities that are
logged (in StatesToLog). It can also reference other active observable objects provided that the
expressions contain no algebraic loops. The object expression can reference simulation time using the
variable time. Follow the recommended guidelines for expression evaluations. For instance, if a
quantity name is not a valid MATLAB variable name, enclose the name in brackets [] when referring
to it in an expression.

SimBiology evaluates the object expression using the entire time course of any referenced states or
observables. The result of an observable expression must be a numeric scalar or vector. If it is a
vector, it must be of the same length as the simulation time vector. The result is stored in the
returned SimData object. Specifically, if the observable expression is scalar-valued, the result is
stored in the SimData.ScalarObservables property. Otherwise, it is stored in
SimData.VectorObservables.

Note

• Make sure to correctly vectorize the expressions. For example, use A./(A+B) instead of A/(A+B)
if A and B are matrices.

• Avoid hardcoding expressions that expect any particular number of points or times. For example,
instead of using time(1:1000), use time(1:min(1000,numel(time))).

Creation
Create an observable object using addobservable.

Properties
Expression — Mathematical expression
character vector

Mathematical expression of the observable object, specified as a character vector.
Example: 'x.^2'

 Observable

2-425

Data Types: char

Units — Units of observable results
'' (default) | character vector

Units of the observable expression results, specified as a character vector.
Example: 'gram'
Data Types: char

Active — Flag indicating whether to evaluate observable expression
true (default) | false

Flag indicating whether to evaluate the observable expression after model simulation, specified as
true or false.
Example: false
Data Types: logical

Name — Object name
character vector

Object name, specified as a character vector.
Example: 'AUC'
Data Types: char

Parent — Parent object
model object (default)

This property is read-only.

Parent object of the observable object, specified as a model object.

Notes — Description of object
'' (default) | character vector

Description of the object, specified as a character vector.
Example: 'Drug AUC'
Data Types: char

Tag — Object label
'' (default) | character vector

Object label, specified as a character vector.
Example: 'area under the curve'
Data Types: char

Type — Object type
'observable' (default)

This property is read-only.

2 Methods

2-426

Object type, specified as 'observable'.
Data Types: char

UserData — Data to associate with object
[] (default) | any supported data type

Data to associate with the object, specified as any supported MATLAB data type.

Object Functions
copyobj Copy SimBiology object and its children
findUsages Find out how observable object is used in SimBiology model
get Get SimBiology object properties
set Set SimBiology object properties
delete Delete SimBiology object
display Display summary of SimBiology object
rename Rename object and update expressions

Examples

Calculate Statistics After Model Simulation Using Observables

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Set the target occupancy (TO) as a response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Get the dosing information.

d = getdose(m1,'Daily Dose');

Scan over different dose amounts using a SimBiology.Scenarios object. To do so, first
parameterize the Amount property of the dose. Then vary the corresponding parameter value using
the Scenarios object.

amountParam = addparameter(m1,'AmountParam','Units',d.AmountUnits);
d.Amount = 'AmountParam';
d.Active = 1;
doseSamples = SimBiology.Scenarios('AmountParam',linspace(0,300,31));

Create a SimFunction to simulate the model. Set TO as the simulation output.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:SimFunction:DOSES_NOT_EMPTY');
f = createSimFunction(m1,doseSamples,'TO',d)

f =
SimFunction

Parameters:

 Observable

2-427

 Name Value Type Units
 _______________ _____ _____________ ____________

 {'AmountParam'} 1 {'parameter'} {'nanomole'}

Observables:

 Name Type Units
 ______ _____________ _________________

 {'TO'} {'parameter'} {'dimensionless'}

Dosed:

 TargetName TargetDimension Amount AmountValue AmountUnits
 _______________ ___________________________________ _______________ ___________ ____________

 {'Plasma.Drug'} {'Amount (e.g., mole or molecule)'} {'AmountParam'} 1 {'nanomole'}

TimeUnits: day

warning('on','SimBiology:SimFunction:DOSES_NOT_EMPTY');

Simulate the model using the dose amounts generated by the Scenarios object. In this case, the
object generates 31 different doses; hence the model is simulated 31 times and generates a SimData
array.

doseTable = getTable(d);
sd = f(doseSamples,cs.StopTime,doseTable)

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 0

Plot the simulation results. Also add two reference lines that represent the safety and efficacy
thresholds for TO. In this example, suppose that any TO value above 0.85 is unsafe, and any TO value
below 0.15 has no efficacy.

h = sbioplot(sd);
time = sd(1).Time;
h.NextPlot = 'add';
safetyThreshold = plot(h,[min(time), max(time)],[0.85, 0.85],'DisplayName','Safety Threshold');
efficacyThreshold = plot(h,[min(time), max(time)],[0.15, 0.15],'DisplayName','Efficacy Threshold');

2 Methods

2-428

Postprocess the simulation results. Find out which dose amounts are effective, corresponding to the
TO responses within the safety and efficacy thresholds. To do so, add an observable expression to the
simulation data.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
newSD = addobservable(sd,'stat1','max(TO) < 0.85 & min(TO) > 0.15','Units','dimensionless')

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 1

The addobservable function evaluates the new observable expression for each SimData in sd and
returns the evaluated results as a new SimData array, newSD, which now has the added observable
(stat1).

SimBiology stores the observable results in two different properties of a SimData object. If the
results are scalar-valued, they are stored in SimData.ScalarObservables. Otherwise, they are

 Observable

2-429

stored in SimData.VectorObservables. In this example, the stat1 observable expression is
scalar-valued.

Extract the scalar observable values and plot them against the dose amounts.

scalarObs = vertcat(newSD.ScalarObservables);
doseAmounts = generate(doseSamples);
figure
plot(doseAmounts.AmountParam,scalarObs.stat1,'o','MarkerFaceColor','b')

The plot shows that dose amounts ranging from 50 to 180 nanomoles provide TO responses that lie
within the target efficacy and safety thresholds.

You can update the observable expression with different threshold amounts. The function recalculates
the expression and returns the results in a new SimData object array.

newSD2 = updateobservable(newSD,'stat1','max(TO) < 0.75 & min(TO) > 0.30');

Rename the observable expression. The function renames the observable, updates any expressions
that reference the renamed observable (if applicable), and returns the results in a new SimData
object array.

newSD3 = renameobservable(newSD2,'stat1','EffectiveDose');

Restore the warning settings.

warning('on','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');

2 Methods

2-430

See Also
addobservable(model) | addobservable(SimData) | updateobservable(SimData) |
renameobservable(SimData)

Introduced in R2020a

 Observable

2-431

OptimResults object
Estimation results object, subclass of LeastSquaresResults

Description
The OptimResults object contains estimation results from fitting a SimBiology model to data using
the sbiofit function with any supported algorithm except nlinfit. See the sbiofit function for a
list of supported algorithms.

Method Summary
The OptimResults object shares all methods of the LeastSquaresResults object.

Property Summary
The OptimResults object shares all properties of the LeastSquaresResults object and has the
following additional properties.

ExitFlag An exit flag specific to the estimation function.
Output A struct of additional outputs specific to the estimation function.

Note See the reference page of the specific algorithm to get more information on the values of
ExitFlag and the Output structure.

See Also
LeastSquaresResults object | NLINResults object | sbiofit | sbiofitmixed

Introduced in R2014a

2 Methods

2-432

Parameter object
Parameter and scope information

Description
The parameter object represents a parameter, which is a quantity that can change or can be
constant. SimBiology parameters are generally used to define rate constants. You can add parameter
objects to a model object or a kinetic law object. The scope of a parameter depends on where you add
the parameter object: If you add the parameter object to a model object, the parameter is available to
all reactions in the model and the Parent property of the parameter object is SimBiology.Model. If
you add the parameter object to a kinetic law object, the parameter is available only to the reaction
for which you are using the kinetic law object and the Parent property of the parameter object is
SimBiology.KineticLaw.

See “Property Summary” on page 2-434 for links to parameter object property reference pages.

Properties define the characteristics of an object. Use the get and set commands to list object
properties and change their values at the command line. You can graphically change object properties
in the graphical user interface.

Constructor Summary
addparameter (model, kineticlaw)

Create parameter object and add to model or kinetic law object

Method Summary
copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
findUsages Find out how a species, parameter, or compartment is used in a model
get Get SimBiology object properties
move Move SimBiology species or parameter object to new parent
rename Rename object and update expressions
set Set SimBiology object properties

 Parameter object

2-433

Property Summary
Constant Specify variable or constant species amount, parameter value, or compartment

capacity
ConstantValue Specify variable or constant parameter value
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Tag Specify label for SimBiology object
Type Display SimBiology object type
Units Units for species amount, parameter value, compartment capacity, observable

expression
UserData Specify data to associate with object
Value Value of species, compartment, or parameter object
ValueUnits Parameter value units

See Also
AbstractKineticLaw object, Configset object, KineticLaw object, Model object,
Reaction object, Root object, Rule object, Species object

Introduced in R2006b

2 Methods

2-434

PKCompartment object
Used by PKModelDesign to create SimBiology model

Description
The PKCompartment object is used by the PKModelDesign object to construct a SimBiology model
for pharmacokinetic modeling. PKCompartment holds the following information:

• Name of the compartment
• Dosing type
• Elimination type
• Whether the drug concentration in this compartment is reported

The PKCompartment class is a subclass of the hgsetget class which is a subclass of the handle
class. For more information on the inherited methods, see hgsetget, and handle.

Construction

addCompartment (PKModelDesign) Add compartment to PKModelDesign object

Method Summary

delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
set Set SimBiology object properties

Property Summary

DosingType Drug dosing type in compartment
EliminationType Drug elimination type from compartment
HasLag Lag associated with dose targeting compartment
HasResponseVariable Compartment drug concentration reported
Name Specify name of object

See Also
“Create Pharmacokinetic Models” in the SimBiology User's Guide, PKModelDesign object

Introduced in R2009a

 PKCompartment object

2-435

PKData object
Define roles of data set columns

Note PKData object will be removed in a future release. Use groupedData object instead.

Description
The properties of the PKData object specify what each column in the data represents. The PKData
object specifies which columns in the data set represent the following:

• The grouping variable
• The independent and dependent variables
• The dose
• The rate (only if infusion is the dosing type)
• The covariates

This information is used by the fitting functions, sbionlmefit and sbionlinfit.

To create the PKData object specify:

pkDataObject = PKData(data);

Where data is the imported data set.

The PKData class is a subclass of the hgsetget class, which is a subclass of the handle class. For
more information on the inherited methods, see hgsetget and handle.

Construction
PKData Create PKData object

Method Summary
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
getCovariateData (pkdata) Create design matrix needed for fit
set Set SimBiology object properties

2 Methods

2-436

Property Summary
CovariateLabels Identify covariate columns in data set
DataSet Dataset object containing imported data
DependentVarLabel Identify dependent variable column in data set
DependentVarUnits Response units in PKData object
DoseLabel Dose column in data set
DoseUnits Dose units in PKData object
GroupID Integer identifying each group in data set
GroupLabel Identify group column in data set
GroupNames Unique values from GroupLabel in data set
IndependentVarLabel Identify independent variable column in data set
IndependentVarUnits Time units in PKData object
RateUnits Units for dose rate
RateLabel Rate of infusion column in data set

See Also
PKModelDesign object

Introduced in R2009a

 PKData object

2-437

PKModelDesign object
Helper object to construct pharmacokinetic model

Description
Use the PKModelDesign object to construct a SimBiology model for PK modeling. The
PKModelDesign object lets you specify the number of compartments, the type of dosing, and method
of elimination which you then use to construct the SimBiology model object with the necessary
compartments, species, reactions, rules, and events.

pkm = PKModelDesign;

Use the addCompartment method to add a compartment with a specified dosing and elimination.
addCompartment adds each subsequent compartment and connects it to the previous compartment
using a reversible reaction. This reaction models the flux between compartments in a PK model.

The construct method uses the PKModelDesign object to create a SimBiology model object.

The PKModelDesign class is a subclass of the hgsetget class, which is a subclass of the handle
class. For more information on the inherited methods see hgsetget and handle.

Construction
PKModelDesign Create PKModelDesign object

Method Summary

addCompartment (PKModelDesign) Add compartment to PKModelDesign object
construct (PKModelDesign) Construct SimBiology model from PKModelDesign object
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
set Set SimBiology object properties

Property Summary

PKCompartments Hold compartments in PK model

See Also
“Create Pharmacokinetic Models” in the SimBiology User's Guide, PKCompartment object

Introduced in R2009a

2 Methods

2-438

PKModelMap object
Define SimBiology model components’ roles

Note PKModelMap object will be removed in a future release. Use a combination of
EstimatedInfo object, CovariateModel object, cell array of character vectors, and
sbiodose. See sbiofit and sbiofitmixed for illustrated examples.

Description
The PKModelMap object holds information about the dosing type, and defines which components of a
SimBiology model represent the observed response, the dose, and the estimated parameters.

The PKModelMap class is a subclass of the hgsetget class which is a subclass of the handle class.
For more information on the inherited methods see, hgsetget, and handle.

Construction
PKModelMap Create PKModelMap object

Method Summary

delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
set Set SimBiology object properties

Property Summary

Dosed Dosed object name
DosingType Drug dosing type in compartment
Estimated Names of parameters to estimate
LagParameter Parameter specifying time lag for doses
Observed Measured response object name
ZeroOrderDurationParameter Zero-order dose absorption duration

See Also
PKModelDesign object

Introduced in R2009a

 PKModelMap object

2-439

plot
Compare simulation results to the training data, creating a time-course subplot for each group

Syntax
plot(resultsObj)
plot(resultsObj,Name,Value)

Description
plot(resultsObj) displays a figure showing the comparison between simulation results to the
training data, with a time-course subplot for each group.

plot(resultsObj,Name,Value) uses additional options specified by one or more name-value
arguments.

Examples

Estimate Two-Compartment PK Parameters

Load the sample data set.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];

Create a two-compartment PK model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,"Central");
pkc1.DosingType = "Infusion";
pkc1.EliminationType = "linear-clearance";
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,"Peripheral");
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;
responseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];

Provide model parameters to estimate.

paramsToEstimate = ["log(Central)","log(Peripheral)","Q12","Cl_Central"];
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg
at a rate of 50 mg/hour.

dose = sbiodose("dose","TargetName","Drug_Central");
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;

2 Methods

2-440

dose.AmountUnits = "milligram";
dose.TimeUnits = "hour";
dose.RateUnits = "milligram/hour";

Estimate model parameters. By default, the function estimates a set of parameter for each individual
(unpooled fit).

fitResults = sbiofit(model,gData,responseMap,estimatedParam,dose);

Plot the results.

plot(fitResults);

Plot all groups in one plot.

plot(fitResults,"PlotStyle","one axes");

 plot

2-441

Change some axes properties.

s = struct;
s.Properties.XGrid = "on";
s.Properties.YGrid = "on";
plot(fitResults,"PlotStyle","one axes","AxesStyle",s);

2 Methods

2-442

Compare the model predictions to the actual data.

plotActualVersusPredicted(fitResults)

 plot

2-443

Use boxplot to show the variation of estimated model parameters.

boxplot(fitResults)

2 Methods

2-444

Plot the distribution of residuals. This normal probability plot shows the deviation from normality and
the skewness on the right tail of the distribution of residuals. The default (constant) error model
might not be the correct assumption for the data being fitted.

plotResidualDistribution(fitResults)

 plot

2-445

Plot residuals for each response using the model predictions on x-axis.

plotResiduals(fitResults,"Predictions")

2 Methods

2-446

Get the summary of the fit results. stats.Name contains the name for each table from
stats.Table, which contains a list of tables with estimated parameter values and fit quality
statistics.

stats = summary(fitResults);
stats.Name

ans =
'Unpooled Parameter Estimates'

ans =
'Statistics'

ans =
'Unpooled Beta'

ans =
'Residuals'

ans =
'Covariance Matrix'

ans =
'Error Model'

stats.Table

 plot

2-447

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 1.422 0.12334 1.5619 0.36355 0.47163 0.15196 0.5291 0.036978
 {'2'} 1.8322 0.019672 5.3364 0.65327 0.2764 0.030799 0.86035 0.026257
 {'3'} 1.6657 0.038529 5.5632 0.37063 0.78361 0.058657 1.0233 0.027311

ans=3×7 table
 Group AIC BIC LogLikelihood DFE MSE SSE
 _____ _______ _______ _____________ ___ ________ _______

 {'1'} 60.961 64.051 -26.48 12 2.138 25.656
 {'2'} -7.8379 -4.7475 7.9189 12 0.029012 0.34814
 {'3'} -1.4336 1.6567 4.7168 12 0.043292 0.5195

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 0.35208 0.086736 0.44589 0.23277 0.47163 0.15196 0.5291 0.036978
 {'2'} 0.60551 0.010737 1.6746 0.12242 0.2764 0.030799 0.86035 0.026257
 {'3'} 0.51027 0.02313 1.7162 0.066621 0.78361 0.058657 1.0233 0.027311

ans=24×4 table
 ID Time CentralConc PeripheralConc
 __ ____ ___________ ______________

 1 0 0 0
 1 1 0.10646 -0.74394
 1 4 1.3745 1.2726
 1 8 -0.68825 -4.2435
 1 12 0.67383 0.21806
 1 18 0.88823 1.0269
 1 24 0.48941 0.66755
 1 36 0.13632 0.22948
 2 0 0 0
 2 1 -0.026731 -0.058311
 2 4 -0.033299 -0.20544
 2 8 -0.20466 0.20696
 2 12 -0.12223 0.045409
 2 18 0.041224 0.33883
 2 24 -0.059498 0.0036257
 2 36 -0.051645 0.27616
 ⋮

ans=12×6 table
 Group Parameters log(Central) log(Peripheral) Q12 Cl_Central
 _____ ___________________ ____________ _______________ ___________ ___________

 {'1'} {'log(Central)' } 0.015213 -0.022539 -0.0086672 0.001159
 {'1'} {'log(Peripheral)'} -0.022539 0.13217 0.045746 -0.0073135
 {'1'} {'Q12' } -0.0086672 0.045746 0.023092 -0.0021484
 {'1'} {'Cl_Central' } 0.001159 -0.0073135 -0.0021484 0.0013674
 {'2'} {'log(Central)' } 0.00038701 -0.002161 -0.00010177 9.7448e-05

2 Methods

2-448

 {'2'} {'log(Peripheral)'} -0.002161 0.42676 0.019101 -0.015755
 {'2'} {'Q12' } -0.00010177 0.019101 0.00094857 -0.00073328
 {'2'} {'Cl_Central' } 9.7448e-05 -0.015755 -0.00073328 0.00068942
 {'3'} {'log(Central)' } 0.0014845 -0.0054648 -0.0013216 0.00016639
 {'3'} {'log(Peripheral)'} -0.0054648 0.13737 0.016903 -0.0072722
 {'3'} {'Q12' } -0.0013216 0.016903 0.0034406 -0.00082538
 {'3'} {'Cl_Central' } 0.00016639 -0.0072722 -0.00082538 0.00074587

ans=3×5 table
 Group Response ErrorModel a b
 _____ __________ ____________ _______ ___

 {'1'} {0x0 char} {'constant'} 1.2663 NaN
 {'2'} {0x0 char} {'constant'} 0.14751 NaN
 {'3'} {0x0 char} {'constant'} 0.18019 NaN

Input Arguments
resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object or NLINResults object, or vector of
results objects which contains estimation results from running sbiofit.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: plot(fitResults,'PlotStyle','one axes') specifies to plot data from each run into
one axes instead of plotting each run individually as a subplot.

ParameterType — Type of parameter estimates to plot
'individual' (default)

Type of parameter estimates to plot, specified as 'individual'. For LeastSquaresResults
objects, 'individual' is the only option indicating to use the individual parameter estimates to plot
the simulation results.
Data Types: char | string

PlotStyle — Plot style
'trellis' (default) | 'one axes'

Plot style, specified as 'trellis' or 'one axes'. By default, the function plots the data from each
run into its own subplot. To plot all data into one plot, use 'one axes'.
Data Types: char | string

AxesStyle — Axes properties
structure

 plot

2-449

Axes properties, specified as a structure. The structure (s) has the following field names and values
representing the axes properties.

Field Name Value
s.Labels.Title Character vector or string scalar.
s.Labels.XLabel Character vector or string scalar.
s.Labels.YLabel Character vector or string scalar.
s.Properties.XGrid 'off' (default) or 'on'
s.Properties.XScale 'linear' (default) or 'log'
s.Properties.XDir 'normal' (default) or 'reverse'
s.Properties.XLim Two-element vector of the form [min max]
s.Properties.YGrid 'off' (default) or 'on'
s.Properties.YScale 'linear' (default) or 'log'
s.Properties.YDir 'normal' (default) or 'reverse'
s.Properties.YLim Two-element vector of the form [min max]

Data Types: structure

See Also
NLINResults object | OptimResults object | sbiofit

Introduced in R2014a

2 Methods

2-450

plot(NLMEResults)
Compare simulation results to the training data, creating a time-course subplot for each group

Syntax
plot(resultsObj)
plot(resultsObj,'ParameterType',value)

Description
plot(resultsObj) compares simulation results to the training data, creating a time-course subplot
for each group.

plot(resultsObj,'ParameterType',value) uses the individual or population parameter
estimates as specified by value. The two choices for value are 'population' or 'individual'
(default).

Input Arguments
resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation results
returned by sbiofitmixed.

value — Parameter type
character vector | string

Parameter type, specified as a character vector or string which must be one of the following:
'individual' (default) or 'population'.

See Also
NLMEResults object | sbiofitmixed

Introduced in R2014a

 plot(NLMEResults)

2-451

plot
Package: SimBiology.fit

Plot parameter confidence interval results

Syntax
fh = plot(paraCI)
fh = plot(paraCI,Name,Value)

Description
fh = plot(paraCI) plots confidence intervals from paraCI, a ParameterConfidenceInterval
object or vector of objects.

• If the estimation status of a confidence interval (paraCI.Results.Status on page 2-0) is
success, the plot function uses the first default color (blue) to plot a line and a centered dot for
every parameter estimate. The function also plots a box to indicate the confidence intervals.

• If the status is constrained or estimable, the function uses the second default color (red) and
plots a line, centered dot, and box to indicate the confidence intervals.

• If the status is not estimable, the function plots only a line and a centered cross in red.
• If there are any transformed parameters with estimated values that are 0 (for the log transform)

and 0 or 1 (for the probit or logit transform), no confidence intervals are plotted for those
parameter estimates.

fh = plot(paraCI,Name,Value) uses additional options specified by one or more Name,Value
pair arguments.

Examples

Plot Confidence Intervals of Estimated PK Parameters

Load Data

Load the sample data to fit.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},'Marker','+',...
 'LineStyle','none');

2 Methods

2-452

Create Model

Create a two-compartment model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Define Dosing

Define the infusion dose.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';

 plot

2-453

Define Parameters

Define parameters to estimate.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};
paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,...
 'InitialValue',[1 1 1 1],...
 'Bounds',[0.1 3;0.1 10;0 10;0.1 2]);

Fit Model

Perform an unpooled fit, that is, one set of estimated parameters for each patient.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Perform a pooled fit, that is, one set of estimated parameters for all patients.

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Compute Confidence Intervals for Estimated Parameters

Compute 95% confidence intervals for each estimated parameter in the unpooled fit using the
Gaussian approximation.

ciParamUnpooled = sbioparameterci(unpooledFit);

Plot the confidence intervals. If the estimation status of a confidence interval is success, it is plotted
in blue (the first default color). Otherwise, it is plotted in red (the second default color), which
indicates that further investigation into the fitted parameters might be required. If the confidence
interval is not estimable, then the function plots a red line and centered cross. If there are any
transformed parameters with estimated values that are 0 (for the log transform) and 1 or 0 (for the
probit or logit transform), then no confidence intervals are plotted for those parameter estimates. To
see the color order, type get(groot,'defaultAxesColorOrder').

Groups are displayed from left to right in the same order that they appear in the GroupNames
property of the object, which is used to label x-axis. The y-labels are the transformed parameter
names.

plot(ciParamUnpooled)

2 Methods

2-454

Plot using a single color.

plot(ciParamUnpooled,'Color',[0 0 0])

 plot

2-455

Compute the confidence intervals for the pooled fit.

ciParamPooled = sbioparameterci(pooledFit);

Plot the confidence intervals. The group name is labeled as "pooled" to indicate such fit.

plot(ciParamPooled)

2 Methods

2-456

Plot all the confidence interval results together. By default, the confidence interval for each
parameter estimate is plotted in a separate axes. Vertical dotted lines group confidence intervals of
parameter estimates that were computed in a common fit. Parameter bounds defined in the original
fit are marked by square brackets (if visible in the parameter range being plotted).

ciAll = [ciParamUnpooled;ciParamPooled];
plot(ciAll)

 plot

2-457

You can also plot all confidence intervals on one axes grouped by parameter estimates using the
'Grouped' layout.

plot(ciAll,'Layout','Grouped')

2 Methods

2-458

In this layout, you can point to the center marker of each confidence interval to see the group name.
Each estimated parameter is separated by a vertical black line. Vertical dotted lines group confidence
intervals of parameter estimates that were computed in a common fit. Parameter bounds defined in
the original fit are marked by square brackets (if visible in the parameter range being plotted). Note
the different scales on the y-axis due to parameter transformations. For instance, the y-axis of Q12 is
in the linear scale, but that of Central is in the log scale due to its log transform.

Compute Confidence Intervals Using Profile Likelihood

Compute 95% confidence intervals for each estimated parameter in the unpooled fit using the profile
likelihood approach.

ciParamUnpooledProf = sbioparameterci(unpooledFit,'Type','profilelikelihood');

Compute the confidence intervals for the pooled fit.

ciParamPooledProf = sbioparameterci(pooledFit,'Type','profilelikelihood');

Plot the profile likelihood curves for the unpooled fit. The parameter bounds defined in the original fit
are displayed by vertical dotted lines (if visible in the parameter range being plotted). The confidence
interval is indicated by two crosses and a line in between them. The center dot denotes the parameter
estimate. The profile likelihood is always plotted in the log scale. The x-axis scale depends on whether
the parameter is transformed (log, probit, or logit scale) or not (linear scale).

plot(ciParamUnpooledProf,'ProfileLikelihood',true);

 plot

2-459

Each group is plotted in a separate row, and each parameter is plotted in a separate column.

Plot the curves for the pooled fit.

plot(ciParamPooledProf,'ProfileLikelihood',true);

2 Methods

2-460

Plot all the confidence interval results together in the same figure.

plot([ciParamUnpooledProf;ciParamPooledProf],'ProfileLikelihood',true);

 plot

2-461

Input Arguments
paraCI — Parameter confidence interval results
ParameterConfidenceInterval object | vector

Parameter confidence interval results, specified as a ParameterConfidenceInterval object or a
vector of objects.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ProfileLikelihood',true specifies to plot the profile likelihood curves.

Color — Red-Green-Blue color triplet
three-element row vector

Red-Green-Blue color triplet, specified as the comma-separated pair consisting of 'Color' and a
three-element row vector. By default, confidence intervals that are not limited by the parameter
bounds specified in the original fit are plotted using the first default color (blue), and those that are
limited by the bounds are plotted using the second default color (red). If the confidence interval is not

2 Methods

2-462

estimable, it is also plotted in red. To see the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.

Tip Use this name-value pair when you want to create plots with a single color, for instance, for
publication purposes.

Example: 'Color',[0 0 0]

ProfileLikelihood — Logical scalar to display profile likelihood curves
false (default) | true

Logical scalar to display profile likelihood curves for the profileLikelihood confidence intervals,
specified as the comma-separated pair consisting of 'ProfileLikelihood' and true or false.

The confidence interval is indicated by two crosses with a line in between them. A center dot denotes
the parameter estimate. The plot function uses the first default color (blue) for successfully
computed confidence intervals. Otherwise, the function uses the second default color (red). A vertical
dotted line marks the parameter bounds defined in the original fit.

If there are multiple groups, each group is plotted in a separate row and each parameter is plotted in
a separate column. The labels for the x-axis are the transformed parameter names (the
TransformedName property of the estimatedInfo object used in the original fit). The labels for the
y-axis are the group names (the GroupNames property of the confidence interval object) and the
confidence level.

The profile likelihood curve is always plotted in the log scale. The x-axis scale depends on whether
the parameter is transformed (log, probit, or logit scale) or not (linear scale).
Example: 'ProfileLikelihood',true

Layout — Axes layout to display parameter confidence intervals
'split' (default) | 'grouped'

Axes layout to display parameter confidence intervals, specified as the comma-separated pair
consisting of 'Layout' and a character vector 'split' (default) or 'grouped'.

The 'split' layout displays the confidence interval for each parameter estimate on a separate axes.

The 'grouped' layout displays all confidence intervals on one axes grouped by parameter estimates.
Each estimated parameter is separated by a vertical black line.

In both cases, the parameter bounds defined in the original fit are marked by square brackets. The
function uses vertical dotted lines to group confidence intervals of parameter estimates that have
been computed in a common fit.
Example: 'Layout','grouped'

Output Arguments
fh — Figure handle
handle

Figure handle of the plot, returned as a figure handle.

 plot

2-463

See Also
ParameterConfidenceInterval | sbioparameterci

Introduced in R2017b

2 Methods

2-464

plot
Package: SimBiology.fit

Plot confidence interval results for model predictions

Syntax
fh = plot(predCI)

Description
fh = plot(predCI) plots confidence interval results from predCI, a
PredictionConfidenceInterval object or vector of objects.

The function plots the observation data points as black plus signs and the model predictions as solid
lines.

• If the status of confidence interval (predCI.Status on page 2-0) is constrained or not
estimable, the function uses the second default color (red) to plot the confidence intervals.

• Otherwise, the function uses the first default color (blue) and plots the confidence intervals as
shaded areas.

Examples

Plot Confidence Intervals of PK Model Predictions

Load Data

Load the sample data to fit.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},'Marker','+',...
 'LineStyle','none');

 plot

2-465

Create Model

Create a two-compartment model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Define Dosing

Define the infusion dose.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';

2 Methods

2-466

Define Parameters

Define parameters to estimate.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};
paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,...
 'InitialValue',[1 1 1 1],...
 'Bounds',[0.1 3;0.1 10;0 10;0.1 2]);

Fit Model

Perform an unpooled fit, that is, one set of estimated parameters for each patient.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Compute Confidence Intervals for Model Predictions

Compute 95% confidence intervals for predicted model responses in the unpooled fit using the
Gaussian approximation.

ciPredUnpooled = sbiopredictionci(unpooledFit);

Plot the confidence intervals. If the estimation status of a confidence interval is constrained or not
estimable, the function uses the second default color (red). Otherwise, the function uses the first
default color (blue). To see the color order, type get(groot,'defaultAxesColorOrder').

Each group is displayed in each column, from left to right, in the same order that they appear in the
GroupNames property of the object, which is used to label each column.

plot(ciPredUnpooled)

 plot

2-467

Plot using a single color (black).

plot(ciPredUnpooled,'Color',[0 0 0])

2 Methods

2-468

Input Arguments
predCI — Confidence interval results for model predictions
PredictionConfidenceInterval object | vector

Confidence interval results for model predictions, specified as a PredictionConfidenceInterval
object or a vector of objects.

If there are multiple groups, each group is displayed in each column, from left to right, in the same
order that they appear in the GroupNames property of the object. Each row represents a model
response.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Color',[0 0 0] specifies to plot using only the color black.

Color — Red-Green-Blue color triplet
three-element row vector

Red-Green-Blue color triplet, specified as the comma-separated pair consisting of 'Color' and a
three-element row vector. By default, confidence intervals that are not limited by parameter bounds

 plot

2-469

specified in the original fit are plotted using the first default color (blue), and those that are limited
by the bounds are plotted using the second default color (red). If the confidence interval is not
estimable, it is also plotted in red. To see the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.

Tip Use this name-value pair when you want to create plots with a single color, for instance, for
publication purposes.

Example: 'Color',[0 0 0]

Output Arguments
fh — Figure handle
handle

Figure handle of the plot, returned as a figure handle.

See Also
PredictionConfidenceInterval | sbiopredictionci | ParameterConfidenceInterval |
sbioparameterci

Introduced in R2017b

2 Methods

2-470

plot
Plot empirical CDF of multiparametric global sensitivity analysis

Syntax
h = plot(mpgsaObj)
h = plot(mpgsaObj,Name,Value)

Description
h = plot(mpgsaObj) plots the empirical CDFs (ecdf) of multiparametric global sensitivity analysis
(MPGSA) and returns the figure handle h.

h = plot(mpgsaObj,Name,Value) uses additional options specified by one or more name-value
pair arguments.

Examples

Perform Multiparametric Global Sensitivity Analysis (MPGSA)

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Get the active configset and set the target occupancy (TO) as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Simulate the model and plot the TO profile.

sbioplot(sbiosimulate(m1,cs));

 plot

2-471

Define an exposure (area under the curve of the TO profile) threshold for the target occupancy.

classifier = 'trapz(time,TO) <= 0.1';

Perform MPGSA to find sensitive parameters with respect to the TO. Vary the parameter values
between predefined bounds to generate 10,000 parameter samples.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
rng(0,'twister'); % For reproducibility
params = {'kel','ksyn','kdeg','km'};
bounds = [0.1, 1;
 0.1, 1;
 0.1, 1;
 0.1, 1];
mpgsaResults = sbiompgsa(m1,params,classifier,Bounds=bounds,NumberSamples=10000)

mpgsaResults =
 MPGSA with properties:

 Classifiers: {'trapz(time,TO) <= 0.1'}
 KolmogorovSmirnovStatistics: [4x1 table]
 ECDFData: {4x4 cell}
 SignificanceLevel: 0.0500
 PValues: [4x1 table]
 SupportHypothesis: [10000x1 table]
 ParameterSamples: [10000x4 table]
 Observables: {'TO'}

2 Methods

2-472

 SimulationInfo: [1x1 struct]

Plot the quantiles of the simulated model response.

plotData(mpgsaResults,ShowMedian=true,ShowMean=false);

Plot the empirical cumulative distribution functions (eCDFs) of the accepted and rejected samples.
Except for km, none of the parameters shows a significant difference in the eCDFs for the accepted
and rejected samples. The km plot shows a large Kolmogorov-Smirnov (K-S) distance between the
eCDFs of the accepted and rejected samples. The K-S distance is the maximum absolute distance
between two eCDFs curves.

h = plot(mpgsaResults);
% Resize the figure.
pos = h.Position(:);
h.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

 plot

2-473

To compute the K-S distance between the two eCDFs, SimBiology uses a two-sided test based on the
null hypothesis that the two distributions of accepted and rejected samples are equal. See kstest2
(Statistics and Machine Learning Toolbox) for details. If the K-S distance is large, then the two
distributions are different, meaning that the classification of the samples is sensitive to variations in
the input parameter. On the other hand, if the K-S distance is small, then variations in the input
parameter do not affect the classification of samples. The results suggest that the classification is
insensitive to the input parameter. To assess the significance of the K-S statistic rejecting the null-
hypothesis, you can examine the p-values.

bar(mpgsaResults)

2 Methods

2-474

The bar plot shows two bars for each parameter: one for the K-S distance (K-S statistic) and another
for the corresponding p-value. You reject the null hypothesis if the p-value is less than the
significance level. A cross (x) is shown for any p-value that is almost 0. You can see the exact p-value
corresponding to each parameter.

[mpgsaResults.ParameterSamples.Properties.VariableNames',mpgsaResults.PValues]

ans=4×2 table
 Var1 trapz(time,TO) <= 0.1
 ________ _____________________

 {'kel' } 0.0021877
 {'ksyn'} 1
 {'kdeg'} 0.99983
 {'km' } 0

The p-values of km and kel are less than the significance level (0.05), supporting the alternative
hypothesis that the accepted and rejected samples come from different distributions. In other words,
the classification of the samples is sensitive to km and kel but not to other parameters (kdeg and
ksyn).

You can also plot the histograms of accepted and rejected samples. The historgrams let you see
trends in the accepted and rejected samples. In this example, the histogram of km shows that there
are more accepted samples for larger km values, while the kel histogram shows that there are fewer
rejected samples as kel increases.

 plot

2-475

h2 = histogram(mpgsaResults);
% Resize the figure.
pos = h2.Position(:);
h2.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

Restore the warning settings.

warning(warnSettings);

Input Arguments
mpgsaObj — Multiparametric global sensitivity analysis results
SimBiology.gsa.MPGSA object

Multiparametric global sensitivity analysis results, specified as a SimBiology.gsa.MPGSA object.

2 Methods

2-476

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: h = plot(results,'Classifiers',1) specifies to plot eCDFs of the first classifier.

Parameters — Input model quantities to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Input model quantities, namely parameters, species, or compartments, to plot, specified as the
comma-separated pair consisting of 'Parameters' and a character vector, string, string vector, cell
array of character vectors, or a vector of positive integers indexing into the columns of the
mpgsaObj.ParameterSamples table.
Example: 'Parameters','k1'
Data Types: double | char | string | cell

Classifiers — Classifiers to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Classifiers to plot, specified as the comma-separated pair consisting of 'Classifiers' and a
character vector, string, string vector, cell array of character vectors, or a vector of positive integers.

Specify the expressions of classifiers to plot as a character vector, string, string vector, cell array of
character vectors. Alternatively, you can specify a vector of positive integers indexing into
mpgsaObj.Classifiers.
Example: 'Classifiers',[1 3]
Data Types: double | char | string | cell

AcceptedSamplesColor — Color of eCDFs of accepted samples
three-element row vector

Color of eCDFs of accepted samples, specified as the comma-separated pair consisting of
'AcceptedSamplesColor' and a three-element row vector. By default, the function uses the first
MATLAB default color. To view the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Example: 'AcceptedSamplesColor',[0.4,0.3,0.2]
Data Types: double

RejectedSamplesColor — Color of eCDFs of rejected samples
three-element row vector

Color of eCDFs of rejected samples, specified as the comma-separated pair consisting of
'RejectedSamplesColor' and a three-element row vector. By default, the function uses the second
MATLAB default color for the first order and the second default color for the total order. To view the
default color order, enter get(groot,'defaultAxesColorOrder') or see the “ColorOrder”
property.
Example: 'RejectedSamplesColor',[0.9,0.5,0.2]

 plot

2-477

Data Types: double

Output Arguments
h — Handle
figure handle

Handle to the figure, specified as a figure handle.

References
[1] Tiemann, Christian A., Joep Vanlier, Maaike H. Oosterveer, Albert K. Groen, Peter A. J. Hilbers, and

Natal A. W. van Riel. “Parameter Trajectory Analysis to Identify Treatment Effects of
Pharmacological Interventions.” Edited by Scott Markel. PLoS Computational Biology 9, no. 8
(August 1, 2013): e1003166. https://doi.org/10.1371/journal.pcbi.1003166.

See Also
SimBiology.gsa.MPGSA | sbiompgsa | plotData | bar | histogram | kstest2 | ecdf

Introduced in R2020a

2 Methods

2-478

plot
Plot means and standard deviations of elementary effects

Syntax
h = plot(eeObj)
h = plot(eeObj,Name=Value)

Description
h = plot(eeObj) plots the means and standard deviations of elementary effects and returns the
figure handle h. When eeObj contains multiple sensitivity inputs and outputs, the function displays a
subplot where the columns are the sensitivity outputs and rows are the sensitivity inputs.

h = plot(eeObj,Name=Value) uses additional options specified by one or more name-value
arguments.

Examples

Perform GSA by Computing Elementary Effects

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

 plot

2-479

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, define model parameters of interest, which are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1'};
outputName = 'tumor_weight';

Then perform GSA by computing the elementary effects using sbioelementaryeffects. Use 100
as the number of samples and set ShowWaitBar to true to show the simulation progress.

rng('default');
eeResults = sbioelementaryeffects(m1,modelParamNames,outputName,Variants=v,Doses=d,NumberSamples=100,ShowWaitbar=true);

Show the median model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(eeResults,ShowMedian=true,ShowMean=false);

2 Methods

2-480

You can adjust the quantile region to a different percentage by specifying Alphas for the lower and
upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100*alpha and 100*(1-alpha) quantiles of all simulated model responses.

plotData(eeResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

 plot

2-481

Plot the time course of the means and standard deviations of the elementary effects.

h = plot(eeResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

2 Methods

2-482

The mean of effects explains whether variations in input parameter values have any effect on the
tumor weight response. The standard deviation of effects explains whether the sensitivity change is
dependent on the location in the parameter domain.

From the mean of effects plots, parameters L1 and w0 seem to be the most sensitive parameters to
the tumor weight before the dose is applied at t = 7. But, after the dose is applied, k1 and L0 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
plots of standard deviation of effects show more deviations for the larger parameter values in the
later stage (t > 35) than for the before-dose stage of the tumor growth.

You can also display the magnitudes of the sensitivities in a bar plot. Each color shading represents a
histogram representing values at different times. Darker colors mean that those values occur more
often over the whole time course.

bar(eeResults);

 plot

2-483

You can also plot the parameter grids and samples used to compute the elementary effects.

plotGrid(eeResults)

2 Methods

2-484

You can specify more samples to increase the accuracy of the elementary effects, but the simulation
can take longer to finish. Use addsamples to add more samples.

eeResults2 = addsamples(eeResults,200);

The SimulationInfo property of the result object contains various information for computing the
elementary effects. For instance, the model simulation data (SimData) for each simulation using a set
of parameter samples is stored in the SimData field of the property. This field is an array of SimData
objects.

eeResults2.SimulationInfo.SimData

 SimBiology SimData Array : 1500-by-1

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 1500 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(eeResults2.SimulationInfo.ValidSample)

 plot

2-485

ans = logical
 1

You can add custom expressions as observables and compute the elementary effects of the added
observables. For example, you can compute the effects for the maximum tumor weight by defining a
custom expression as follows.

% Suppress an information warning that is issued.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
eeObs = addobservable(eeResults2,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(eeObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1500 800];

You can also remove the observable by specifying its name.

eeNoObs = removeobservable(eeObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Input Arguments
eeObj — Results containing means and standard deviations of elementary effects
SimBiology.gsa.ElementaryEffects object

2 Methods

2-486

Results containing the means and standard deviations of elementary effects, specified as a
SimBiology.gsa.ElementaryEffects object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: h = plot(results,'Observables','tumor_weight') specifies to plot the mean and
standard deviation of elementary effects corresponding to the tumor weight response.

Parameters — Input parameters to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Input parameters to plot, specified as a character vector, string, string vector, cell array of character
vectors, or vector of positive integers indexing into the columns of the
resultsObject.ParameterSamples table. Use this name-value argument to select parameters
and plot their corresponding GSA results. By default, all input parameters are included in the plot.
Data Types: double | char | string | cell

Observables — Model responses or observables to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Model responses or observables to plot, specified as a character vector, string, string vector, cell
array of character vectors, or vector of positive integers indexing into
resultsObject.Observables. By default, the function plots GSA results for all model responses or
observables.
Data Types: double | char | string | cell

ShowMean — Flag to plot means of elementary effects
true (default) | false

Flag to plot the means of elementary effects, specified as true or false.
Data Types: logical

ShowStandardDeviation — Flag to plot standard deviations of elementary effects
true (default) | false

Flag to plot the standard deviations of elementary effects, specified as true or false.
Data Types: logical

MeanColor — Color of means of elementary effects
three-element row vector

Color of the means of elementary effects, specified as a three-element row vector. By default, the
function uses the first MATLAB default color. To view the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Data Types: double

StandardDeviationColor — Color of standard deviation of elementary effects
three-element row vector

 plot

2-487

Color of the standard deviation of elementary effects, specified as a three-element row vector. By
default, the function uses the second MATLAB default color. To view the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Data Types: double

Output Arguments
h — Handle
figure handle

Handle to the figure, specified as a figure handle.

See Also
SimBiology.gsa.Sobol | SimBiology.gsa.ElementaryEffects | sbioelementaryeffects

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2021b

2 Methods

2-488

plot
Plot first- and total-order Sobol indices and variances

Syntax
h = plot(sobolObj)
h = plot(sobolObj,Name,Value)

Description
h = plot(sobolObj) plots the variance decomposition in the form of the first- and total-order
Sobol indices and returns the figure handle h.

h = plot(sobolObj,Name,Value) uses additional options specified by one or more name-value
pair arguments.

Examples

Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with the estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

 plot

2-489

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, retrieve model parameters of interest that are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1','k2'};
outputName = 'tumor_weight';

Then perform GSA by computing the first- and total-order Sobol indices using sbiosobol. Set
'ShowWaitBar' to true to show the simulation progress. By default, the function uses 1000
parameter samples to compute the Sobol indices [1].

rng('default');
sobolResults = sbiosobol(m1,modelParamNames,outputName,Variants=v,Doses=d,ShowWaitBar=true)

sobolResults =
 Sobol with properties:

 Time: [444x1 double]
 SobolIndices: [5x1 struct]
 Variance: [444x1 table]
 ParameterSamples: [1000x5 table]
 Observables: {'[Tumor Growth Model].tumor_weight'}
 SimulationInfo: [1x1 struct]

2 Methods

2-490

You can change the number of samples by specifying the 'NumberSamples' name-value pair
argument. The function requires a total of (number of input parameters + 2) *
NumberSamples model simulations.

Show the mean model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(sobolResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying 'Alphas' for the lower
and upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100 * alpha and 100 * (1 - alpha) quantiles of all simulated model responses.

plotData(sobolResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

 plot

2-491

Plot the time course of the first- and total-order Sobol indices.

h = plot(sobolResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

2 Methods

2-492

The first-order Sobol index of an input parameter gives the fraction of the overall response variance
that can be attributed to variations in the input parameter alone. The total-order index gives the
fraction of the overall response variance that can be attributed to any joint parameter variations that
include variations of the input parameter.

From the Sobol indices plots, parameters L1 and w0 seem to be the most sensitive parameters to the
tumor weight before the dose was applied at t = 7. But after the dose is applied, k1 and k2 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
total variance plot also shows a larger variance for the after-dose stage at t > 35 than for the before-
dose stage of the tumor growth, indicating that k1 and k2 might be more important parameters to
investigate further. The fraction of unexplained variance shows some variance at around t = 33, but
the total variance plot shows little variance at t = 33, meaning the unexplained variance could be
insignificant. The fraction of unexplained variance is calculated as 1 - (sum of all the first-order Sobol
indices), and the total variance is calculated using var(response), where response is the model
response at every time point.

You can also display the magnitudes of the sensitivities in a bar plot. Darker colors mean that those
values occur more often over the whole time course.

bar(sobolResults);

 plot

2-493

You can specify more samples to increase the accuracy of the Sobol indices, but the simulation can
take longer to finish. Use addsamples to add more samples. For example, if you specify 1500
samples, the function performs 1500 * (2 + number of input parameters) simulations.

gsaMoreSamples = addsamples(gsaResults,1500)

The “SimulationInfo” on page 2-0 property of the result object contains various information for
computing the Sobol indices. For instance, the model simulation data (SimData) for each simulation
using a set of parameter samples is stored in the SimData field of the property. This field is an array
of SimData objects.

sobolResults.SimulationInfo.SimData

 SimBiology SimData Array : 1000-by-7

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 7000 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(sobolResults.SimulationInfo.ValidSample)

2 Methods

2-494

ans = 1x7 logical array

 1 1 1 1 1 1 1

SimulationInfo.ValidSample is a table of logical values. It has the same size as
SimulationInfo.SimData. If ValidSample indicates that any simulations failed, you can get more
information about those simulation runs and the samples used for those runs by extracting
information from the corresponding column of SimulationInfo.SimData. Suppose that the fourth
column contains one or more failed simulation runs. Get the simulation data and sample values used
for that simulation using getSimulationResults.

[samplesUsed,sd,validruns] = getSimulationResults(sobolResults,4);

You can add custom expressions as observables and compute Sobol indices for the added observables.
For example, you can compute the Sobol indices for the maximum tumor weight by defining a custom
expression as follows.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
sobolObs = addobservable(sobolResults,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(sobolObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1280 800];

 plot

2-495

You can also remove the observable by specifying its name.

gsaNoObs = removeobservable(sobolObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Input Arguments
sobolObj — Results containing Sobol indices
SimBiology.gsa.Sobol object

Results containing the first- and total-order Sobol indices, specified as a SimBiology.gsa.Sobol
object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: h = plot(results,'Observables','tumor_weight') specifies to plot Sobol indices
corresponding to the tumor weight response.

Parameters — Input parameters to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Input parameters to plot, specified as a character vector, string, string vector, cell array of character
vectors, or vector of positive integers indexing into the columns of the
resultsObject.ParameterSamples table. Use this name-value argument to select parameters
and plot their corresponding GSA results. By default, all input parameters are included in the plot.
Data Types: double | char | string | cell

Observables — Model responses or observables to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Model responses or observables to plot, specified as a character vector, string, string vector, cell
array of character vectors, or vector of positive integers indexing into
resultsObject.Observables. By default, the function plots GSA results for all model responses or
observables.
Data Types: double | char | string | cell

Color — Color of first- and total-order Sobol indices
three-element row vector

Color of the first- and total-order Sobol indices, specified as the comma-separated pair consisting of
'Color' and a three-element row vector. By default, the function uses the first MATLAB default color
for the first order and the second default color for the total order. To view the default color order,
enter get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Example: 'Color',[0.4,0.3,0.2]

2 Methods

2-496

Data Types: double

VarianceColor — Color of total and unexplained variances
[0,0,0] (default) | three-element row vector

Color of the total and unexplained variances, specified as the comma-separated pair consisting of
'VarianceColor' and a three-element row vector. By default, the function uses the color black
[0,0,0].
Example: 'VarianceColor',[0.2,0.5,0.8]
Data Types: double

DelimiterColor — Color of delimiting lines
[0,0,0] (default) | three-element row vector

Color of the delimiting lines, specified as a comma-separated pair consisting of 'DelimiterColor'
and a three-element row vector. By default, the function uses the color black [0,0,0].
Example: 'DelimiterColor',[0.2,0.5,0.8]
Data Types: double

Output Arguments
h — Handle
figure handle

Handle to the figure, specified as a figure handle.

References
[1] Saltelli, Andrea, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano

Tarantola. “Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the
Total Sensitivity Index.” Computer Physics Communications 181, no. 2 (February 2010): 259–
70. https://doi.org/10.1016/j.cpc.2009.09.018.

See Also
SimBiology.gsa.Sobol | sbiosobol | plotData | bar

Introduced in R2020a

 plot

2-497

plotActualVersusPredicted
Compare predictions to actual data, creating a subplot for each response

Syntax
plotActualVersusPredicted(resultsObj)

Description
plotActualVersusPredicted(resultsObj) shows the comparison between predictions to the
actual data, with a subplot for each response.

Examples

Estimate Two-Compartment PK Parameters

Load the sample data set.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];

Create a two-compartment PK model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,"Central");
pkc1.DosingType = "Infusion";
pkc1.EliminationType = "linear-clearance";
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,"Peripheral");
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;
responseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];

Provide model parameters to estimate.

paramsToEstimate = ["log(Central)","log(Peripheral)","Q12","Cl_Central"];
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg
at a rate of 50 mg/hour.

dose = sbiodose("dose","TargetName","Drug_Central");
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = "milligram";
dose.TimeUnits = "hour";
dose.RateUnits = "milligram/hour";

2 Methods

2-498

Estimate model parameters. By default, the function estimates a set of parameter for each individual
(unpooled fit).

fitResults = sbiofit(model,gData,responseMap,estimatedParam,dose);

Plot the results.

plot(fitResults);

Plot all groups in one plot.

plot(fitResults,"PlotStyle","one axes");

 plotActualVersusPredicted

2-499

Change some axes properties.

s = struct;
s.Properties.XGrid = "on";
s.Properties.YGrid = "on";
plot(fitResults,"PlotStyle","one axes","AxesStyle",s);

2 Methods

2-500

Compare the model predictions to the actual data.

plotActualVersusPredicted(fitResults)

 plotActualVersusPredicted

2-501

Use boxplot to show the variation of estimated model parameters.

boxplot(fitResults)

2 Methods

2-502

Plot the distribution of residuals. This normal probability plot shows the deviation from normality and
the skewness on the right tail of the distribution of residuals. The default (constant) error model
might not be the correct assumption for the data being fitted.

plotResidualDistribution(fitResults)

 plotActualVersusPredicted

2-503

Plot residuals for each response using the model predictions on x-axis.

plotResiduals(fitResults,"Predictions")

2 Methods

2-504

Get the summary of the fit results. stats.Name contains the name for each table from
stats.Table, which contains a list of tables with estimated parameter values and fit quality
statistics.

stats = summary(fitResults);
stats.Name

ans =
'Unpooled Parameter Estimates'

ans =
'Statistics'

ans =
'Unpooled Beta'

ans =
'Residuals'

ans =
'Covariance Matrix'

ans =
'Error Model'

stats.Table

 plotActualVersusPredicted

2-505

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 1.422 0.12334 1.5619 0.36355 0.47163 0.15196 0.5291 0.036978
 {'2'} 1.8322 0.019672 5.3364 0.65327 0.2764 0.030799 0.86035 0.026257
 {'3'} 1.6657 0.038529 5.5632 0.37063 0.78361 0.058657 1.0233 0.027311

ans=3×7 table
 Group AIC BIC LogLikelihood DFE MSE SSE
 _____ _______ _______ _____________ ___ ________ _______

 {'1'} 60.961 64.051 -26.48 12 2.138 25.656
 {'2'} -7.8379 -4.7475 7.9189 12 0.029012 0.34814
 {'3'} -1.4336 1.6567 4.7168 12 0.043292 0.5195

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 0.35208 0.086736 0.44589 0.23277 0.47163 0.15196 0.5291 0.036978
 {'2'} 0.60551 0.010737 1.6746 0.12242 0.2764 0.030799 0.86035 0.026257
 {'3'} 0.51027 0.02313 1.7162 0.066621 0.78361 0.058657 1.0233 0.027311

ans=24×4 table
 ID Time CentralConc PeripheralConc
 __ ____ ___________ ______________

 1 0 0 0
 1 1 0.10646 -0.74394
 1 4 1.3745 1.2726
 1 8 -0.68825 -4.2435
 1 12 0.67383 0.21806
 1 18 0.88823 1.0269
 1 24 0.48941 0.66755
 1 36 0.13632 0.22948
 2 0 0 0
 2 1 -0.026731 -0.058311
 2 4 -0.033299 -0.20544
 2 8 -0.20466 0.20696
 2 12 -0.12223 0.045409
 2 18 0.041224 0.33883
 2 24 -0.059498 0.0036257
 2 36 -0.051645 0.27616
 ⋮

ans=12×6 table
 Group Parameters log(Central) log(Peripheral) Q12 Cl_Central
 _____ ___________________ ____________ _______________ ___________ ___________

 {'1'} {'log(Central)' } 0.015213 -0.022539 -0.0086672 0.001159
 {'1'} {'log(Peripheral)'} -0.022539 0.13217 0.045746 -0.0073135
 {'1'} {'Q12' } -0.0086672 0.045746 0.023092 -0.0021484
 {'1'} {'Cl_Central' } 0.001159 -0.0073135 -0.0021484 0.0013674
 {'2'} {'log(Central)' } 0.00038701 -0.002161 -0.00010177 9.7448e-05

2 Methods

2-506

 {'2'} {'log(Peripheral)'} -0.002161 0.42676 0.019101 -0.015755
 {'2'} {'Q12' } -0.00010177 0.019101 0.00094857 -0.00073328
 {'2'} {'Cl_Central' } 9.7448e-05 -0.015755 -0.00073328 0.00068942
 {'3'} {'log(Central)' } 0.0014845 -0.0054648 -0.0013216 0.00016639
 {'3'} {'log(Peripheral)'} -0.0054648 0.13737 0.016903 -0.0072722
 {'3'} {'Q12' } -0.0013216 0.016903 0.0034406 -0.00082538
 {'3'} {'Cl_Central' } 0.00016639 -0.0072722 -0.00082538 0.00074587

ans=3×5 table
 Group Response ErrorModel a b
 _____ __________ ____________ _______ ___

 {'1'} {0x0 char} {'constant'} 1.2663 NaN
 {'2'} {0x0 char} {'constant'} 0.14751 NaN
 {'3'} {0x0 char} {'constant'} 0.18019 NaN

Input Arguments
resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object or NLINResults object, or vector of
results objects which contains estimation results from running sbiofit.

See Also
NLINResults object | OptimResults object | sbiofit

Introduced in R2014a

 plotActualVersusPredicted

2-507

plotActualVersusPredicted(NLMEResults)
Compare predictions to actual data, creating a subplot for each response

Syntax
plotActualVersusPredicted(resultsObj)

Description
plotActualVersusPredicted(resultsObj) returns a figure displaying the comparison between
predictions to the actual data, with a subplot for each response.

Input Arguments
resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation results
returned by sbiofitmixed.

See Also
NLMEResults object | sbiofitmixed

Introduced in R2014a

2 Methods

2-508

plotData
Plot quantile summary of model simulations from global sensitivity analysis (requires Statistics and
Machine Learning Toolbox)

Syntax
h = plotData(resultsObj)
h = plotData(resultsObj,Name,Value)

Description
h = plotData(resultsObj) plots quantiles and model responses of simulated samples and
returns the figure handle h.

h = plotData(resultsObj,Name,Value) uses additional options specified by one or more name-
value pair arguments.

Examples

Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with the estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

 plotData

2-509

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, retrieve model parameters of interest that are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1','k2'};
outputName = 'tumor_weight';

Then perform GSA by computing the first- and total-order Sobol indices using sbiosobol. Set
'ShowWaitBar' to true to show the simulation progress. By default, the function uses 1000
parameter samples to compute the Sobol indices [1].

rng('default');
sobolResults = sbiosobol(m1,modelParamNames,outputName,Variants=v,Doses=d,ShowWaitBar=true)

sobolResults =
 Sobol with properties:

 Time: [444x1 double]
 SobolIndices: [5x1 struct]
 Variance: [444x1 table]
 ParameterSamples: [1000x5 table]
 Observables: {'[Tumor Growth Model].tumor_weight'}
 SimulationInfo: [1x1 struct]

2 Methods

2-510

You can change the number of samples by specifying the 'NumberSamples' name-value pair
argument. The function requires a total of (number of input parameters + 2) *
NumberSamples model simulations.

Show the mean model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(sobolResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying 'Alphas' for the lower
and upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100 * alpha and 100 * (1 - alpha) quantiles of all simulated model responses.

plotData(sobolResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

 plotData

2-511

Plot the time course of the first- and total-order Sobol indices.

h = plot(sobolResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

2 Methods

2-512

The first-order Sobol index of an input parameter gives the fraction of the overall response variance
that can be attributed to variations in the input parameter alone. The total-order index gives the
fraction of the overall response variance that can be attributed to any joint parameter variations that
include variations of the input parameter.

From the Sobol indices plots, parameters L1 and w0 seem to be the most sensitive parameters to the
tumor weight before the dose was applied at t = 7. But after the dose is applied, k1 and k2 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
total variance plot also shows a larger variance for the after-dose stage at t > 35 than for the before-
dose stage of the tumor growth, indicating that k1 and k2 might be more important parameters to
investigate further. The fraction of unexplained variance shows some variance at around t = 33, but
the total variance plot shows little variance at t = 33, meaning the unexplained variance could be
insignificant. The fraction of unexplained variance is calculated as 1 - (sum of all the first-order Sobol
indices), and the total variance is calculated using var(response), where response is the model
response at every time point.

You can also display the magnitudes of the sensitivities in a bar plot. Darker colors mean that those
values occur more often over the whole time course.

bar(sobolResults);

 plotData

2-513

You can specify more samples to increase the accuracy of the Sobol indices, but the simulation can
take longer to finish. Use addsamples to add more samples. For example, if you specify 1500
samples, the function performs 1500 * (2 + number of input parameters) simulations.

gsaMoreSamples = addsamples(gsaResults,1500)

The “SimulationInfo” on page 2-0 property of the result object contains various information for
computing the Sobol indices. For instance, the model simulation data (SimData) for each simulation
using a set of parameter samples is stored in the SimData field of the property. This field is an array
of SimData objects.

sobolResults.SimulationInfo.SimData

 SimBiology SimData Array : 1000-by-7

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 7000 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(sobolResults.SimulationInfo.ValidSample)

2 Methods

2-514

ans = 1x7 logical array

 1 1 1 1 1 1 1

SimulationInfo.ValidSample is a table of logical values. It has the same size as
SimulationInfo.SimData. If ValidSample indicates that any simulations failed, you can get more
information about those simulation runs and the samples used for those runs by extracting
information from the corresponding column of SimulationInfo.SimData. Suppose that the fourth
column contains one or more failed simulation runs. Get the simulation data and sample values used
for that simulation using getSimulationResults.

[samplesUsed,sd,validruns] = getSimulationResults(sobolResults,4);

You can add custom expressions as observables and compute Sobol indices for the added observables.
For example, you can compute the Sobol indices for the maximum tumor weight by defining a custom
expression as follows.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
sobolObs = addobservable(sobolResults,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(sobolObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1280 800];

 plotData

2-515

You can also remove the observable by specifying its name.

gsaNoObs = removeobservable(sobolObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Perform Multiparametric Global Sensitivity Analysis (MPGSA)

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Get the active configset and set the target occupancy (TO) as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Simulate the model and plot the TO profile.

sbioplot(sbiosimulate(m1,cs));

Define an exposure (area under the curve of the TO profile) threshold for the target occupancy.

classifier = 'trapz(time,TO) <= 0.1';

2 Methods

2-516

Perform MPGSA to find sensitive parameters with respect to the TO. Vary the parameter values
between predefined bounds to generate 10,000 parameter samples.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
rng(0,'twister'); % For reproducibility
params = {'kel','ksyn','kdeg','km'};
bounds = [0.1, 1;
 0.1, 1;
 0.1, 1;
 0.1, 1];
mpgsaResults = sbiompgsa(m1,params,classifier,Bounds=bounds,NumberSamples=10000)

mpgsaResults =
 MPGSA with properties:

 Classifiers: {'trapz(time,TO) <= 0.1'}
 KolmogorovSmirnovStatistics: [4x1 table]
 ECDFData: {4x4 cell}
 SignificanceLevel: 0.0500
 PValues: [4x1 table]
 SupportHypothesis: [10000x1 table]
 ParameterSamples: [10000x4 table]
 Observables: {'TO'}
 SimulationInfo: [1x1 struct]

Plot the quantiles of the simulated model response.

plotData(mpgsaResults,ShowMedian=true,ShowMean=false);

 plotData

2-517

Plot the empirical cumulative distribution functions (eCDFs) of the accepted and rejected samples.
Except for km, none of the parameters shows a significant difference in the eCDFs for the accepted
and rejected samples. The km plot shows a large Kolmogorov-Smirnov (K-S) distance between the
eCDFs of the accepted and rejected samples. The K-S distance is the maximum absolute distance
between two eCDFs curves.

h = plot(mpgsaResults);
% Resize the figure.
pos = h.Position(:);
h.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

2 Methods

2-518

To compute the K-S distance between the two eCDFs, SimBiology uses a two-sided test based on the
null hypothesis that the two distributions of accepted and rejected samples are equal. See kstest2
(Statistics and Machine Learning Toolbox) for details. If the K-S distance is large, then the two
distributions are different, meaning that the classification of the samples is sensitive to variations in
the input parameter. On the other hand, if the K-S distance is small, then variations in the input
parameter do not affect the classification of samples. The results suggest that the classification is
insensitive to the input parameter. To assess the significance of the K-S statistic rejecting the null-
hypothesis, you can examine the p-values.

bar(mpgsaResults)

 plotData

2-519

The bar plot shows two bars for each parameter: one for the K-S distance (K-S statistic) and another
for the corresponding p-value. You reject the null hypothesis if the p-value is less than the
significance level. A cross (x) is shown for any p-value that is almost 0. You can see the exact p-value
corresponding to each parameter.

[mpgsaResults.ParameterSamples.Properties.VariableNames',mpgsaResults.PValues]

ans=4×2 table
 Var1 trapz(time,TO) <= 0.1
 ________ _____________________

 {'kel' } 0.0021877
 {'ksyn'} 1
 {'kdeg'} 0.99983
 {'km' } 0

The p-values of km and kel are less than the significance level (0.05), supporting the alternative
hypothesis that the accepted and rejected samples come from different distributions. In other words,
the classification of the samples is sensitive to km and kel but not to other parameters (kdeg and
ksyn).

You can also plot the histograms of accepted and rejected samples. The historgrams let you see
trends in the accepted and rejected samples. In this example, the histogram of km shows that there
are more accepted samples for larger km values, while the kel histogram shows that there are fewer
rejected samples as kel increases.

2 Methods

2-520

h2 = histogram(mpgsaResults);
% Resize the figure.
pos = h2.Position(:);
h2.Position(:) = [pos(1) pos(2) pos(3)*2 pos(4)*2];

Restore the warning settings.

warning(warnSettings);

Perform GSA by Computing Elementary Effects

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

 plotData

2-521

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, define model parameters of interest, which are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1'};
outputName = 'tumor_weight';

Then perform GSA by computing the elementary effects using sbioelementaryeffects. Use 100
as the number of samples and set ShowWaitBar to true to show the simulation progress.

rng('default');
eeResults = sbioelementaryeffects(m1,modelParamNames,outputName,Variants=v,Doses=d,NumberSamples=100,ShowWaitbar=true);

Show the median model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(eeResults,ShowMedian=true,ShowMean=false);

2 Methods

2-522

You can adjust the quantile region to a different percentage by specifying Alphas for the lower and
upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100*alpha and 100*(1-alpha) quantiles of all simulated model responses.

plotData(eeResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

 plotData

2-523

Plot the time course of the means and standard deviations of the elementary effects.

h = plot(eeResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

2 Methods

2-524

The mean of effects explains whether variations in input parameter values have any effect on the
tumor weight response. The standard deviation of effects explains whether the sensitivity change is
dependent on the location in the parameter domain.

From the mean of effects plots, parameters L1 and w0 seem to be the most sensitive parameters to
the tumor weight before the dose is applied at t = 7. But, after the dose is applied, k1 and L0 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
plots of standard deviation of effects show more deviations for the larger parameter values in the
later stage (t > 35) than for the before-dose stage of the tumor growth.

You can also display the magnitudes of the sensitivities in a bar plot. Each color shading represents a
histogram representing values at different times. Darker colors mean that those values occur more
often over the whole time course.

bar(eeResults);

 plotData

2-525

You can also plot the parameter grids and samples used to compute the elementary effects.

plotGrid(eeResults)

2 Methods

2-526

You can specify more samples to increase the accuracy of the elementary effects, but the simulation
can take longer to finish. Use addsamples to add more samples.

eeResults2 = addsamples(eeResults,200);

The SimulationInfo property of the result object contains various information for computing the
elementary effects. For instance, the model simulation data (SimData) for each simulation using a set
of parameter samples is stored in the SimData field of the property. This field is an array of SimData
objects.

eeResults2.SimulationInfo.SimData

 SimBiology SimData Array : 1500-by-1

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 1500 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(eeResults2.SimulationInfo.ValidSample)

 plotData

2-527

ans = logical
 1

You can add custom expressions as observables and compute the elementary effects of the added
observables. For example, you can compute the effects for the maximum tumor weight by defining a
custom expression as follows.

% Suppress an information warning that is issued.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
eeObs = addobservable(eeResults2,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(eeObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1500 800];

You can also remove the observable by specifying its name.

eeNoObs = removeobservable(eeObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

2 Methods

2-528

Input Arguments
resultsObj — Global sensitivity analysis results
SimBiology.gsa.Sobol object | SimBiology.gsa.MPGSA object |
SimBiology.gsa.ElementaryEffects

Global sensitivity analysis results, specified as a SimBiology.gsa.Sobol,
SimBiology.gsa.MPGSA, or SimBiology.gsa.ElementaryEffects object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: h = plotData(results,'ResponseLeap',10) specifies to plot every 10th model
response.

Observables — Model responses or observables to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Model responses or observables to plot, specified as a character vector, string, string vector, cell
array of character vectors, or vector of positive integers indexing into
resultsObject.Observables. By default, the function plots GSA results for all model responses or
observables.
Data Types: double | char | string | cell

Alphas — Size of shaded region
0.05 (default) | positive scalar between 0 and 1 | numeric vector

Size of the quantile region in the plot, specified as a positive scalar between 0 and 1 or numeric
vector. The percentage of a region is calculated as 100 * (1 - 2 * Alpha). Hence, the default
alpha value of 0.05 corresponds to the 90% quantile region.

You can specify multiple values as a vector to plot multiple regions. For instance, 'Alphas',[0.05
0.1] shows both 90% and 80% regions.
Data Types: double

FaceColor — Color of shaded regions
three-element row vector

Color of the shaded regions, specified as a three-element row vector. By default, the function uses the
first MATLAB default color. To view the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Data Types: double

MedianColor — Color of median model response
three-element row vector

Color of the median model response, specified as a three-element row vector. By default, the function
uses the second MATLAB default color. To view the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.

 plotData

2-529

Data Types: double

ShowMedian — Flag to plot median model response
false (default) | true

Flag to plot the median model response, specified as true or false.
Data Types: logical

MeanColor — Color of mean model response
three-element row vector

Color of the mean model response, specified as a three-element row vector. By default, the function
uses the second MATLAB default color. To view the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Data Types: double

ShowMean — Flag to plot mean model response
true (default) | false

Flag to plot the mean model response, specified as true or false.
Data Types: logical

ResponseColor — Color of model responses
[0.3 0.3 0.3] (default) | three-element row vector

Color of model responses or simulations, specified as a comma-separated pair consisting of
'ResponseColor' and a three-element row vector. By default, the function uses the color gray [0.3
0.3 0.3].
Data Types: double

ResponseLeap — Every nth response to plot
positive integer

Every nth response to plot, specified as the comma-separated pair consisting of 'ResponseLeap'
and a positive integer. By default, the function plots 10% of all model responses.
Data Types: double

Output Arguments
h — Handle
figure handle

Handle to the figure, specified as a figure handle.

Compatibility Considerations
plotData shows median response instead of mean response
Warns starting in R2022a

2 Methods

2-530

The plotData function of GSA result objects now shows the median model response instead of the
mean model response by default. Use the name-value arguments ShowMedian or ShowMean to plot
either the mean or median response. To preserve the behavior prior to R2022a, specify:

plotData(gsaResults,ShowMean=true,ShowMedian=false);

References
[1] Saltelli, Andrea, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano

Tarantola. “Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the
Total Sensitivity Index.” Computer Physics Communications 181, no. 2 (February 2010): 259–
70. https://doi.org/10.1016/j.cpc.2009.09.018.

[2] Tiemann, Christian A., Joep Vanlier, Maaike H. Oosterveer, Albert K. Groen, Peter A. J. Hilbers, and
Natal A. W. van Riel. “Parameter Trajectory Analysis to Identify Treatment Effects of
Pharmacological Interventions.” Edited by Scott Markel. PLoS Computational Biology 9, no. 8
(August 1, 2013): e1003166. https://doi.org/10.1371/journal.pcbi.1003166.

[3] Morris, Max D. “Factorial Sampling Plans for Preliminary Computational Experiments.”
Technometrics 33, no. 2 (May 1991): 161–74.

[4] Sohier, Henri, Jean-Loup Farges, and Helene Piet-Lahanier. “Improvement of the Representativity
of the Morris Method for Air-Launch-to-Orbit Separation.” IFAC Proceedings Volumes 47, no.
3 (2014): 7954–59.

See Also
SimBiology.gsa.Sobol | SimBiology.gsa.MPGSA | SimBiology.gsa.ElementaryEffects

Introduced in R2020a

 plotData

2-531

plotGrid
Plot parameter grid and points used to compute elementary effects

Syntax
h = plotGrid(eeObj)
h = plotGrid(eeObj,Name=Value)

Description
h = plotGrid(eeObj) plots the parameter grid and radial or chain points used to compute
elementary effects. A dotted line between two points in the grid shows that an elementary effect
between those two points was computed. For details, see “Elementary Effects for Global Sensitivity
Analysis” on page 1-53.

h = plotGrid(eeObj,Name=Value) uses additional options specified by one or more name-value
arguments.

Examples

Perform GSA by Computing Elementary Effects

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

2 Methods

2-532

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, define model parameters of interest, which are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1'};
outputName = 'tumor_weight';

Then perform GSA by computing the elementary effects using sbioelementaryeffects. Use 100
as the number of samples and set ShowWaitBar to true to show the simulation progress.

rng('default');
eeResults = sbioelementaryeffects(m1,modelParamNames,outputName,Variants=v,Doses=d,NumberSamples=100,ShowWaitbar=true);

Show the median model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(eeResults,ShowMedian=true,ShowMean=false);

 plotGrid

2-533

You can adjust the quantile region to a different percentage by specifying Alphas for the lower and
upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100*alpha and 100*(1-alpha) quantiles of all simulated model responses.

plotData(eeResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

2 Methods

2-534

Plot the time course of the means and standard deviations of the elementary effects.

h = plot(eeResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 plotGrid

2-535

The mean of effects explains whether variations in input parameter values have any effect on the
tumor weight response. The standard deviation of effects explains whether the sensitivity change is
dependent on the location in the parameter domain.

From the mean of effects plots, parameters L1 and w0 seem to be the most sensitive parameters to
the tumor weight before the dose is applied at t = 7. But, after the dose is applied, k1 and L0 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
plots of standard deviation of effects show more deviations for the larger parameter values in the
later stage (t > 35) than for the before-dose stage of the tumor growth.

You can also display the magnitudes of the sensitivities in a bar plot. Each color shading represents a
histogram representing values at different times. Darker colors mean that those values occur more
often over the whole time course.

bar(eeResults);

2 Methods

2-536

You can also plot the parameter grids and samples used to compute the elementary effects.

plotGrid(eeResults)

 plotGrid

2-537

You can specify more samples to increase the accuracy of the elementary effects, but the simulation
can take longer to finish. Use addsamples to add more samples.

eeResults2 = addsamples(eeResults,200);

The SimulationInfo property of the result object contains various information for computing the
elementary effects. For instance, the model simulation data (SimData) for each simulation using a set
of parameter samples is stored in the SimData field of the property. This field is an array of SimData
objects.

eeResults2.SimulationInfo.SimData

 SimBiology SimData Array : 1500-by-1

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 1500 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(eeResults2.SimulationInfo.ValidSample)

2 Methods

2-538

ans = logical
 1

You can add custom expressions as observables and compute the elementary effects of the added
observables. For example, you can compute the effects for the maximum tumor weight by defining a
custom expression as follows.

% Suppress an information warning that is issued.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
eeObs = addobservable(eeResults2,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(eeObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1500 800];

You can also remove the observable by specifying its name.

eeNoObs = removeobservable(eeObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Input Arguments
eeObj — Results containing means and standard deviations of elementary effects
SimBiology.gsa.ElementaryEffects object

 plotGrid

2-539

Results containing the means and standard deviations of elementary effects, specified as a
SimBiology.gsa.ElementaryEffects object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: h = plotGrid(results,'Parameters','k1') specifies to plot the points for k1.

Parameters — Input parameters to plot
character vector | string | string vector | cell array of character vectors | vector of positive integers

Input parameters to plot, specified as a character vector, string, string vector, cell array of character
vectors, or vector of positive integers indexing into the columns of the
resultsObject.ParameterSamples table. Use this name-value argument to select parameters
and plot their corresponding GSA results. By default, all input parameters are included in the plot.
Data Types: double | char | string | cell

Color — Color of radial or chain points in grid
three-element row vector

Color of the radial or chain points in the grid, specified as a three-element row vector. By default, the
function uses the first MATLAB default color. To view the default color order, enter
get(groot,'defaultAxesColorOrder') or see the “ColorOrder” property.
Data Types: double

Output Arguments
h — Handle
figure handle

Handle to the figure, specified as a figure handle.

See Also
SimBiology.gsa.Sobol | SimBiology.gsa.ElementaryEffects | sbioelementaryeffects

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2021b

2 Methods

2-540

plotResiduals
Plot residuals for each response, using time, group, or prediction as x-axis

Syntax
plotResiduals(resultsObj,type)

Description
plotResiduals(resultsObj,type) plots the residuals for each response, using the time, group,
or model predictions as the x-axis as specified by the argument type.

Examples

Estimate Two-Compartment PK Parameters

Load the sample data set.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];

Create a two-compartment PK model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,"Central");
pkc1.DosingType = "Infusion";
pkc1.EliminationType = "linear-clearance";
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,"Peripheral");
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;
responseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];

Provide model parameters to estimate.

paramsToEstimate = ["log(Central)","log(Peripheral)","Q12","Cl_Central"];
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg
at a rate of 50 mg/hour.

dose = sbiodose("dose","TargetName","Drug_Central");
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = "milligram";
dose.TimeUnits = "hour";
dose.RateUnits = "milligram/hour";

 plotResiduals

2-541

Estimate model parameters. By default, the function estimates a set of parameter for each individual
(unpooled fit).

fitResults = sbiofit(model,gData,responseMap,estimatedParam,dose);

Plot the results.

plot(fitResults);

Plot all groups in one plot.

plot(fitResults,"PlotStyle","one axes");

2 Methods

2-542

Change some axes properties.

s = struct;
s.Properties.XGrid = "on";
s.Properties.YGrid = "on";
plot(fitResults,"PlotStyle","one axes","AxesStyle",s);

 plotResiduals

2-543

Compare the model predictions to the actual data.

plotActualVersusPredicted(fitResults)

2 Methods

2-544

Use boxplot to show the variation of estimated model parameters.

boxplot(fitResults)

 plotResiduals

2-545

Plot the distribution of residuals. This normal probability plot shows the deviation from normality and
the skewness on the right tail of the distribution of residuals. The default (constant) error model
might not be the correct assumption for the data being fitted.

plotResidualDistribution(fitResults)

2 Methods

2-546

Plot residuals for each response using the model predictions on x-axis.

plotResiduals(fitResults,"Predictions")

 plotResiduals

2-547

Get the summary of the fit results. stats.Name contains the name for each table from
stats.Table, which contains a list of tables with estimated parameter values and fit quality
statistics.

stats = summary(fitResults);
stats.Name

ans =
'Unpooled Parameter Estimates'

ans =
'Statistics'

ans =
'Unpooled Beta'

ans =
'Residuals'

ans =
'Covariance Matrix'

ans =
'Error Model'

stats.Table

2 Methods

2-548

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 1.422 0.12334 1.5619 0.36355 0.47163 0.15196 0.5291 0.036978
 {'2'} 1.8322 0.019672 5.3364 0.65327 0.2764 0.030799 0.86035 0.026257
 {'3'} 1.6657 0.038529 5.5632 0.37063 0.78361 0.058657 1.0233 0.027311

ans=3×7 table
 Group AIC BIC LogLikelihood DFE MSE SSE
 _____ _______ _______ _____________ ___ ________ _______

 {'1'} 60.961 64.051 -26.48 12 2.138 25.656
 {'2'} -7.8379 -4.7475 7.9189 12 0.029012 0.34814
 {'3'} -1.4336 1.6567 4.7168 12 0.043292 0.5195

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 0.35208 0.086736 0.44589 0.23277 0.47163 0.15196 0.5291 0.036978
 {'2'} 0.60551 0.010737 1.6746 0.12242 0.2764 0.030799 0.86035 0.026257
 {'3'} 0.51027 0.02313 1.7162 0.066621 0.78361 0.058657 1.0233 0.027311

ans=24×4 table
 ID Time CentralConc PeripheralConc
 __ ____ ___________ ______________

 1 0 0 0
 1 1 0.10646 -0.74394
 1 4 1.3745 1.2726
 1 8 -0.68825 -4.2435
 1 12 0.67383 0.21806
 1 18 0.88823 1.0269
 1 24 0.48941 0.66755
 1 36 0.13632 0.22948
 2 0 0 0
 2 1 -0.026731 -0.058311
 2 4 -0.033299 -0.20544
 2 8 -0.20466 0.20696
 2 12 -0.12223 0.045409
 2 18 0.041224 0.33883
 2 24 -0.059498 0.0036257
 2 36 -0.051645 0.27616
 ⋮

ans=12×6 table
 Group Parameters log(Central) log(Peripheral) Q12 Cl_Central
 _____ ___________________ ____________ _______________ ___________ ___________

 {'1'} {'log(Central)' } 0.015213 -0.022539 -0.0086672 0.001159
 {'1'} {'log(Peripheral)'} -0.022539 0.13217 0.045746 -0.0073135
 {'1'} {'Q12' } -0.0086672 0.045746 0.023092 -0.0021484
 {'1'} {'Cl_Central' } 0.001159 -0.0073135 -0.0021484 0.0013674
 {'2'} {'log(Central)' } 0.00038701 -0.002161 -0.00010177 9.7448e-05

 plotResiduals

2-549

 {'2'} {'log(Peripheral)'} -0.002161 0.42676 0.019101 -0.015755
 {'2'} {'Q12' } -0.00010177 0.019101 0.00094857 -0.00073328
 {'2'} {'Cl_Central' } 9.7448e-05 -0.015755 -0.00073328 0.00068942
 {'3'} {'log(Central)' } 0.0014845 -0.0054648 -0.0013216 0.00016639
 {'3'} {'log(Peripheral)'} -0.0054648 0.13737 0.016903 -0.0072722
 {'3'} {'Q12' } -0.0013216 0.016903 0.0034406 -0.00082538
 {'3'} {'Cl_Central' } 0.00016639 -0.0072722 -0.00082538 0.00074587

ans=3×5 table
 Group Response ErrorModel a b
 _____ __________ ____________ _______ ___

 {'1'} {0x0 char} {'constant'} 1.2663 NaN
 {'2'} {0x0 char} {'constant'} 0.14751 NaN
 {'3'} {0x0 char} {'constant'} 0.18019 NaN

Input Arguments
resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object, NLINResults object, or a vector of
results object which contains estimation results returned by sbiofit.

type — x-axis option for residual plot
character vector | string

X-axis option for the residual plot, specified as a character vector or string that must be one of the
following: 'Time', 'Group', or 'Predictions'.

See Also
NLINResults object | OptimResults object | sbiofit

Introduced in R2014a

2 Methods

2-550

plotResiduals(NLMEResults)
Plot the residuals for each response, using the time, group, or prediction as the x-axis

Syntax
plotResiduals(resultsObj,type)

Description
plotResiduals(resultsObj,type) plots the residuals for each response, using the time, group,
or predictions as the x-axis as specified by the argument type.

Input Arguments
resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation results
returned by sbiofitmixed.

type — X-axis option for residual plot
character vector | string

X-axis option for the residual plot, specified as a character vector or string which must be one of the
following: 'Time', 'Group', or 'Predictions'.

See Also
NLMEResults object | sbiofitmixed

Introduced in R2014a

 plotResiduals(NLMEResults)

2-551

plotResidualDistribution
Plot the distribution of the residuals

Syntax
plotResidualDistribution(resultsObj)

Description
plotResidualDistribution(resultsObj) shows the normal probability plot and the
corresponding histogram of the residuals. Use the plot to check if the distribution of the residuals
deviates from the normality.

Examples

Estimate Two-Compartment PK Parameters

Load the sample data set.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];

Create a two-compartment PK model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,"Central");
pkc1.DosingType = "Infusion";
pkc1.EliminationType = "linear-clearance";
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,"Peripheral");
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;
responseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];

Provide model parameters to estimate.

paramsToEstimate = ["log(Central)","log(Peripheral)","Q12","Cl_Central"];
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg
at a rate of 50 mg/hour.

dose = sbiodose("dose","TargetName","Drug_Central");
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = "milligram";
dose.TimeUnits = "hour";
dose.RateUnits = "milligram/hour";

2 Methods

2-552

Estimate model parameters. By default, the function estimates a set of parameter for each individual
(unpooled fit).

fitResults = sbiofit(model,gData,responseMap,estimatedParam,dose);

Plot the results.

plot(fitResults);

Plot all groups in one plot.

plot(fitResults,"PlotStyle","one axes");

 plotResidualDistribution

2-553

Change some axes properties.

s = struct;
s.Properties.XGrid = "on";
s.Properties.YGrid = "on";
plot(fitResults,"PlotStyle","one axes","AxesStyle",s);

2 Methods

2-554

Compare the model predictions to the actual data.

plotActualVersusPredicted(fitResults)

 plotResidualDistribution

2-555

Use boxplot to show the variation of estimated model parameters.

boxplot(fitResults)

2 Methods

2-556

Plot the distribution of residuals. This normal probability plot shows the deviation from normality and
the skewness on the right tail of the distribution of residuals. The default (constant) error model
might not be the correct assumption for the data being fitted.

plotResidualDistribution(fitResults)

 plotResidualDistribution

2-557

Plot residuals for each response using the model predictions on x-axis.

plotResiduals(fitResults,"Predictions")

2 Methods

2-558

Get the summary of the fit results. stats.Name contains the name for each table from
stats.Table, which contains a list of tables with estimated parameter values and fit quality
statistics.

stats = summary(fitResults);
stats.Name

ans =
'Unpooled Parameter Estimates'

ans =
'Statistics'

ans =
'Unpooled Beta'

ans =
'Residuals'

ans =
'Covariance Matrix'

ans =
'Error Model'

stats.Table

 plotResidualDistribution

2-559

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 1.422 0.12334 1.5619 0.36355 0.47163 0.15196 0.5291 0.036978
 {'2'} 1.8322 0.019672 5.3364 0.65327 0.2764 0.030799 0.86035 0.026257
 {'3'} 1.6657 0.038529 5.5632 0.37063 0.78361 0.058657 1.0233 0.027311

ans=3×7 table
 Group AIC BIC LogLikelihood DFE MSE SSE
 _____ _______ _______ _____________ ___ ________ _______

 {'1'} 60.961 64.051 -26.48 12 2.138 25.656
 {'2'} -7.8379 -4.7475 7.9189 12 0.029012 0.34814
 {'3'} -1.4336 1.6567 4.7168 12 0.043292 0.5195

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 0.35208 0.086736 0.44589 0.23277 0.47163 0.15196 0.5291 0.036978
 {'2'} 0.60551 0.010737 1.6746 0.12242 0.2764 0.030799 0.86035 0.026257
 {'3'} 0.51027 0.02313 1.7162 0.066621 0.78361 0.058657 1.0233 0.027311

ans=24×4 table
 ID Time CentralConc PeripheralConc
 __ ____ ___________ ______________

 1 0 0 0
 1 1 0.10646 -0.74394
 1 4 1.3745 1.2726
 1 8 -0.68825 -4.2435
 1 12 0.67383 0.21806
 1 18 0.88823 1.0269
 1 24 0.48941 0.66755
 1 36 0.13632 0.22948
 2 0 0 0
 2 1 -0.026731 -0.058311
 2 4 -0.033299 -0.20544
 2 8 -0.20466 0.20696
 2 12 -0.12223 0.045409
 2 18 0.041224 0.33883
 2 24 -0.059498 0.0036257
 2 36 -0.051645 0.27616
 ⋮

ans=12×6 table
 Group Parameters log(Central) log(Peripheral) Q12 Cl_Central
 _____ ___________________ ____________ _______________ ___________ ___________

 {'1'} {'log(Central)' } 0.015213 -0.022539 -0.0086672 0.001159
 {'1'} {'log(Peripheral)'} -0.022539 0.13217 0.045746 -0.0073135
 {'1'} {'Q12' } -0.0086672 0.045746 0.023092 -0.0021484
 {'1'} {'Cl_Central' } 0.001159 -0.0073135 -0.0021484 0.0013674
 {'2'} {'log(Central)' } 0.00038701 -0.002161 -0.00010177 9.7448e-05

2 Methods

2-560

 {'2'} {'log(Peripheral)'} -0.002161 0.42676 0.019101 -0.015755
 {'2'} {'Q12' } -0.00010177 0.019101 0.00094857 -0.00073328
 {'2'} {'Cl_Central' } 9.7448e-05 -0.015755 -0.00073328 0.00068942
 {'3'} {'log(Central)' } 0.0014845 -0.0054648 -0.0013216 0.00016639
 {'3'} {'log(Peripheral)'} -0.0054648 0.13737 0.016903 -0.0072722
 {'3'} {'Q12' } -0.0013216 0.016903 0.0034406 -0.00082538
 {'3'} {'Cl_Central' } 0.00016639 -0.0072722 -0.00082538 0.00074587

ans=3×5 table
 Group Response ErrorModel a b
 _____ __________ ____________ _______ ___

 {'1'} {0x0 char} {'constant'} 1.2663 NaN
 {'2'} {0x0 char} {'constant'} 0.14751 NaN
 {'3'} {0x0 char} {'constant'} 0.18019 NaN

Input Arguments
resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object or NLINResults object, or vector of
results objects which contains estimation results from running sbiofit.

See Also
NLINResults object | OptimResults object | sbiofit

Introduced in R2014a

 plotResidualDistribution

2-561

plotResidualDistribution(NLMEResults)
Plot the distribution of the residuals

Syntax
plotResidualDistribution(resultsObj)

Description
plotResidualDistribution(resultsObj) plots the distribution of the residuals.

Input Arguments
resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation results from
running sbiofitmixed.

See Also
NLMEResults object | sbiofitmixed

Introduced in R2014a

2 Methods

2-562

predict
Simulate and evaluate fitted SimBiology model

Syntax
[ynew,parameterEstimates]= predict(resultsObj)
[ynew,parameterEstimates]= predict(resultsObj,data,dosing)
[ynew,parameterEstimates]= predict(resultsObj,data,dosing,'Variants',v)

Description
[ynew,parameterEstimates]= predict(resultsObj) returns simulation results ynew and
parameter estimates parameterEstimates of a fitted SimBiology model.

[ynew,parameterEstimates]= predict(resultsObj,data,dosing) returns simulation
results ynew and estimated parameter values parameterEstimates from evaluating the fitted
SimBiology model using the specified data and dosing information.

During simulations, predict uses the parameter values in the resultsObj.ParameterEstimates
property. Use this method when you want to evaluate the fitted model and predict responses using
new data and/or dosing information.

[ynew,parameterEstimates]= predict(resultsObj,data,dosing,'Variants',v)
simulates the fitted model and applies the specified variants to each simulation.

Examples

Evaluate Fitted SimBiology Model

This example uses the yeast heterotrimeric G protein model and experimental data reported by [1].
For details about the model, see the Background section in “Parameter Scanning, Parameter
Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle”.

Load the G protein model.

sbioloadproject gprotein

Store the experimental data containing the time course for the fraction of active G protein.

time = [0 10 30 60 110 210 300 450 600]';
GaFracExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';

Map the appropriate model component to the experimental data. In other words, indicate which
species in the model corresponds to which response variable in the data. In this example, map the
model parameter GaFrac to the experimental data variable GaFracExpt from grpData.

responseMap = 'GaFrac = GaFracExpt';

Create a groupedData object based on the experimental data.

 predict

2-563

tbl = table(time,GaFracExpt);
grpData = groupedData(tbl);

Use an estimatedInfo object to define the model parameter kGd as a parameter to be estimated.

estimatedParam = estimatedInfo('kGd');

Perform the parameter estimation.

fitResult = sbiofit(m1,grpData,responseMap,estimatedParam);

View the estimated parameter value of kGd.

fitResult.ParameterEstimates

ans=1×3 table
 Name Estimate StandardError
 _______ ________ _____________

 {'kGd'} 0.11307 3.4439e-05

Suppose you want to simulate the fitted model using different output times than those in the training
data. You can use the predict method to do so.

Create a new variable T with different output times.

T = [0;10;50;80;100;150;300;350;400;450;500;550];

Use the predict method to simulate the fitted model on the new time points. No dosing was
specified when you first ran sbiofit. Hence, you cannot use any dosing information with the
predict method, and an empty array must be specified as the third input argument.

ynew = predict(fitResult,T,[]);

Plot the simulated data with the new output times.

sbioplot(ynew);

2 Methods

2-564

Estimate Category-Specific PK Parameters

This example shows how to estimate category-specific (such as young versus old, male versus female)
PK parameters using the profile data from multiple individuals using a two-compartment model. The
parameters to estimate are the volumes of central and peripheral compartment, the clearance, and
intercompartmental clearance.

The synthetic data used in this example contains the time course of plasma concentrations of multiple
individuals after a bolus dose (100 mg) measured at different times for both central and peripheral
compartments. It also contains categorical variables, namely Sex and Age.

clear
load('sd5_302RAgeSex.mat');

Convert the data set to a groupedData object, which is the required data format for the fitting
function sbiofit. A groupedData object allows you to set independent variable and group variable
names (if they exist). Set the units of the ID, Time, CentralConc, PeripheralConc, Age, and Sex
variables. The units are optional and only required for the UnitConversion feature, which
automatically converts matching physical quantities to one consistent unit system.

gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter','',''};

 predict

2-565

The IndependentVariableName and GroupVariableName properties have been automatically set to
the Time and ID variables of the data.

gData.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {1x6 cell}
 VariableDescriptions: {}
 VariableUnits: {1x6 cell}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'Time'

For illustration purposes, use the first five individual data for training and the 6th individual data for
testing.

trainData = gData([gData.ID < 6],:);
testData = gData([gData.ID == 6],:);

Display the response data for each individual in the training set.

sbiotrellis(trainData,'ID','Time',{'CentralConc','PeripheralConc'});

2 Methods

2-566

Use the built-in PK library to construct a two-compartment model with infusion dosing and first-order
elimination where the elimination rate depends on the clearance and volume of the central
compartment. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Assume every individual receives a bolus dose of 100 mg at time = 0.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';

The data contains measured plasma concentration in the central and peripheral compartments. Map
these variables to the appropriate model components, which are Drug_Central and Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

Specify the volumes of central and peripheral compartments Central and Peripheral,
intercompartmental clearance Q12, and clearance Cl_Central as parameters to estimate. The
estimatedInfo object lets you optionally specify parameter transforms, initial values, and parameter
bounds. Since both Central and Peripheral are constrained to be positive, specify a log-transform for
each parameter.

paramsToEstimate = {'log(Central)', 'log(Peripheral)', 'Q12', 'Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Use the 'CategoryVariableName' property of the estimatedInfo object to specify which category to use
during fitting. Use 'Sex' as the group to fit for the clearance Cl_Central and Q12 parameters. Use
'Age' as the group to fit for the Central and Peripheral parameters.

estimatedParam(1).CategoryVariableName = 'Age';
estimatedParam(2).CategoryVariableName = 'Age';
estimatedParam(3).CategoryVariableName = 'Sex';
estimatedParam(4).CategoryVariableName = 'Sex';
categoryFit = sbiofit(model,trainData,responseMap,estimatedParam,dose)

categoryFit =
 OptimResults with properties:

 ExitFlag: 1
 Output: [1x1 struct]
 GroupName: []
 Beta: [8x5 table]
 ParameterEstimates: [20x6 table]
 J: [40x8x2 double]
 COVB: [8x8 double]
 CovarianceMatrix: [8x8 double]
 R: [40x2 double]

 predict

2-567

 MSE: 0.1047
 SSE: 7.5349
 Weights: []
 LogLikelihood: -19.0159
 AIC: 54.0318
 BIC: 73.0881
 DFE: 72
 DependentFiles: {1x3 cell}
 EstimatedParameterNames: {'Central' 'Peripheral' 'Q12' 'Cl_Central'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'lsqnonlin'

When fitting by category (or group), sbiofit always returns one results object, not one for each
category level. This is because both male and female individuals are considered to be part of the
same optimization using the same error model and error parameters, similarly for the young and old
individuals.

Plot the category-specific estimated results. For the Cl_Central and Q12 parameters, all males had
the same estimates, and similarly for the females. For the Central and Peripheral parameters, all
young individuals had the same estimates, and similarly for the old individuals.

plot(categoryFit);

2 Methods

2-568

As for testing purposes, simulate the responses of the 6th individual who is an old male. Since you
have estimated one set of parameters for the Age category (young versus old), and another set for
Sex category (male versus female), you can simulate the responses of an old male even though there
is no such individual in the training data.

Use the predict method to simulate the responses. ynew contains simulation data and paramestim
contains parameter estimates used during simulation.

[ynew,paramestim] = predict(categoryFit,testData,dose);

Plot the simulated responses of the old male.

sbioplot(ynew);

The paramestim variable contains the estimated parameters used by the predict method. The
parameter estimates for corresponding categories were obtained from the
categoryFit.ParameterEstimates property. Specifically, Central and Peripheral parameter estimates
are obtained from the Old group, and Q12 and Cl_Central parameter estimates are obtained from the
Male group.

paramestim

paramestim=4×6 table
 Name Estimate StandardError Group CategoryVariableName CategoryValue
 ______________ ________ _____________ _____ ____________________ _____________

 {'Central' } 1.1993 0.0046483 6 {'Age'} Old

 predict

2-569

 {'Peripheral'} 0.55195 0.015098 6 {'Age'} Old
 {'Q12' } 1.4969 0.074321 6 {'Sex'} Male
 {'Cl_Central'} 0.56363 0.0072862 6 {'Sex'} Male

Overlay the experimental results on the simulated data.

figure;
plot(testData.Time,testData.CentralConc,'LineStyle','none','Marker','d','MarkerEdgeColor','b');
hold on
plot(testData.Time,testData.PeripheralConc,'LineStyle','none','Marker','d','MarkerEdgeColor','r');
plot(ynew.Time,ynew.Data(:,1),'b');
plot(ynew.Time,ynew.Data(:,2),'r');
hold off
legend({'OBS1(CentralConc)','OBS2(PeripheralConc)',...
 'PRED1(Central.Drug_Central)','PRED2(Peripheral.Drug_Peripheral)'});

Input Arguments
resultsObj — Estimation results
OptimResults object | NLINResults object

Estimation results, specified as an OptimResults object or NLINResults object, which
contains estimation results returned by sbiofit. It must be a scalar object.

2 Methods

2-570

data — Output times or grouped data
vector | cell array of vectors | groupedData object

Output times or grouped data, specified as a vector, or cell array of vectors of output times, or
groupedData object.

If it is a vector of time points, predict simulates the model with new time points using the
parameter estimates from the results object resultsObj.

If it is a cell array of vectors of time points, predict simulates the model n times using the output
times from each time vector, where n is the length of data.

If it is a groupedData object, it must have an independent variable such as Time. It must also have a
group variable if the training data used for fitting has such variable. You can use a groupedData
object to query different combinations of categories if the resultsObj contains parameter estimates
for each category. predict simulates the model for each group with the specified categories. For
instance, suppose you have a set of parameter estimates for sex category (males versus females), and
age category (young versus old) in your training data. You can use predict to simulate the
responses of an old male (or any other combination) although such patient may not exist in the
training data.

If the resultsObj is from estimating category-specific parameters, data must be a groupedData
object.

Note If UnitConversion is turned on for the underlying SimBiology model that was used for fitting
and data is a groupedData object, data must specify valid variable units via
data.Properties.VariableUnits property. If it is a numeric vector or cell array of vectors of
time points, predict uses the model’s TimeUnits.

dosing — Dosing information
[] | {} | 2-D matrix of dose objects | cell vector of dose objects

Dosing information, specified as empty [] or {}, 2-D matrix or cell vector of SimBiology dose objects
(ScheduleDose object or RepeatDose object).

If dosing is empty, no doses are applied during simulation, even if the model has active doses.

For a matrix of dose objects, it must have a single row or one row per group in the input data. If it has
a single row, the same doses are applied to all groups during simulation. If it has multiple rows, each
row is applied to a separate group, in the same order as the groups appear in the input data. Multiple
columns are allowed so that you can apply multiple dose objects to each group.

For a cell vector of doses, it must have one element or one element per group in the input data. Each
element must be [] or a vector of doses. Each element of the cell is applied to a separate group, in
the same order as the groups appear in the input data.

In addition to manually constructing dose objects using sbiodose, if the input groupedData object
has dosing information, you can use the createDoses method to construct doses.

Dose objects of the dosing input must be consistent with the original dosing data used with
sbiofit. The objects must have the same values for dose properties (such as TargetName) or must
be parameterized in the same way as the original dosing data. For instance, suppose that the original
dosing matrix has two columns of doses, where the doses in the first column target species x and

 predict

2-571

those in the second column target species y. Then dosing must have doses in the first column
targeting species x and those in the second column targeting species y. A parameterized dose
example is as follows. Suppose that the Amount property of a dose used in the original sbiofit call
is parameterized to a model-scoped parameter 'A'. All doses for the corresponding group (column)
in the dosing matrix input must have the Amount property parameterized to 'A'.

The number of rows in the dosing matrix or number of elements in the dosing cell vector and the
number of groups or output time vectors in data determine the total number of simulation results in
the output ynew. For details, see the table in the ynew argument description.

Note If UnitConversion is turned on for the underlying SimBiology model that was used for fitting,
dosing must specify valid amount and time units.

v — Variants to apply
[] | {} | 2-D matrix of variants | cell vector of variants

Variants to apply, specified as an empty array ([], {}), 2-D matrix or cell vector of variant objects.

If you do not specify this argument, the function has the following behavior depending on whether the
second input argument (data) is specified also or not.

• If data is not specified, the function applies the group-specific variants from the original call to
sbiofit.

• If data is a vector or cell array of output times, the function does not apply the group-specific
variants.

• If data is a groupedData object, the function applies variants only to groups whose group
identifier matches a group identifier in the original training data that was used in the call to
sbiofit.

Note

• The baseline variants that were specified by the “variants” on page 1-0 positional input
argument in the original call to sbiofit are always applied to the model, and they are applied
before any group-specific variants.

• If there are no baseline variants, that is, you did not specify the variants input when calling
sbiofit, the predict function still applies the model active variants if there are any.

If the argument value is [] or {}, the function applies no group-specific variants.

If it is a matrix of variants, it must have either one row or one row per group. Each row is applied to a
separate group, in the same order as the groups appear in data or dosing. If it has a single row, the
same variants are applied to all groups during simulation. If there are multiple columns, the variants
are applied in order from the first column to the last.

If it is a cell vector of variant objects, the number of cells must be one or must match the number of
groups in the input data. Each element must be [] or a vector of variants. If there is a single cell
containing a vector of variants, they are applied to all simulations. If there are multiple cells, the
variants in the ith cell are applied to the simulation of the ith group.

The function defines the number of groups by examining the data, and dosing input arguments.

2 Methods

2-572

• data can have 1 or N groups.
• If data and dosing arguments are not specified, then the default data and dosing are determined

as follows:

• For unpooled fits, they are the data and dosing for the single group associated with that fit
results.

• For all other fits, they are the entire set of data and dosing associated with the call to
sbiofit.

Output Arguments
ynew — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects. The states reported in ynew are the
states that were included in the responseMap input argument of sbiofit as well as any other
states listed in the StatesToLog property of the runtime options (RuntimeOptions) of the
SimBiology model.

The total number of simulation results in ynew depends on the number of groups or output time
vectors in data and the number of rows in the dosing matrix.

Number of groups or output
time vectors in data

Number of rows in the
dosing matrix

Simulation results

1 0, that is, dosing is empty [] The total number of SimData
objects in ynew is 1.

No doses are applied during
simulation.

1 1 The total number of SimData
objects in ynew is 1.

The given row of doses is
applied during the simulation.

1 N The total number of SimData
objects in ynew is N.

Each row of dosing is applied
to each simulation.

N 0, that is, dosing is empty [] The total number of SimData
objects in ynew is N.

No doses are applied during
simulation.

N 1 The total number of SimData
objects in ynew is N.

The same row of doses is
applied to each simulation.

 predict

2-573

Number of groups or output
time vectors in data

Number of rows in the
dosing matrix

Simulation results

N N The total number of SimData
objects in ynew is N.

Each row of dosing is applied
to a separate group, in the same
order that groups appear in
data.

M N The function throws an error
when M ≠ N.

parameterEstimates — Estimated parameter values
table

Estimated parameter values, returned as a table. This is identical to
resultsObj.ParameterEstimates property. The predict method uses these parameter values
during simulation.

References
[1] Yi, T-M., Kitano, H., and Simon, M. (2003). A quantitative characterization of the yeast

heterotrimeric G protein cycle. PNAS. 100, 10764–10769.

See Also
NLINResults object | OptimResults object | sbiofit

Introduced in R2014a

2 Methods

2-574

predict(NLMEResults)
Simulate and evaluate fitted SimBiology model

Syntax
[ynew,parameterEstimates] = predict(resultsObj)
[ynew,parameterEstimates] = predict(resultsObj,data,dosing)
[ynew,parameterEstimates] = predict(___ ,Name,Value)

Description
[ynew,parameterEstimates] = predict(resultsObj) returns simulation results ynew from
evaluating the fitted SimBiology model. The estimated parameter values parameterEstimates used
to compute ynew are from the original fit by sbiofitmixed.

[ynew,parameterEstimates] = predict(resultsObj,data,dosing) returns simulation
results ynew from evaluating the fitted SimBiology model by using the specified data and dosing
information.

[ynew,parameterEstimates] = predict(___ ,Name,Value) uses additional options specified
by one or more name-value arguments.

Tip Use this method to get model responses at specific time points or to predict model responses
using different covariate data and dosing information.

Examples
Perform Nonlinear Mixed-Effects Estimation

Estimate nonlinear mixed-effects parameters using clinical pharmacokinetic data collected from 59
infants. Evaluate the fitted model given new data or dosing information.

Load Data

This example uses data collected on 59 preterm infants given phenobarbital during the first 16 days
after birth [1]. ds is a table containing the concentration-time profile data and covariate information
for each infant (or group).

load pheno.mat ds

Convert to groupedData

Convert the data to the groupedData format for parameter estimation.

data = groupedData(ds);

Display the first few rows of data.

data(1:5,:)

 predict(NLMEResults)

2-575

ans =

 5x6 groupedData

 ID TIME DOSE WEIGHT APGAR CONC
 __ ____ ____ ______ _____ ____

 1 0 25 1.4 7 NaN
 1 2 NaN 1.4 7 17.3
 1 12.5 3.5 1.4 7 NaN
 1 24.5 3.5 1.4 7 NaN
 1 37 3.5 1.4 7 NaN

Visualize Data

Display the data in a trellis plot.

t = sbiotrellis(data, 'ID', 'TIME', 'CONC', 'marker', 'o',...
 'markerfacecolor', [.7 .7 .7], 'markeredgecolor', 'r', ...
 'linestyle', 'none');
t.plottitle = 'Concentration versus Time';

Create a One-Compartment PK Model

Create a simple one-compartment PK model, with bolus dose administration and linear clearance
elimination, to fit the data.

2 Methods

2-576

pkmd = PKModelDesign;
addCompartment(pkmd,'Central','DosingType','Bolus',...
 'EliminationType','linear-clearance',...
 'HasResponseVariable',true,'HasLag',false);
onecomp = pkmd.construct;

Map model species to response data.

responseMap = 'Drug_Central = CONC';

Define Estimated Parameters

The parameters to estimate in this model are the volume of the central compartment (Central) and
the clearance rate (Cl_Central). sbiofitmixed calculates fixed and random effects for each
parameter. The underlying algorithm computes normally distributed random effects, which might
violate constraints for biological parameters that are always positive, such as volume and clearance.
Therefore, specify a transform for the estimated parameters so that the transformed parameters
follow a normal distribution. The resulting model is

log(Vi) = log(ϕV, i) = θV + ηV, i

and

log(Cli) = log(ϕCl, i) = θCl + ηCl, i,

where θ, eta, and ϕ are the fixed effects, random effects, and estimated parameter values
respectively, calculated for each infant (group) i. Some arbitrary initial estimates for V (volume of
central compartment) and Cl (clearance rate) are used here in the absence of better empirical data.

estimatedParams = estimatedInfo({'log(Central)','log(Cl_Central)'},'InitialValue',[1 1]);

Define Dosing

All infants were given the drug, represented by the Drug_Central species, where the dosing
schedule varies among infants. The amount of drug is listed in the data variable DOSE. You can
automatically generate dose objects from the data and use them during fitting. In this example,
Drug_Central is the target species that receives the dose.

sampleDose = sbiodose('sample','TargetName','Drug_Central');
doses = createDoses(data,'DOSE','',sampleDose);

Fit the Model

Use sbiofitmixed to fit the one-compartment model to the data.

nlmeResults = sbiofitmixed(onecomp,data,responseMap,estimatedParams,doses,'nlmefit');

Visualize Results

Visualize the fitted results using individual-specific parameter estimates.

plot(nlmeResults,'ParameterType','individual');

 predict(NLMEResults)

2-577

Use New Dosing Data to Simulate the Fitted Model

Suppose you want to predict how infants 1 and 2 would have responded under different dosing
amounts. You can predict their responses as follows.

Create new dose objects with new dose amounts.

dose1 = doses(1);
dose1.Amount = dose1.Amount*2;
dose2 = doses(2);
dose2.Amount = dose2.Amount*1.5;

Use the predict function to evaluate the fitted model using the new dosing data. If you want
response predictions at particular times, provide the new output time vector. Use the 'ParameterType'
option to specify individual or population parameters to use. By default, predict uses the population
parameters when you specify output times.

timeVec = [0:25:400];
newResults = predict(nlmeResults,timeVec,[dose1;dose2],'ParameterType','population');

Visualize the predicted responses while overlapping the experimental data for infants 1 and 2.

figure;
subplot(2,1,1)
plot(data.TIME(data.ID == 1),data.CONC(data.ID == 1),'bo')

2 Methods

2-578

hold on
plot(newResults(1).Time,newResults(1).Data,'b')
hold off
ylabel('Concentration')
legend('Observation(CONC)','Prediction')
subplot(2,1,2)
plot(data.TIME(data.ID == 2),data.CONC(data.ID == 2),'rx')
hold on
plot(newResults(2).Time,newResults(2).Data,'r')
hold off
legend('Observation(CONC)','Prediction')
ylabel('Concentration')
xlabel('Time')

Create a Covariate Model for the Covariate Dependencies

Suppose there is a correlation between volume and weight, and possibly volume and APGAR score.
Consider the effect of weight by modeling two of these covariate dependencies: the volume of central
(Central) and the clearance rate (Cl_Central) vary with weight. The model becomes

log(Vi) = log(ϕV, i) = θV + θV /weight * weighti + ηV, i

and

log(Cli) = log(ϕCl, i) = θCl + θCl/weight * weighti + ηCl, i

 predict(NLMEResults)

2-579

Use the CovariateModel object to define the covariate dependencies. For details, see “Specify a
Covariate Model”.

covModel = CovariateModel;
covModel.Expression = ({'Central = exp(theta1 + theta2*WEIGHT + eta1)',...
 'Cl_Central = exp(theta3 + theta4*WEIGHT + eta2)'});

Use constructDefaultInitialEstimate to create an initialEstimates struct.

initialEstimates = covModel.constructDefaultFixedEffectValues;

Use the FixedEffectNames property to display the thetas (fixed effects) defined in the model.

covModel.FixedEffectNames

ans = 4x1 cell
 {'theta1'}
 {'theta3'}
 {'theta2'}
 {'theta4'}

Use the FixedEffectDescription property to show the descriptions of corresponding fixed effects
(thetas) used in the covariate expression. For example, theta2 is the fixed effect for the weight
covariate that correlates with the volume (Central), denoted as 'Central/WEIGHT'.

disp('Fixed Effects Description:');

Fixed Effects Description:

disp(covModel.FixedEffectDescription);

 {'Central' }
 {'Cl_Central' }
 {'Central/WEIGHT' }
 {'Cl_Central/WEIGHT'}

Set the initial guesses for the fixed-effect parameter values for Central and Cl_Central using the
values estimated from fitting the base model.

initialEstimates.theta1 = nlmeResults.FixedEffects.Estimate(1);
initialEstimates.theta3 = nlmeResults.FixedEffects.Estimate(2);
covModel.FixedEffectValues = initialEstimates;

Fit the Model

nlmeResults_cov = sbiofitmixed(onecomp,data,responseMap,covModel,doses,'nlmefit');

Display Fitted Parameters and Covariances

disp('Estimated Fixed Effects:');

Estimated Fixed Effects:

disp(nlmeResults_cov.FixedEffects);

 Name Description Estimate StandardError
 __________ _____________________ ________ _____________

 {'theta1'} {'Central' } -0.45664 0.078933

2 Methods

2-580

 {'theta3'} {'Cl_Central' } -5.9519 0.1177
 {'theta2'} {'Central/WEIGHT' } 0.52948 0.047342
 {'theta4'} {'Cl_Central/WEIGHT'} 0.61954 0.071386

disp('Estimated Covariance Matrix:');

Estimated Covariance Matrix:

disp(nlmeResults_cov.RandomEffectCovarianceMatrix);

 eta1 eta2
 ________ ________

 eta1 0.046503 0
 eta2 0 0.041609

Visualize Results

Visualize the fitted results using individual-specific parameter estimates.

plot(nlmeResults_cov,'ParameterType','individual');

 predict(NLMEResults)

2-581

Use New Covariate Data to Evaluate the Fitted Model

Suppose you want to explore the responses of infants 1 and 2 using different covariate data, namely
WEIGHT. You can do this by specifying the new WEIGHT data. The ID variable of the data corresponds
to individual infants.

newData = data(data.ID == 1 | data.ID == 2,:);
newData.WEIGHT(newData.ID == 1) = 1.3;
newData.WEIGHT(newData.ID == 2) = 1.4;

Simulate the responses of infants 1 and 2 using the new covariate data.

[newResults_cov, newEstimates] = predict(nlmeResults_cov,newData,[dose1;dose2]);

newEstimates contains the updated parameter estimates for each individual (infants 1 and 2) after
the model is reevaluated using the new covariate data.

newEstimates

newEstimates=4×3 table
 Group Name Estimate
 _____ ______________ _________

 1 {'Central' } 2.5596
 1 {'Cl_Central'} 0.0065965
 2 {'Central' } 1.7123
 2 {'Cl_Central'} 0.0064806

Compare to the estimated values from the original fit using the old covariate data.

nlmeResults_cov.IndividualParameterEstimates(...
 nlmeResults_cov.IndividualParameterEstimates.Group == '1' | ...
 nlmeResults_cov.IndividualParameterEstimates.Group == '2',:)

ans=4×3 table
 Group Name Estimate
 _____ ______________ _________

 1 {'Central' } 2.6988
 1 {'Cl_Central'} 0.0070181
 2 {'Central' } 1.8054
 2 {'Cl_Central'} 0.0068948

Visualize the new simulation results together with the experimental data for infant 1 and 2.

figure;
subplot(2,1,1);
plot(data.TIME(data.ID == 1),data.CONC(data.ID == 1),'bo')
hold on
plot(newResults_cov(1).Time,newResults_cov(1).Data,'b')
hold off
ylabel('Concentration')
legend('Observation(CONC)','Prediction','Location','NorthEastOutside')
subplot(2,1,2)
plot(data.TIME(data.ID == 2),data.CONC(data.ID == 2),'rx')
hold on
plot(newResults_cov(2).Time,newResults_cov(2).Data,'r')

2 Methods

2-582

hold off
legend('Observation(CONC)','Prediction','Location','NorthEastOutside')
ylabel('Concentration')
xlabel('Time')

References

[1] Grasela, T. H. Jr., and S. M. Donn. "Neonatal population pharmacokinetics of phenobarbital
derived from routine clinical data." Dev Pharmacol Ther 1985:8(6). 374-83.

Input Arguments
resultsObj — Estimation results
scalar NLMEResults object

Estimation results, specified as a scalar NLMEResults object, which contains nonlinear mixed-
effects estimation results returned by sbiofitmixed.

data — Grouped data or output times
groupedData object | vector | cell array of vectors

Grouped data or output times, specified as a groupedData object, vector, or cell array of vectors
of output times.

If data is a groupedData object, it must have both group labels and output times specified. The
group labels can refer to new groups or existing groups from the original fit. If the mixed-effects

 predict(NLMEResults)

2-583

model from the original fit (returned by sbiofitmixed) uses covariates, the groupedData object
must also contain the covariate data with the same labels for the covariates (CovariateLabels
property) specified in the original covariate model on page 2-173.

By default, individual parameter estimates are used for simulating groups from the original fit, while
population parameters are used for new groups, if any. See the value argument description for
details.

The total number of simulation results in the output ynew depends on the number of groups or output
time vectors in data and the number of rows in the dosing matrix. For details, see the table in the
ynew argument description.

dosing — Dosing information
[] | {} | 2-D matrix of dose objects | cell vector of dose objects

Dosing information, specified as empty [] or {}, 2-D matrix or cell vector of SimBiology dose objects
(ScheduleDose object or RepeatDose object).

If dosing is empty, no doses are applied during simulation, even if the model has active doses.

For a matrix of dose objects, it must have a single row or one row per group in the input data. If it has
a single row, the same doses are applied to all groups during simulation. If it has multiple rows, each
row is applied to a separate group, in the same order as the groups appear in the input data. Multiple
columns are allowed so that you can apply multiple dose objects to each group.

For a cell vector of doses, it must have one element or one element per group in the input data. Each
element must be [] or a vector of doses. Each element of the cell is applied to a separate group, in
the same order as the groups appear in the input data.

In addition to manually constructing dose objects using sbiodose, if the input groupedData object
has dosing information, you can use the createDoses method to construct doses.

Dose objects of the dosing input must be consistent with the original dosing data used with
sbiofitmixed. The objects must have the same values for dose properties (such as TargetName) or
must be parameterized in the same way as the original dosing data. For instance, suppose that the
original dosing matrix has two columns of doses, where the doses in the first column target species x
and those in the second column target species y. Then dosing must have doses in the first column
targeting species x and those in the second column targeting species y. A parameterized dose
example is as follows. Suppose that the Amount property of a dose used in the original
sbiofitmixed call is parameterized to a model-scoped parameter 'A'. All doses for the
corresponding group (column) in the dosing matrix input must have the Amount property
parameterized to 'A'.

The number of rows in the dosing matrix or number of elements in the dosing cell vector and the
number of groups or output time vectors in data determine the total number of simulation results in
the output ynew. For details, see the table in the ynew argument description.

Note If UnitConversion is turned on for the underlying SimBiology model that was used for fitting,
dosing must specify valid amount and time units.

2 Methods

2-584

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ParameterType','population' specifies to use population parameter estimates.

ParameterType — Parameter type
'individual' (default) | 'population'

Parameter type, specified as 'individual' (default) or 'population'. If value is
'population', the predict method returns the simulation results using the population parameter
estimates, that is, parameter values that are estimated using fixed effects (θs) only. The estimated
parameter values used in simulation are identical to those in the
resultsObj.PopulationParameterEstimates property, unless you specify a new groupedData
object data with new covariate data. In this case, the method reevaluates the covariate model and
the parameter estimates based on the new groupedData and covariate data.

If value is 'individual', the method returns the simulation results using the corresponding
parameter values of the group in the resultsObj.IndividualParameterEstimates property.
These values include both fixed- and random-effects estimates, that is, parameter values estimated
using both fixed effects (θs) and random effects (ηs) . If data contains new groups, only fixed effects
(population parameter estimates of the results object) are used for these groups.

By default, predict uses the individual parameter estimates of the results object when data is a
groupedData object. If data is a vector of output times or cell array of vectors, predict uses the
population parameter estimates of the results object instead.
Data Types: char | string

Variants — Variants to apply
[] | {} | 2-D matrix of variants | cell vector of variants

Variants to apply, specified as an empty array ([], {}), 2-D matrix or cell vector of variant objects.

If you do not specify this argument, the function has the following behavior depending on whether the
second input argument (data) is specified also or not.

• If data is not specified, the function applies the group-specific variants from the original call to
sbiofitmixed.

• If data is a vector or cell array of output times, the function does not apply the group-specific
variants.

• If data is a groupedData object, the function applies variants only to groups whose group
identifier matches a group identifier in the original training data that was used in the call to
sbiofitmixed.

Note

• The baseline variants that were specified by the “variants” on page 1-0 positional input
argument in the original call to sbiofitmixed are always applied to the model, and they are
applied before any group-specific variants.

 predict(NLMEResults)

2-585

• If there are no baseline variants, that is, you did not specify the variants input when calling
sbiofitmixed, the function still applies the model active variants if there are any.

If the argument value is [] or {}, the function applies no group-specific variants.

If it is a matrix of variants, it must have either one row or one row per group. Each row is applied to a
separate group, in the same order as the groups appear in data or dosing. If it has a single row, the
same variants are applied to all groups during simulation. If there are multiple columns, the variants
are applied in order from the first column to the last.

If it is a cell vector of variant objects, the number of cells must be one or must match the number of
groups in the input data. Each element must be [] or a vector of variants. If there is a single cell
containing a vector of variants, they are applied to all simulations. If there are multiple cells, the
variants in the ith cell are applied to the simulation of the ith group.

The function defines the number of groups by examining the data, and dosing input arguments.

• data can have 1 or N groups.
• If data and dosing arguments are not specified, then the default data and dosing are determined

as follows:

• For unpooled fits, they are the data and dosing for the single group associated with that fit
results.

• For all other fits, they are the entire set of data and dosing associated with the call to
sbiofitmixed.

Output Arguments
ynew — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects. The states reported in ynew are the
states included in the responseMap input argument of sbiofitmixed and any other states listed in
the StatesToLog property of the runtime options (RuntimeOptions) of the SimBiology model.

The total number of simulation results in ynew depends on the number of groups or output time
vectors in data and the number of rows in the dosing matrix.

Number of groups or output
time vectors in data

Number of rows in the
dosing matrix

Simulation results

1 0, that is, dosing is empty [] The total number of SimData
objects in ynew is 1.

No doses are applied during
simulation.

1 1 The total number of SimData
objects in ynew is 1.

The given row of doses is
applied during the simulation.

2 Methods

2-586

Number of groups or output
time vectors in data

Number of rows in the
dosing matrix

Simulation results

1 N The total number of SimData
objects in ynew is N.

Each row of dosing is applied
to each simulation.

N 0, that is, dosing is empty [] The total number of SimData
objects in ynew is N.

No doses are applied during
simulation.

N 1 The total number of SimData
objects in ynew is N.

The same row of doses is
applied to each simulation.

N N The total number of SimData
objects in ynew is N.

Each row of dosing is applied
to a separate group, in the same
order that groups appear in
data.

M N The function throws an error
when M ≠ N.

parameterEstimates — Estimated parameter values
table

Estimated parameter values used for the predicted simulation results, returned as a table.

If 'ParameterType' is 'individual', the reported parameter values are identical to the values in
the resultsObj.IndividualParameterEstimates property. However, if data contains new
groups, then only population parameter estimates (fixed effects) are used for these groups. The
corresponding reported values in parameterEstimates for these groups are identical to the values
in resultsObj.PopulationParameterEstimates.

If 'ParameterType' is 'population', the reported parameter values are identical to the values in
the resultsObj.PopulationParameterEstimates property unless you specify new covariate
information in data. See the value argument description for details.

If data is a vector or a cell array of vectors of output times, the reported parameter values are
identical to the values in resultsObj.PopulationParameterEstimates. Also, the groups
reported represent the enumeration of simulations performed and are unrelated to group names in
the original fit.

See Also
NLMEResults object | sbiofitmixed | sbiosampleparameters | sbiosampleerror |
CovariateModel object

 predict(NLMEResults)

2-587

Topics
“Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”
“Nonlinear Mixed-Effects Modeling”

Introduced in R2014a

2 Methods

2-588

random
Simulate SimBiology model, adding variations by sampling error model

Syntax
[ynew,parameterEstimates] = random(resultsObj)
[ynew,parameterEstimates] = random(resultsObj,data,dosing)
[ynew,parameterEstimates]= random(resultsObj,data,dosing,'Variants',v)

Description
[ynew,parameterEstimates] = random(resultsObj) returns simulation results ynew with
added noise using the error model information specified by the resultsObj.ErrorModelInfo
property and estimated parameter values parameterEstimates.

[ynew,parameterEstimates] = random(resultsObj,data,dosing) uses the specified data
and dosing information.

[ynew,parameterEstimates]= random(resultsObj,data,dosing,'Variants',v) also
applies the specified variants to each simulation.

Note The noise is only added to states that are responses which are the states included in the
responseMap input argument when you called sbiofit or the “ResponseMap” on page 2-0
property of fitproblem. If there is a separate error model for each response, the noise is added to
each response separately using the corresponding error model.

Examples

Add Noise to Simulation Results of a Fitted SimBiology Model

This example uses the yeast heterotrimeric G protein model and experimental data reported by [1].
For details about the model, see the Background section in “Parameter Scanning, Parameter
Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G Protein Cycle”.

Load the G protein model.

sbioloadproject gprotein

Store the experimental data containing the time course for the fraction of active G protein.

time = [10 30 60 110 210 300 450 600]';
GaFracExpt = [0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]';

Create a groupedData object based on the experimental data.

tbl = table(time,GaFracExpt);
grpData = groupedData(tbl);

 random

2-589

Map the appropriate model component to the experimental data. In other words, indicate which
species in the model corresponds to which response variable in the data. In this example, map the
model parameter GaFrac to the experimental data variable GaFracExpt from grpData.

responseMap = 'GaFrac = GaFracExpt';

Use an estimatedInfo object to define the model parameter kGd as a parameter to be estimated.

estimatedParam = estimatedInfo('kGd');

Perform the parameter estimation. Use the name-value argument ErrorModel to specify the error
model that adds error to simulation data.

fitResult = sbiofit(m1,grpData,responseMap,estimatedParam,ErrorModel="proportional");

View the estimated parameter value of kGd.

fitResult.ParameterEstimates

ans=1×3 table
 Name Estimate StandardError
 _______ ________ _____________

 {'kGd'} 0.10877 0.001397

Use the random method to retrieve the simulation data with added noise using the proportional error
model which was specified by sbiofit. Note that the noise is added only to the response state, that
is the GaFrac parameter.

[ynew,paramEstim] = random(fitResult);

Select the simulation data for the GaFrac parameter.

GaFracNew = select(ynew,{'Name','GaFrac'});

Plot the simulation results.

plot(GaFracNew.Time,GaFracNew.Data)
hold on

2 Methods

2-590

Plot the experimental data to compare it with the simulated data.

plot(time,GaFracExpt,'Color','k','Marker','o')
legend('GaFracNew','GaFracExpt')

 random

2-591

Input Arguments
resultsObj — Estimation results
OptimResults object | NLINResults object

Estimation results, specified as an OptimResults object or NLINResults object, which
contains estimation results returned by sbiofit. It must be a scalar object.

data — Grouped data or output times
groupedData object | vector | cell array of vectors

Grouped data or output times, specified as a groupedData object, vector, or cell array of vectors
of output times.

If it is a vector of time points, random simulates the model with new time points using the parameter
estimates from the results object resultsObj.

If it is a cell array of vectors of time points, random simulates the model n times using the output
times from each time vector, where n is the length of data.

If it is a groupedData object, it must have an independent variable such as Time. It must also have a
group variable if the training data used for fitting has such variable. You can use a groupedData
object to query different combinations of categories if the resultsObj contains parameter estimates
for each category. random simulates the model for each group with the specified categories. For

2 Methods

2-592

instance, suppose you have a set of parameter estimates for sex category (males versus females), and
age category (young versus old) in your training data. You can use random to simulate the responses
of an old male (or any other combination) although such patient may not exist in the training data.

If the resultsObj is from estimating category-specific parameters, data must be a groupedData
object.

Note If UnitConversion is turned on for the underlying SimBiology model that was used for fitting
and data is a groupedData object, data must specify valid variable units via
data.Properties.VariableUnits property. If it is a numeric vector or cell array of vectors of
time points, random uses the model’s TimeUnits.

dosing — Dosing information
[] | {} | 2-D matrix of dose objects | cell vector of dose objects

Dosing information, specified as empty [] or {}, 2-D matrix or cell vector of SimBiology dose objects
(ScheduleDose object or RepeatDose object).

If dosing is empty, no doses are applied during simulation, even if the model has active doses.

For a matrix of dose objects, it must have a single row or one row per group in the input data. If it has
a single row, the same doses are applied to all groups during simulation. If it has multiple rows, each
row is applied to a separate group, in the same order as the groups appear in the input data. Multiple
columns are allowed so that you can apply multiple dose objects to each group.

For a cell vector of doses, it must have one element or one element per group in the input data. Each
element must be [] or a vector of doses. Each element of the cell is applied to a separate group, in
the same order as the groups appear in the input data.

In addition to manually constructing dose objects using sbiodose, if the input groupedData object
has dosing information, you can use the createDoses method to construct doses.

Dose objects of the dosing input must be consistent with the original dosing data used with
sbiofit. The objects must have the same values for dose properties (such as TargetName) or must
be parameterized in the same way as the original dosing data. For instance, suppose that the original
dosing matrix has two columns of doses, where the doses in the first column target species x and
those in the second column target species y. Then dosing must have doses in the first column
targeting species x and those in the second column targeting species y. A parameterized dose
example is as follows. Suppose that the Amount property of a dose used in the original sbiofit call
is parameterized to a model-scoped parameter 'A'. All doses for the corresponding group (column)
in the dosing matrix input must have the Amount property parameterized to 'A'.

The number of rows in the dosing matrix or number of elements in the dosing cell vector and the
number of groups or output time vectors in data determine the total number of simulation results in
the output ynew. For details, see the table in the ynew argument description.

Note If UnitConversion is turned on for the underlying SimBiology model that was used for fitting,
dosing must specify valid amount and time units.

v — Variants to apply
[] | {} | 2-D matrix of variants | cell vector of variants

 random

2-593

Variants to apply, specified as an empty array ([], {}), 2-D matrix or cell vector of variant objects.

If you do not specify this argument, the function has the following behavior depending on whether the
second input argument (data) is specified also or not.

• If data is not specified, the function applies the group-specific variants from the original call to
sbiofit.

• If data is a vector or cell array of output times, the function does not apply the group-specific
variants.

• If data is a groupedData object, the function applies variants only to groups whose group
identifier matches a group identifier in the original training data that was used in the call to
sbiofit.

Note

• The baseline variants that were specified by the “variants” on page 1-0 positional input
argument in the original call to sbiofit are always applied to the model, and they are applied
before any group-specific variants.

• If there are no baseline variants, that is, you did not specify the variants input when calling
sbiofit, the random function still applies the model active variants if there are any.

If the argument value is [] or {}, the function applies no group-specific variants.

If it is a matrix of variants, it must have either one row or one row per group. Each row is applied to a
separate group, in the same order as the groups appear in data or dosing. If it has a single row, the
same variants are applied to all groups during simulation. If there are multiple columns, the variants
are applied in order from the first column to the last.

If it is a cell vector of variant objects, the number of cells must be one or must match the number of
groups in the input data. Each element must be [] or a vector of variants. If there is a single cell
containing a vector of variants, they are applied to all simulations. If there are multiple cells, the
variants in the ith cell are applied to the simulation of the ith group.

The function defines the number of groups by examining the data, and dosing input arguments.

• data can have 1 or N groups.
• If data and dosing arguments are not specified, then the default data and dosing are determined

as follows:

• For unpooled fits, they are the data and dosing for the single group associated with that fit
results.

• For all other fits, they are the entire set of data and dosing associated with the call to
sbiofit.

Output Arguments
ynew — Simulation results with noise
vector of SimData objects

Simulation results, returned as a vector of SimData objects. The states reported in ynew are the
states that were included in the responseMap input argument of sbiofit as well as any other

2 Methods

2-594

states listed in the StatesToLog property of the runtime options (RuntimeOptions) of the
SimBiology model.

The total number of simulation results in ynew depends on the number of groups or output time
vectors in data and the number of rows in the dosing matrix.

Number of groups or output
time vectors in data

Number of rows in the
dosing matrix

Simulation results

1 0, that is, dosing is empty [] The total number of SimData
objects in ynew is 1.

No doses are applied during
simulation.

1 1 The total number of SimData
objects in ynew is 1.

The given row of doses is
applied during the simulation.

1 N The total number of SimData
objects in ynew is N.

Each row of dosing is applied
to each simulation.

N 0, that is, dosing is empty [] The total number of SimData
objects in ynew is N.

No doses are applied during
simulation.

N 1 The total number of SimData
objects in ynew is N.

The same row of doses is
applied to each simulation.

N N The total number of SimData
objects in ynew is N.

Each row of dosing is applied
to a separate group, in the same
order that groups appear in
data.

M N The function throws an error
when M ≠ N.

parameterEstimates — Estimated parameter values
table

Estimated parameter values, returned as a table. This is identical to
resultsObj.ParameterEstimates property.

 random

2-595

References
[1] Yi, T-M., Kitano, H., and Simon, M. (2003). A quantitative characterization of the yeast

heterotrimeric G protein cycle. PNAS. 100, 10764–10769.

See Also
NLINResults object | OptimResults object | sbiofit

Introduced in R2014a

2 Methods

2-596

random(NLMEResults)
Simulate a SimBiology model, adding variations by sampling the error model

Syntax
[ynew,parameterEstimates,randomEffects] = random(resultsObj)
[ynew,parameterEstimates] = random(resultsObj,data,dosing)
[ynew,parameterEstimates,randomEffects] = random(___ ,Name,Value)

Description
[ynew,parameterEstimates,randomEffects] = random(resultsObj) returns simulation
results ynew with added noise using the error model information specified by the
resultsObj.ErrorModelInfo property and estimated parameter values parameterEstimates
which are returned by sbiofitmixed.

[ynew,parameterEstimates] = random(resultsObj,data,dosing) uses the specified data
and dosing information.

[ynew,parameterEstimates,randomEffects] = random(___ ,Name,Value) uses additional
options specified by one or more name-value arguments.

Note The noise is only added to states that are responses which are the states included in the
responseMap input argument when you called sbiofitmixed or the “ResponseMap” on page 2-
0 property of fitproblem.

Input Arguments
resultsObj — Estimation results
NLMEResults object

Estimation results, specified as an NLMEResults object, which contains estimation results
returned by sbiofitmixed. It must be a scalar object.

The function calculates new parameter values using sbiosampleparameters with the covariate
model returned by resultsObj.covariateModel, the fixed effect estimates
(resultsObj.FixedEffects), and random effect covariance matrix
(resultsObj.RandomEffectCovarianceMatrix). The function adds randomly sampled errors to
the simulation results by calling sbiosampleerror using the error model and error model
parameters from resultsObj.ErrorModelInfo.

data — Grouped data or output times
groupedData object | vector | cell array of vectors

Grouped data or output times, specified as a groupedData object, vector, or cell array of vectors
of output times.

If it is a vector of time points, random simulates the model with new time points.

 random(NLMEResults)

2-597

If it is a cell array of vectors of time points, random simulates the model n times using the output
times from each time vector, where n is the length of data.

If the mixed-effects model from the original fit (using sbiofitmixed) uses a covariate model with
covariates, the data must be a groupedData object containing covariate data with the same labels
for the covariates (CovariateLabels property) specified in the original covariate model.

dosing — Dosing information
[] | {} | 2-D matrix of dose objects | cell vector of dose objects

Dosing information, specified as empty [] or {}, 2-D matrix or cell vector of SimBiology dose objects
(ScheduleDose object or RepeatDose object).

If dosing is empty, no doses are applied during simulation, even if the model has active doses.

For a matrix of dose objects, it must have a single row or one row per group in the input data. If it has
a single row, the same doses are applied to all groups during simulation. If it has multiple rows, each
row is applied to a separate group, in the same order as the groups appear in the input data. Multiple
columns are allowed so that you can apply multiple dose objects to each group.

For a cell vector of doses, it must have one element or one element per group in the input data. Each
element must be [] or a vector of doses. Each element of the cell is applied to a separate group, in
the same order as the groups appear in the input data.

In addition to manually constructing dose objects using sbiodose, if the input groupedData object
has dosing information, you can use the createDoses method to construct doses.

Dose objects of the dosing input must be consistent with the original dosing data used with
sbiofitmixed. The objects must have the same values for dose properties (such as TargetName) or
must be parameterized in the same way as the original dosing data. For instance, suppose that the
original dosing matrix has two columns of doses, where the doses in the first column target species x
and those in the second column target species y. Then dosing must have doses in the first column
targeting species x and those in the second column targeting species y. A parameterized dose
example is as follows. Suppose that the Amount property of a dose used in the original
sbiofitmixed call is parameterized to a model-scoped parameter 'A'. All doses for the
corresponding group (column) in the dosing matrix input must have the Amount property
parameterized to 'A'.

The number of rows in the dosing matrix or number of elements in the dosing cell vector and the
number of groups or output time vectors in data determine the total number of simulation results in
the output ynew. For details, see the table in the ynew argument description.

Note If UnitConversion is turned on for the underlying SimBiology model that was used for fitting,
dosing must specify valid amount and time units.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

2 Methods

2-598

Example: 'ParameterType','population' specifies to use population parameter estimates.

ParameterType — Parameter type
'individual' (default) | 'population'

Parameter type, specified as 'population' or 'individual' (default).

If value is 'individual', estimated parameter values and random effect values are resampled by
calling sbiosampleparameters with the covariate model (specified by the data argument or
returned by the covariateModel method of resultsObj), the fixed effect estimates
(resultsObj.FixedEffects), and random effect covariance matrix
(resultsObj.RandomEffectCovarianceMatrix). Parameter estimates and random effects are
resampled for all groups. The function adds randomly sampled errors to the simulation results by
calling sbiosampleerror using the error model and error model parameters from
resultsObj.ErrorModelInfo.

If value is 'population', the method returns simulation results with noise using population
parameter estimates. The estimated parameter values used in simulation are identical to
resultsObj.PopulationParameterEstimates property unless you specify a new groupedData
object data with new covariate data. In this case, the method will reevaluate the covariate model and
this could change the parameter estimates.
Data Types: char | string

Variants — Variants to apply
[] | {} | 2-D matrix of variants | cell vector of variants

Variants to apply, specified as an empty array ([], {}), 2-D matrix or cell vector of variant objects.

If you do not specify this argument, the function has the following behavior depending on whether the
second input argument (data) is specified also or not.

• If data is not specified, the function applies the group-specific variants from the original call to
sbiofitmixed.

• If data is a vector or cell array of output times, the function does not apply the group-specific
variants.

• If data is a groupedData object, the function applies variants only to groups whose group
identifier matches a group identifier in the original training data that was used in the call to
sbiofitmixed.

Note

• The baseline variants that were specified by the “variants” on page 1-0 positional input
argument in the original call to sbiofitmixed are always applied to the model, and they are
applied before any group-specific variants.

• If there are no baseline variants, that is, you did not specify the variants input when calling
sbiofitmixed, the function still applies the model active variants if there are any.

If the argument value is [] or {}, the function applies no group-specific variants.

If it is a matrix of variants, it must have either one row or one row per group. Each row is applied to a
separate group, in the same order as the groups appear in data or dosing. If it has a single row, the

 random(NLMEResults)

2-599

same variants are applied to all groups during simulation. If there are multiple columns, the variants
are applied in order from the first column to the last.

If it is a cell vector of variant objects, the number of cells must be one or must match the number of
groups in the input data. Each element must be [] or a vector of variants. If there is a single cell
containing a vector of variants, they are applied to all simulations. If there are multiple cells, the
variants in the ith cell are applied to the simulation of the ith group.

The function defines the number of groups by examining the data, and dosing input arguments.

• data can have 1 or N groups.
• If data and dosing arguments are not specified, then the default data and dosing are determined

as follows:

• For unpooled fits, they are the data and dosing for the single group associated with that fit
results.

• For all other fits, they are the entire set of data and dosing associated with the call to
sbiofitmixed.

Output Arguments
ynew — Simulation results with noise
vector of SimData objects

Simulation results, returned as a vector of SimData objects. The states reported in ynew are the
states included in the responseMap input argument of sbiofitmixed and any other states listed in
the StatesToLog property of the runtime options (RuntimeOptions) of the SimBiology model.

The total number of simulation results in ynew depends on the number of groups or output time
vectors in data and the number of rows in the dosing matrix.

Number of groups or output
time vectors in data

Number of rows in the
dosing matrix

Simulation results

1 0, that is, dosing is empty [] The total number of SimData
objects in ynew is 1.

No doses are applied during
simulation.

1 1 The total number of SimData
objects in ynew is 1.

The given row of doses is
applied during the simulation.

1 N The total number of SimData
objects in ynew is N.

Each row of dosing is applied
to each simulation.

2 Methods

2-600

Number of groups or output
time vectors in data

Number of rows in the
dosing matrix

Simulation results

N 0, that is, dosing is empty [] The total number of SimData
objects in ynew is N.

No doses are applied during
simulation.

N 1 The total number of SimData
objects in ynew is N.

The same row of doses is
applied to each simulation.

N N The total number of SimData
objects in ynew is N.

Each row of dosing is applied
to a separate group, in the same
order that groups appear in
data.

M N The function throws an error
when M ≠ N.

parameterEstimates — Estimated parameter values
table

Estimated parameter values, returned as a table.

If you specify the value argument as 'individual', these estimated values will differ from those
values from the original fit since parameter values are recalculated using sbiosampleparameters.

If 'ParameterType' is 'population', the estimated parameter values are identical to
resultsObj.PopulationParameterEstimates property unless you specify a new groupedData
object data with new covariate data.

randomEffects — Random effect values
table

Random effect values, specified as a table.

See Also
NLMEResults object | sbiofitmixed | sbiosampleparameters | sbiosampleerror

Introduced in R2014a

 random(NLMEResults)

2-601

ParameterConfidenceInterval
Object containing confidence interval results for estimated parameters

Description
The ParameterConfidenceInterval object contains confidence interval results for the estimated
parameters.

Creation
Create a parameter confidence interval object using sbioparameterci.

Properties
Type — Confidence interval type
'gaussian' | 'profileLikelihood' | 'bootstrap'

This property is read-only.

Confidence interval type, specified as 'gaussian', 'profileLikelihood', or 'bootstrap'.
Example: 'bootstrap'

Alpha — Confidence level
positive scalar

This property is read-only.

Confidence level, (1-Alpha) * 100%, specified as a positive scalar between 0 and 1.
Example: 0.01

GroupNames — Original group names from data used for fitting
cell array of character vectors

This property is read-only.

Original group names from the data used for fitting the model, specified as a cell array of character
vectors. Each cell contains the name of a group.
Example: {'1'}{'2'}{'3'}

Results — Confidence interval results
table

This property is read-only.

Confidence interval results, specified as a table. The table contains the following columns.

2 Methods

2-602

Column Name Description
Name Name of the estimated parameter
Estimate Estimated parameter value
Bounds Lower and upper parameter bounds (if defined in

the original fit)
Group Group name (if available)
CategoryVariableName Name of category (if defined in the original fit)
CategoryValue Value of the category variable specified by

CategoryVariableName
ConfidenceInterval Confidence interval values
Status Confidence interval estimation status, specified

as one of the following categorical values:
success, constrained, estimable, not
estimable (for details, see “Parameter
Confidence Interval Estimation Status” on page
2-611)

ExitFlags — Exit flags returned during calculation of bootstrap confidence intervals
vector

This property is read-only.

Exit flags returned during the calculation of bootstrap confidence intervals only, specified as a
vector of integers. Each integer is an exit flag returned by the estimation function (except nlinfit)
used to fit parameters during bootstrapping. The same estimation function used in the original fit is
used for bootstrapping.

Each flag indicates the success or failure status of the fitting performed to create a bootstrap sample.
Refer to the reference page of the corresponding estimation function for the meaning of the exit flag.

If the estimation function does not return an exit flag, ExitFlags is set to []. For the gaussian and
profileLikelihood confidence intervals, ExitFlags is not supported and is always set to [].

Object Functions
ci2table Return summary table of confidence interval results
plot Plot parameter confidence interval results

Examples

Compute Confidence Intervals for Estimated PK Parameters and Model Predictions

Load Data

Load the sample data to fit. The data is stored as a table with variables ID , Time , CentralConc , and
PeripheralConc. This synthetic data represents the time course of plasma concentrations measured at
eight different time points for both central and peripheral compartments after an infusion dose for
three individuals.

 ParameterConfidenceInterval

2-603

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},'Marker','+',...
 'LineStyle','none');

Create Model

Create a two-compartment model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Define Dosing

Define the infusion dose.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;

2 Methods

2-604

dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';

Define Parameters

Define the parameters to estimate. Set the parameter bounds for each parameter. In addition to these
explicit bounds, the parameter transformations (such as log, logit, or probit) impose implicit bounds.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};
paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,...
 'InitialValue',[1 1 1 1],...
 'Bounds',[0.1 3;0.1 10;0 10;0.1 2]);

Fit Model

Perform an unpooled fit, that is, one set of estimated parameters for each patient.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Perform a pooled fit, that is, one set of estimated parameters for all patients.

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Compute Confidence Intervals for Estimated Parameters

Compute 95% confidence intervals for each estimated parameter in the unpooled fit.

ciParamUnpooled = sbioparameterci(unpooledFit);

Display Results

Display the confidence intervals in a table format. For details about the meaning of each estimation
status, see “Parameter Confidence Interval Estimation Status” on page 2-611.

ci2table(ciParamUnpooled)

ans =

 12x7 table

 Group Name Estimate ConfidenceInterval Type Alpha Status
 _____ ______________ ________ __________________ ________ _____ ___________

 1 {'Central' } 1.422 1.1533 1.6906 Gaussian 0.05 estimable
 1 {'Peripheral'} 1.5629 0.83143 2.3551 Gaussian 0.05 constrained
 1 {'Q12' } 0.47159 0.20093 0.80247 Gaussian 0.05 constrained
 1 {'Cl_Central'} 0.52898 0.44842 0.60955 Gaussian 0.05 estimable
 2 {'Central' } 1.8322 1.7893 1.8751 Gaussian 0.05 success
 2 {'Peripheral'} 5.3368 3.9133 6.7602 Gaussian 0.05 success
 2 {'Q12' } 0.27641 0.2093 0.34351 Gaussian 0.05 success
 2 {'Cl_Central'} 0.86034 0.80313 0.91755 Gaussian 0.05 success
 3 {'Central' } 1.6657 1.5818 1.7497 Gaussian 0.05 success
 3 {'Peripheral'} 5.5632 4.7557 6.3708 Gaussian 0.05 success
 3 {'Q12' } 0.78361 0.65581 0.91142 Gaussian 0.05 success
 3 {'Cl_Central'} 1.0233 0.96375 1.0828 Gaussian 0.05 success

 ParameterConfidenceInterval

2-605

Plot the confidence intervals. If the estimation status of a confidence interval is success, it is plotted
in blue (the first default color). Otherwise, it is plotted in red (the second default color), which
indicates that further investigation into the fitted parameters may be required. If the confidence
interval is not estimable, then the function plots a red line with a centered cross. If there are any
transformed parameters with estimated values 0 (for the log transform) and 1 or 0 (for the probit or
logit transform), then no confidence intervals are plotted for those parameter estimates. To see the
color order, type get(groot,'defaultAxesColorOrder').

Groups are displayed from left to right in the same order that they appear in the GroupNames
property of the object, which is used to label the x-axis. The y-labels are the transformed parameter
names.

plot(ciParamUnpooled)

Compute the confidence intervals for the pooled fit.

ciParamPooled = sbioparameterci(pooledFit);

Display the confidence intervals.

ci2table(ciParamPooled)

ans =

 4x7 table

2 Methods

2-606

 Group Name Estimate ConfidenceInterval Type Alpha Status
 ______ ______________ ________ __________________ ________ _____ ___________

 pooled {'Central' } 1.6626 1.3287 1.9965 Gaussian 0.05 estimable
 pooled {'Peripheral'} 2.687 0.89848 4.8323 Gaussian 0.05 constrained
 pooled {'Q12' } 0.44956 0.11445 0.85152 Gaussian 0.05 constrained
 pooled {'Cl_Central'} 0.78493 0.59222 0.97764 Gaussian 0.05 estimable

Plot the confidence intervals. The group name is labeled as "pooled" to indicate such fit.

plot(ciParamPooled)

Plot all the confidence interval results together. By default, the confidence interval for each
parameter estimate is plotted on a separate axes. Vertical lines group confidence intervals of
parameter estimates that were computed in a common fit.

ciAll = [ciParamUnpooled;ciParamPooled];
plot(ciAll)

 ParameterConfidenceInterval

2-607

You can also plot all confidence intervals in one axes grouped by parameter estimates using the
'Grouped' layout.

plot(ciAll,'Layout','Grouped')

2 Methods

2-608

In this layout, you can point to the center marker of each confidence interval to see the group name.
Each estimated parameter is separated by a vertical black line. Vertical dotted lines group confidence
intervals of parameter estimates that were computed in a common fit. Parameter bounds defined in
the original fit are marked by square brackets. Note the different scales on the y-axis due to
parameter transformations. For instance, the y-axis of Q12 is in the linear scale, but that of Central
is in the log scale due to its log transform.

Compute Confidence Intervals for Model Predictions

Calculate 95% confidence intervals for the model predictions, that is, simulation results using the
estimated parameters.

% For the pooled fit
ciPredPooled = sbiopredictionci(pooledFit);
% For the unpooled fit
ciPredUnpooled = sbiopredictionci(unpooledFit);

Plot Confidence Intervals for Model Predictions

The confidence interval for each group is plotted in a separate column, and each response is plotted
in a separate row. Confidence intervals limited by the bounds are plotted in red. Confidence intervals
not limited by the bounds are plotted in blue.

plot(ciPredPooled)

 ParameterConfidenceInterval

2-609

plot(ciPredUnpooled)

2 Methods

2-610

More About
Parameter Confidence Interval Estimation Status

The following are the definitions of confidence interval estimation statuses for different types of
confidence intervals.

Gaussian Confidence Interval

• not estimable – The confidence interval is unbounded.
• constrained – The confidence interval is constrained by a parameter bound defined in the

original fit. Parameter transformations (such as log, probit, or logit) impose implicit bounds
on the estimated parameters, for example, positivity constraints. Such bounds can lead to the
overestimation of the confidence, that is, the confidence interval can be smaller than expected.

• success – All confidence intervals for all parameters are computed successfully.
• estimable – The confidence interval is computed successfully, but other parameters have an

estimation status of not estimable or constrained.

For more details about the algorithm, see “Gaussian Confidence Interval Calculation” on page 1-193.

Profile Likelihood Confidence Interval

• not estimable – The computation of the confidence interval is unsuccessful. This can happen
when the profile likelihood curve is not strictly monotonically decreasing, or due to computation
failures in the profile likelihood.

 ParameterConfidenceInterval

2-611

• constrained – The profile likelihood curve is bounded by the bounds on the estimated
parameters defined in the original fit. Parameter transformations, such as log, logit, probit,
impose implicit bounds on the estimated parameters, for example, positivity constraints.

• success – If there is no parameter estimate with the confidence interval estimation status
constrained or not estimable, then the function sets all estimation statuses to success.

• estimable – The confidence interval is computed successfully, but other parameters have an
estimation status of not estimable or constrained.

For more details about the algorithm, see “Profile Likelihood Confidence Interval Calculation” on
page 1-193.

Bootstrap Confidence Interval

• constrained – The confidence interval is closer than Tolerance to the parameter bounds
defined in the original fit.

• success – All confidence intervals were further away from the parameter bounds than
Tolerance.

• estimable – The confidence interval is computed successfully, but other parameters have an
estimation status of constrained.

For more details about the algorithm, see “Bootstrap Confidence Interval Calculation” on page 1-195.

See Also
sbioparameterci | sbiopredictionci | PredictionConfidenceInterval

Introduced in R2017b

2 Methods

2-612

PredictionConfidenceInterval
Object containing confidence interval results for model predictions

Description
The PredictionConfidenceInterval object contains confidence interval results for model
predictions (that is, simulation results based on estimated parameters).

Creation
Create a prediction confidence interval object using sbiopredictionci.

Properties
ResponseNames — Names of model responses
cell array of character vectors

This property is read-only.

Names of model responses in the parameter fit, specified as a cell array of character vectors. Each
cell contains the name of a response.
Example: {'Central.Drug_Central' } {'Peripheral.Drug_Peripheral'}

Status — Confidence interval estimation status
categorical

This property is read-only.

Confidence interval estimation status, specified as one of the following categorical values:

• success – The proper confidence intervals are found. That is, no model prediction is constrained
by the parameter bounds defined in the original fit.

• constrained – The confidence intervals are found, but the confidence interval for the model
response is constrained by a parameter bound defined in the original fit.

• not estimable – No confidence intervals are found.
• estimable – The proper confidence intervals are found, but other model predictions have an

estimation status of either constrained or not estimable. For the bootstrap confidence
interval, the status is always set to estimable.

For details, see “Gaussian Confidence Interval Calculation for Model Predictions” on page 1-216 and
“Bootstrap Confidence Interval Calculation” on page 1-217.
Example: success

Type — Confidence interval type
'gaussian' | 'bootstrap'

This property is read-only.

 PredictionConfidenceInterval

2-613

Confidence interval type, specified as 'gaussian' or 'bootstrap'.
Example: 'bootstrap'

Alpha — Confidence level
positive scalar

This property is read-only.

Confidence level, (1-Alpha) * 100%, specified as a positive scalar between 0 and 1.
Example: 0.01

GroupNames — Original group names from data used for fitting
cell array of character vectors

This property is read-only.

Original group names from the data used for fitting the model, specified as a cell array of character
vectors. Each cell contains the name of a group.
Example: {'1'}{'2'}{'3'}

Results — Confidence interval results
table

This property is read-only.

Confidence interval results, specified as a table. The table contains the following columns.

Column Name Description
Group Group name
Response Model response name
Time Simulation time
Estimate Estimated response value
ConfidenceInterval Confidence interval values

ExitFlags — Exit flags returned during calculation of bootstrap confidence intervals
vector

This property is read-only.

Exit flags returned during the calculation of bootstrap confidence intervals only, specified as a
vector of integers. Each integer is an exit flag returned by the estimation function (except nlinfit)
used to fit parameters during bootstrapping. The same estimation function used in the original fit is
used for bootstrapping.

Each flag indicates the success or failure status of the fitting performed to create a bootstrap sample.
Refer to the reference page of the corresponding estimation function for the meaning of the exit flag.

If the estimation function does not return an exit flag, ExitFlags is set to []. For the gaussian
confidence intervals, ExitFlags is not supported and is always set to [].

2 Methods

2-614

Object Functions
plot Plot confidence interval results for model predictions

Examples

Compute Confidence Intervals for Estimated PK Parameters and Model Predictions

Load Data

Load the sample data to fit. The data is stored as a table with variables ID , Time , CentralConc , and
PeripheralConc. This synthetic data represents the time course of plasma concentrations measured at
eight different time points for both central and peripheral compartments after an infusion dose for
three individuals.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},'Marker','+',...
 'LineStyle','none');

Create Model

Create a two-compartment model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');

 PredictionConfidenceInterval

2-615

pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Define Dosing

Define the infusion dose.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';

Define Parameters

Define the parameters to estimate. Set the parameter bounds for each parameter. In addition to these
explicit bounds, the parameter transformations (such as log, logit, or probit) impose implicit bounds.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};
paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,...
 'InitialValue',[1 1 1 1],...
 'Bounds',[0.1 3;0.1 10;0 10;0.1 2]);

Fit Model

Perform an unpooled fit, that is, one set of estimated parameters for each patient.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Perform a pooled fit, that is, one set of estimated parameters for all patients.

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Compute Confidence Intervals for Estimated Parameters

Compute 95% confidence intervals for each estimated parameter in the unpooled fit.

ciParamUnpooled = sbioparameterci(unpooledFit);

Display Results

Display the confidence intervals in a table format. For details about the meaning of each estimation
status, see “Parameter Confidence Interval Estimation Status” on page 2-611.

ci2table(ciParamUnpooled)

ans =

 12x7 table

2 Methods

2-616

 Group Name Estimate ConfidenceInterval Type Alpha Status
 _____ ______________ ________ __________________ ________ _____ ___________

 1 {'Central' } 1.422 1.1533 1.6906 Gaussian 0.05 estimable
 1 {'Peripheral'} 1.5629 0.83143 2.3551 Gaussian 0.05 constrained
 1 {'Q12' } 0.47159 0.20093 0.80247 Gaussian 0.05 constrained
 1 {'Cl_Central'} 0.52898 0.44842 0.60955 Gaussian 0.05 estimable
 2 {'Central' } 1.8322 1.7893 1.8751 Gaussian 0.05 success
 2 {'Peripheral'} 5.3368 3.9133 6.7602 Gaussian 0.05 success
 2 {'Q12' } 0.27641 0.2093 0.34351 Gaussian 0.05 success
 2 {'Cl_Central'} 0.86034 0.80313 0.91755 Gaussian 0.05 success
 3 {'Central' } 1.6657 1.5818 1.7497 Gaussian 0.05 success
 3 {'Peripheral'} 5.5632 4.7557 6.3708 Gaussian 0.05 success
 3 {'Q12' } 0.78361 0.65581 0.91142 Gaussian 0.05 success
 3 {'Cl_Central'} 1.0233 0.96375 1.0828 Gaussian 0.05 success

Plot the confidence intervals. If the estimation status of a confidence interval is success, it is plotted
in blue (the first default color). Otherwise, it is plotted in red (the second default color), which
indicates that further investigation into the fitted parameters may be required. If the confidence
interval is not estimable, then the function plots a red line with a centered cross. If there are any
transformed parameters with estimated values 0 (for the log transform) and 1 or 0 (for the probit or
logit transform), then no confidence intervals are plotted for those parameter estimates. To see the
color order, type get(groot,'defaultAxesColorOrder').

Groups are displayed from left to right in the same order that they appear in the GroupNames
property of the object, which is used to label the x-axis. The y-labels are the transformed parameter
names.

plot(ciParamUnpooled)

 PredictionConfidenceInterval

2-617

Compute the confidence intervals for the pooled fit.

ciParamPooled = sbioparameterci(pooledFit);

Display the confidence intervals.

ci2table(ciParamPooled)

ans =

 4x7 table

 Group Name Estimate ConfidenceInterval Type Alpha Status
 ______ ______________ ________ __________________ ________ _____ ___________

 pooled {'Central' } 1.6626 1.3287 1.9965 Gaussian 0.05 estimable
 pooled {'Peripheral'} 2.687 0.89848 4.8323 Gaussian 0.05 constrained
 pooled {'Q12' } 0.44956 0.11445 0.85152 Gaussian 0.05 constrained
 pooled {'Cl_Central'} 0.78493 0.59222 0.97764 Gaussian 0.05 estimable

Plot the confidence intervals. The group name is labeled as "pooled" to indicate such fit.

plot(ciParamPooled)

2 Methods

2-618

Plot all the confidence interval results together. By default, the confidence interval for each
parameter estimate is plotted on a separate axes. Vertical lines group confidence intervals of
parameter estimates that were computed in a common fit.

ciAll = [ciParamUnpooled;ciParamPooled];
plot(ciAll)

 PredictionConfidenceInterval

2-619

You can also plot all confidence intervals in one axes grouped by parameter estimates using the
'Grouped' layout.

plot(ciAll,'Layout','Grouped')

2 Methods

2-620

In this layout, you can point to the center marker of each confidence interval to see the group name.
Each estimated parameter is separated by a vertical black line. Vertical dotted lines group confidence
intervals of parameter estimates that were computed in a common fit. Parameter bounds defined in
the original fit are marked by square brackets. Note the different scales on the y-axis due to
parameter transformations. For instance, the y-axis of Q12 is in the linear scale, but that of Central
is in the log scale due to its log transform.

Compute Confidence Intervals for Model Predictions

Calculate 95% confidence intervals for the model predictions, that is, simulation results using the
estimated parameters.

% For the pooled fit
ciPredPooled = sbiopredictionci(pooledFit);
% For the unpooled fit
ciPredUnpooled = sbiopredictionci(unpooledFit);

Plot Confidence Intervals for Model Predictions

The confidence interval for each group is plotted in a separate column, and each response is plotted
in a separate row. Confidence intervals limited by the bounds are plotted in red. Confidence intervals
not limited by the bounds are plotted in blue.

plot(ciPredPooled)

 PredictionConfidenceInterval

2-621

plot(ciPredUnpooled)

2 Methods

2-622

See Also
sbioparameterci | sbiopredictionci | ParameterConfidenceInterval

Introduced in R2017b

 PredictionConfidenceInterval

2-623

Reaction object
Object containing model reaction information

Description
The reaction object represents a reaction, which describes a transformation, transport, or binding
process that changes one or more species. Typically, the change is the amount of a species. For
example:

 Creatine + ATP <-> ADP + phosphocreatine

 glucose + 2 ADP + 2 Pi -> 2 lactic acid + 2 ATP + 2 H2O

Spaces are required before and after species names and stoichiometric values.

See “Property Summary” on page 2-625 for links to reaction object property reference pages.

Properties define the characteristics of an object. Use the get and set commands to list object
properties and change their values at the command line. You can graphically change object properties
in the graphical user interface.

Note If you create a new reaction at the command line and do not specify its name, the reaction gets
an automatic name Reaction_N, where N is a positive integer. N increases monotonically as you add
more reactions.

If you copy a reaction using copyobj, the name of the copied reaction is generated by appending _N,
where N is the smallest integer not in use by that prefix. For example, GivenName_1 gets copied to
GivenName_1_1.

Constructor Summary
addreaction (model) Create reaction object and add to model object

2 Methods

2-624

Method Summary

addkineticlaw (reaction) Create kinetic law object and add to reaction object
addproduct (reaction) Add product species object to reaction object
addreactant (reaction) Add species object as reactant to reaction object
copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
rename Rename object and update expressions
rmproduct (reaction) Remove species object from reaction object products
rmreactant (reaction) Remove species object from reaction object reactants
set Set SimBiology object properties

Property Summary

Active Indicate object in use during simulation
KineticLaw Show kinetic law used for ReactionRate
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Products Array of reaction products
Reactants Array of reaction reactants
Reaction Reaction object reaction
ReactionRate Reaction rate equation in reaction object
Reversible Specify whether reaction is reversible or irreversible
Stoichiometry Species coefficients in reaction
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

See Also
“Definitions and Evaluations of Reactions in SimBiology Models”, AbstractKineticLaw object,
Configset object, KineticLaw object, Model object, Parameter object, Root object,
Rule object, Species object

Introduced in R2006b

 Reaction object

2-625

remove
Remove entries from SimBiology.Scenarios object

Syntax
sObj = remove(sObj,entryNameOrIndex)
sObj = remove(sObj,entryIndex,subIndex)

Description
sObj = remove(sObj,entryNameOrIndex) removes the entry (or subentry on page 2-744)
entryNameorIndex from the SimBiology.Scenarios object sObj.

sObj = remove(sObj,entryIndex,subIndex) removes the subentry subIndex of the entry
entryIndex.

Examples

Generate Different Simulation Scenarios for Glucose-Insulin Response

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo','m1');

The model contains different parameter values and initial conditions that represents different insulin
impairments (such as Type 2 diabetes, low insulin sensitivity, and so on) stored in five variants.

variants = getvariant(m1)

variants =
 SimBiology Variant Array

 Index: Name: Active:
 1 Type 2 diabetic false
 2 Low insulin se... false
 3 High beta cell... false
 4 Low beta cell ... false
 5 High insulin s... false

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Select a dose that represents a single meal of 78 grams of glucose.

singleMeal = sbioselect(m1,'Name','Single Meal');

2 Methods

2-626

Create a Scenarios object to represent different initial conditions combined with the dose. That is,
create a scenario object where each variant is paired (or combined) with the dose, for a total of five
simulation scenarios.

sObj = SimBiology.Scenarios;
add(sObj,'cartesian','variants',variants);
add(sObj,'cartesian','dose',singleMeal)

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ________ ___________________ ______

 Entry 1 variants SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

sObj contains two entries. Use the generate function to combine the entries and generate five
scenarios. The function returns a scenarios table, where each row represents a scenario and each
column represents an entry of the Scenarios object.

scenariosTbl = generate(sObj)

scenariosTbl=5×2 table
 variants dose
 ______________________ _________________________

 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose

Change the entry name of the first entry.

rename(sObj,1,'Insulin Impairements')

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ____________________ ___________________ ______

 Entry 1 Insulin Impairements SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

Create a SimFunction object to simulate the generated scenarios. Use the Scenarios object as the
input and specify the plasma glucose and insulin concentrations as reponses (outputs of the function
to be plotted). Specify [] for the dose input argument since the Scenarios object already has the
dosing information.

f = createSimFunction(m1,sObj,{'[Plasma Glu Conc]','[Plasma Ins Conc]'},[])

 remove

2-627

f =
SimFunction

Parameters:

 Name Value Type Units
 _________________________ ______ _____________ ___

 {'Plasma Volume (Glu)' } 1.88 {'parameter'} {'deciliter' }
 {'k1' } 0.065 {'parameter'} {'1/minute' }
 {'k2' } 0.079 {'parameter'} {'1/minute' }
 {'Plasma Volume (Ins)' } 0.05 {'parameter'} {'liter' }
 {'m1' } 0.19 {'parameter'} {'1/minute' }
 {'m2' } 0.484 {'parameter'} {'1/minute' }
 {'m4' } 0.1936 {'parameter'} {'1/minute' }
 {'m5' } 0.0304 {'parameter'} {'minute/picomole' }
 {'m6' } 0.6469 {'parameter'} {'dimensionless' }
 {'Hepatic Extraction' } 0.6 {'parameter'} {'dimensionless' }
 {'kmax' } 0.0558 {'parameter'} {'1/minute' }
 {'kmin' } 0.008 {'parameter'} {'1/minute' }
 {'kabs' } 0.0568 {'parameter'} {'1/minute' }
 {'kgri' } 0 {'parameter'} {'1/minute' }
 {'f' } 0.9 {'parameter'} {'dimensionless' }
 {'a' } 0 {'parameter'} {'1/milligram' }
 {'b' } 0.82 {'parameter'} {'dimensionless' }
 {'c' } 0 {'parameter'} {'1/milligram' }
 {'d' } 0.01 {'parameter'} {'dimensionless' }
 {'kp1' } 2.7 {'parameter'} {'milligram/minute' }
 {'kp2' } 0.0021 {'parameter'} {'1/minute' }
 {'kp3' } 0.009 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'kp4' } 0.0618 {'parameter'} {'(milligram/minute)/picomole' }
 {'ki' } 0.0079 {'parameter'} {'1/minute' }
 {'[Ins Ind Glu Util]' } 1 {'parameter'} {'milligram/minute' }
 {'Vm0' } 2.5129 {'parameter'} {'milligram/minute' }
 {'Vmx' } 0.047 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'Km' } 225.59 {'parameter'} {'milligram' }
 {'p2U' } 0.0331 {'parameter'} {'1/minute' }
 {'K' } 2.28 {'parameter'} {'picomole/(milligram/deciliter)' }
 {'alpha' } 0.05 {'parameter'} {'1/minute' }
 {'beta' } 0.11 {'parameter'} {'(picomole/minute)/(milligram/deciliter)'}
 {'gamma' } 0.5 {'parameter'} {'1/minute' }
 {'ke1' } 0.0005 {'parameter'} {'1/minute' }
 {'ke2' } 339 {'parameter'} {'milligram' }
 {'Basal Plasma Glu Conc'} 91.76 {'parameter'} {'milligram/deciliter' }
 {'Basal Plasma Ins Conc'} 25.49 {'parameter'} {'picomole/liter' }

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

2 Methods

2-628

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

Simulate the model for 24 hours and plot the simulation data. The data contains five runs, where each
run represents a scenario in the Scenarios object.

sd = f(sObj,24);
sbioplot(sd)

ans =
 Axes (SbioPlot) with properties:

 XLim: [0 30]
 YLim: [0 450]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.0920 0.1100 0.2956 0.8150]
 Units: 'normalized'

 Show all properties

If you have Statistics and Machine Learning Toolbox™, you can also draw sample values for model
quantities from various probability distributions. For instance, suppose that the parameters Vmx and

 remove

2-629

kp3, which are known for the low and high insulin sensitivity, follow the lognormal distribution. You
can generate sample values for these parameters from such a distribution, and perform a scan to
explore model behavior.

Define the lognormal probability distribution object for Vmx.

pd_Vmx = makedist('lognormal')

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = 0
 sigma = 1

By definition, the parameter mu is the mean of logarithmic values. To vary the parameter value
around the base (model) value of the parameter, set mu to log(model_value). Set the standard
deviation (sigma) to 0.2. For a small sigma value, the mean of a lognormal distribtion is
approximately equal to log(model_value). For details, see “Lognormal Distribution” (Statistics and
Machine Learning Toolbox).

Vmx = sbioselect(m1,'Name','Vmx');
pd_Vmx.mu = log(Vmx.Value);
pd_Vmx.sigma = 0.2

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = -3.05761
 sigma = 0.2

Similarly define the probability distribution for kp3.

pd_kp3 = makedist('lognormal');
kp3 = sbioselect(m1,'Name','kp3');
pd_kp3.mu = log(kp3.Value);
pd_kp3.sigma = 0.2

pd_kp3 =
 LognormalDistribution

 Lognormal distribution
 mu = -4.71053
 sigma = 0.2

Now define a joint probability distribution to draw sample values for Vmx and kp3, with a rank
correlation to specify some correlation between these two parameters. Note that this correlation
assumption is for the illustration purposes of this example only and may not be biologically relevant.

First remove the variants entry (entry 1) from sObj.

remove(sObj,1)

ans =
 Scenarios (1 scenarios)

2 Methods

2-630

 Name Content Number
 ____ _______________ ______

 Entry 1 dose SimBiology dose 1

 See also Expression property.

Add an entry that defines the joint probability distribution with a rank correlation matrix.

add(sObj,'cartesian',["Vmx","kp3"],[pd_Vmx, pd_kp3],'RankCorrelation',[1,0.5;0.5,1])

ans =
 Scenarios (2 scenarios)

 Name Content Number
 ____ ______________________ ___________

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 2 (default)
 + Entry 2.2) kp3 Lognormal distribution 2 (default)

 See also Expression property.

By default, the number of samples to draw from the joint distribution is set to 2. Increase the number
of samples.

updateEntry(sObj,2,'Number',50)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Verify that the Scenarios object can be simulated with the model. The verify function throws an
error if any entry does not resolve uniquely to an object in the model or the entry contents have
inconsistent lengths (sample sizes). The function throws a warning if multiple entries resolve to the
same object in the model.

verify(sObj,m1)

Generate the simulation scenarios. Plot the sample values using plotmatrix. You can see the value
of Vmx is varied around its model value 0.047 and that of kp3 around 0.009.

sTbl = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl.Vmx,sTbl.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";

 remove

2-631

ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios using the same SimFunction you created previously. You do not need to create
a new SimFunction object even though the Scenarios object has been updated.

sd2 = f(sObj,24);
sbioplot(sd2);

2 Methods

2-632

By default, SimBiology uses the random sampling method. You can change it to the Latin hypercube
sampling (or sobol or halton) for a more systematic space-filling approach.

entry2struct = getEntry(sObj,2)

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'random'
 SamplingOptions: [0x0 struct]

entry2struct.SamplingMethod = 'lhs'

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'lhs'
 SamplingOptions: [0x0 struct]

You can now use the updated structure to modify entry 2.

 remove

2-633

updateEntry(sObj,2,entry2struct)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Visualize the sample values.

sTbl2 = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl2.Vmx,sTbl2.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios.

sd3 = f(sObj,24);
sbioplot(sd3);

2 Methods

2-634

Restore warning settings.

warning(warnSettings);

Input Arguments
sObj — Simulation scenarios
SimBiology.Scenarios object

Simulation scenarios, specified as a SimBiology.Scenarios object.

entryNameOrIndex — Entry name or index
character vector | string | scalar positive integer

Entry name or index, specified as a character vector, string, or scalar positive integer. You can also
specify the name of a subentry.

If you are specifying an index, it must be smaller than or equal to the number of entries in the object.
Data Types: double | char | string

entryIndex — Entry index
scalar positive integer

Entry index, specified as a scalar positive integer. The entry index must be smaller than or equal to
the number of entries in the object.

 remove

2-635

Data Types: double

subIndex — Entry subindex
scalar positive integer

Entry subindex, specified as a scalar positive integer. The subindex must be smaller than or equal to
the number of subentries in the entry.
Data Types: double

Output Arguments
sObj — Simulation scenarios
Scenarios object

Simulation scenarios, returned as a Scenarios object.

See Also
SimBiology.Scenarios | SimFunction object | createSimFunction (model)

Topics
“SimBiology.Scenarios Terminology” on page 2-744
“Combine Simulation Scenarios in SimBiology”

Introduced in R2019b

2 Methods

2-636

remove
Remove simulation data from SimData object using expressions

Syntax
[t,x,names] = remove(simdata,query)
sdOut = remove(simdata,query)
___ = remove(simdata,query,'Format',formatValue)

Description
[t,x,names] = remove(simdata,query) returns the simulation time points t, the simulation
data x, and corresponding names after removing the simulation data of model components that
match query.

sdOut = remove(simdata,query) returns the simulation results after removing the simulation
data of model components that match the query as a SimData object sdOut.

___ = remove(simdata,query,'Format',formatValue) returns the simulation data in the
specified data format.

Examples

Remove Subset of Simulation Data from SimData

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo.sbproj','m1');

Suppress an information warning that is issued during simulations.

warnSettings = warning('off', 'SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Simulate a single meal for a normal subject for 7 hours.

singleMeal = sbioselect(m1,'Name','Single Meal');
cs = getconfigset(m1,'active');
cs.StopTime = 7;
sd1 = sbiosimulate(m1,singleMeal)

 SimBiology Simulation Data

 ModelName: Cobelli's Glucose-Insulin System
 Logged Data:
 Species: 15
 Compartment: 0
 Parameter: 24
 Sensitivity: 0

 remove

2-637

 Observable: 0

sbioplot(sd1);

Remove all parameter data logged in the SimData object sd.

[t,x,names] = remove(sd1,{'Type','parameter'});

Remove all parameter data and return as a new SimData object.

sd2 = remove(sd1,{'Type','parameter'});
sbioplot(sd2);

2 Methods

2-638

Remove the simulation data of a species by specifying its name.

sd3 = removebyname(sd2,["[Insulin secretion].[Ins Delay 2]"]);
sbioplot(sd3);

 remove

2-639

Restore the warning settings.

warning(warnSettings);

Input Arguments
simdata — Simulation data
SimData object | array of SimData objects

Simulation data, specified as a SimData object or array of SimData objects.

query — Search query
cell array of character vectors | string vector

Search query, specified as a cell array of character vectors or a string vector. The query consists of
some combination of name-value pair arguments or 'Where' clauses. For a more complete
description of the query syntax, including 'Where' clauses and their supported condition types, see
sbioselect.

You can use any of the metadata fields available in the DataInfo property of a SimData object in the
query. The fields include 'Type', 'Name', 'Units', 'Compartment' (for species only), and
'Reaction' (for parameters only).
Example: {'Type','species'}
Data Types: string | cell

2 Methods

2-640

formatValue — Simulation data format
character vector | string

Simulation data format, specified as a character vector or string. Some formats require you to specify
only one output argument. The valid formats follow.

• 'num' — This format returns simulation time points and simulation data in numeric arrays and
the names of quantities and sensitivities as a cell array. This format is the default when you run
getdata with multiple output arguments.

• 'nummetadata' — This format returns a cell array of metadata structures instead of the names
of quantities and sensitivities as the third output argument.

• 'numqualnames' — This format returns qualified names in the third output argument to resolve
ambiguities.

You must specify only one output argument for the following formats.

• 'simdata' — This format returns data in a new SimData object or an array of SimData objects.
This format is the default when you specify a single output argument.

• 'struct' — This format returns a structure or structure array that contains both data and
metadata.

• 'ts' — This format returns data as a cell array.

• If simdata is scalar, the cell array is an m-by-1 array, where each element is a timeseries
object. m is the number of quantities and sensitivities logged during the simulation.

• If simdata is not scalar, the cell array is k-by-1, where each element of the cell array is an m-
by-1 cell array of timeseries objects. k is the size of simdata, and m is the number of
quantities or sensitivities in each SimData object in simdata. In other words, the function
returns an individual time series for each state or column and for each SimData object in
simdata.

• 'tslumped' — This format returns the data as a cell array of timeseries objects, combining
data from each SimData object into a single time series.

Output Arguments
t — Simulation time points
numeric vector | cell array

Simulation time points, returned as a numeric vector or cell array. If simdata is scalar, t is an n-by-1
vector, where n is the number of time points. If simdata is an array of objects, t is a k-by-1 cell array,
where k is the size of simdata.

x — Simulation data
numeric matrix | cell array

Simulation data, returned as a numeric matrix or cell array. If simdata is scalar, x is an n-by-m
matrix, where n is the number of time points and m is the number of quantities and sensitivities
logged during the simulation. If simdata is an array of objects, x is a k-by-1 cell array, where k is the
size of simdata.

names — Names of quantities and sensitivities
cell array

 remove

2-641

Names of quantities and sensitivities logged during the simulation, returned as a cell array. If
simdata is scalar, names is an m-by-1 cell array. If simdata is an array of objects, names is a k-by-1
cell array, where k is the size of simdata.

sdOut — Simulation results
SimData object

Simulation results, returned as a SimData object.

See Also
SimData | select | selectbyname

Introduced in R2020a

2 Methods

2-642

removebyname
Remove simulation data by name from SimData object

Syntax
[t,x,names] = removebyname(simdata,selectNames)
sdOut = removebyname(simdata,selectNames)
___ = removebyname(simdata,selectNames,'Format',formatValue)

Description
[t,x,names] = removebyname(simdata,selectNames) returns the simulation time points t,
the simulation data x, and corresponding names after removing the simulation data of model
components specified by selectNames.

sdOut = removebyname(simdata,selectNames) returns the simulation results after removing
the simulation data of model components specified by selectNames as a SimData object sdOut.

___ = removebyname(simdata,selectNames,'Format',formatValue) returns the
simulation data in the specified data format.

Examples

Remove Subset of Simulation Data from SimData

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo.sbproj','m1');

Suppress an information warning that is issued during simulations.

warnSettings = warning('off', 'SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Simulate a single meal for a normal subject for 7 hours.

singleMeal = sbioselect(m1,'Name','Single Meal');
cs = getconfigset(m1,'active');
cs.StopTime = 7;
sd1 = sbiosimulate(m1,singleMeal)

 SimBiology Simulation Data

 ModelName: Cobelli's Glucose-Insulin System
 Logged Data:
 Species: 15
 Compartment: 0
 Parameter: 24
 Sensitivity: 0

 removebyname

2-643

 Observable: 0

sbioplot(sd1);

Remove all parameter data logged in the SimData object sd.

[t,x,names] = remove(sd1,{'Type','parameter'});

Remove all parameter data and return as a new SimData object.

sd2 = remove(sd1,{'Type','parameter'});
sbioplot(sd2);

2 Methods

2-644

Remove the simulation data of a species by specifying its name.

sd3 = removebyname(sd2,["[Insulin secretion].[Ins Delay 2]"]);
sbioplot(sd3);

 removebyname

2-645

Restore the warning settings.

warning(warnSettings);

Input Arguments
simdata — Simulation data
SimData object | array of SimData objects

Simulation data, specified as a SimData object or array of SimData objects.

selectNames — Names of states
character vector | string | string vector | cell array of character vectors

Names of states that you want to select data for, specified as a character vector, string, string vector,
or cell array of character vectors.
Example: {'x1','x2','x3'}
Data Types: char | string | cell

formatValue — Simulation data format
character vector | string

Simulation data format, specified as a character vector or string. Some formats require you to specify
only one output argument. The valid formats follow.

2 Methods

2-646

• 'num' — This format returns simulation time points and simulation data in numeric arrays and
the names of quantities and sensitivities as a cell array. This format is the default when you run
getdata with multiple output arguments.

• 'nummetadata' — This format returns a cell array of metadata structures instead of the names
of quantities and sensitivities as the third output argument.

• 'numqualnames' — This format returns qualified names in the third output argument to resolve
ambiguities.

You must specify only one output argument for the following formats.

• 'simdata' — This format returns data in a new SimData object or an array of SimData objects.
This format is the default when you specify a single output argument.

• 'struct' — This format returns a structure or structure array that contains both data and
metadata.

• 'ts' — This format returns data as a cell array.

• If simdata is scalar, the cell array is an m-by-1 array, where each element is a timeseries
object. m is the number of quantities and sensitivities logged during the simulation.

• If simdata is not scalar, the cell array is k-by-1, where each element of the cell array is an m-
by-1 cell array of timeseries objects. k is the size of simdata, and m is the number of
quantities or sensitivities in each SimData object in simdata. In other words, the function
returns an individual time series for each state or column and for each SimData object in
simdata.

• 'tslumped' — This format returns the data as a cell array of timeseries objects, combining
data from each SimData object into a single time series.

Output Arguments
t — Simulation time points
numeric vector | cell array

Simulation time points, returned as a numeric vector or cell array. If simdata is scalar, t is an n-by-1
vector, where n is the number of time points. If simdata is an array of objects, t is a k-by-1 cell array,
where k is the size of simdata.

x — Simulation data
numeric matrix | cell array

Simulation data, returned as a numeric matrix or cell array. If simdata is scalar, x is an n-by-m
matrix, where n is the number of time points and m is the number of quantities and sensitivities
logged during the simulation. If simdata is an array of objects, x is a k-by-1 cell array, where k is the
size of simdata.

names — Names of quantities and sensitivities
cell array

Names of quantities and sensitivities logged during the simulation, returned as a cell array. If
simdata is scalar, names is an m-by-1 cell array. If simdata is an array of objects, names is a k-by-1
cell array, where k is the size of simdata.

sdOut — Simulation results
SimData object

 removebyname

2-647

Simulation results, returned as a SimData object.

See Also
SimData | select | selectbyname

Introduced in R2020a

2 Methods

2-648

removeconfigset (model)
Remove configuration set from model

Syntax
removeconfigset(modelObj, 'NameValue')
removeconfigset(modelObj, configsetObj)

Arguments

modelObj Model object from which to remove the configuration set.
NameValue Name of the configuration set.
configsetObj Configset object that is to be removed from the model

object.

Description
removeconfigset(modelObj, 'NameValue') removes and deletes the configset object with the
name NameValue from the SimBiology model object modelObj. A configuration set object stores
simulation-specific information. A SimBiology model can contain multiple configuration sets with one
being active at any given time. The active configuration set contains the settings that are used during
the simulation. modelObj always contains at least one configuration set object with name configured
to 'default'. You cannot remove the default configuration set from modelObj. If the active
configuration set is removed from modelObj, then the default configuration set will be made active.

removeconfigset(modelObj, configsetObj) removes and deletes the configuration set object,
configsetObj, from the SimBiology model, modelObj.

Examples
1 Create a model object by importing the file oscillator.xml and add a configset.

modelObj = sbmlimport('oscillator');
configsetObj = addconfigset(modelObj, 'myset');

2 Remove the configset from modelObj by name or alternatively by indexing.

% Remove the configset with name 'myset'.
 removeconfigset(modelObj, 'myset');

 % Get all configset objects and remove the second.
 configsetObj = getconfigset(modelObj);
 removeconfigset(modelObj, configsetObj(2));

See Also
Model object, Configset object, addconfigset, getconfigset, setactiveconfigset

 removeconfigset (model)

2-649

Introduced in R2006a

2 Methods

2-650

removedose (model)
Remove dose object from model

Syntax
doseObj2 = removedose(modelObj, 'DoseName')
doseObj2 = removedose(modelObj, doseObj)

Arguments

modelObj Model object from which you remove a dose object.
DoseName Name of the dose object to remove from a model object. DoseName is

the value of the dose object property Name.
doseObj Dose object to remove from a model object.

Outputs

doseObj2 ScheduleDose or RepeatDose object.

Description
doseObj2 = removedose(modelObj, 'DoseName') removes a SimBiology ScheduleDose or
RepeatDose object with the name DoseName from a model object (modelObj). returns the dose
object (doseObj), and assigns [] to the dose object property Parent.

You can add a removed dose object back to a model object using the method adddose.

doseObj2 = removedose(modelObj, doseObj) removes a SimBiology ScheduleDose or
RepeatDose object doseObj.

Examples
Remove a dose object from a model object.

1 Create model and dose objects, and then add dose to model.

modelObj = sbiomodel('mymodel');
dose1Obj = adddose(modelObj, 'dose1');

2 Remove dose object from model object.

removedose(mymodel, 'dose1');

Get all dose objects from a model object, and then remove the second dose object.

AllDoseObjects = getdose(mymodel);
removedose(mymodel, AllDoseObjects(2));

 removedose (model)

2-651

See Also
Model methods:

• adddose — add a dose object to a model object
• getdose — get dose information from a model object
• removedose — remove a dose object from a model object

Dose object constructor sbiodose.

ScheduleDose object and RepeatDose object methods:

• copyobj — copy a dose object from one model object to another model object
• get — view properties for a dose object
• set — define or modify properties for a dose object

Introduced in R2010a

2 Methods

2-652

removeobservable
Remove Sobol indices or elementary effects of observables

Syntax
results = removeobservable(gsaObj,obsNames)

Description
results = removeobservable(gsaObj,obsNames) removes the Sobol indices or elementary
effects computed for the specified observables obsNames from gsaResults.

Examples

Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with the estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

 removeobservable

2-653

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, retrieve model parameters of interest that are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1','k2'};
outputName = 'tumor_weight';

Then perform GSA by computing the first- and total-order Sobol indices using sbiosobol. Set
'ShowWaitBar' to true to show the simulation progress. By default, the function uses 1000
parameter samples to compute the Sobol indices [1].

rng('default');
sobolResults = sbiosobol(m1,modelParamNames,outputName,Variants=v,Doses=d,ShowWaitBar=true)

sobolResults =
 Sobol with properties:

 Time: [444x1 double]
 SobolIndices: [5x1 struct]
 Variance: [444x1 table]
 ParameterSamples: [1000x5 table]
 Observables: {'[Tumor Growth Model].tumor_weight'}
 SimulationInfo: [1x1 struct]

2 Methods

2-654

You can change the number of samples by specifying the 'NumberSamples' name-value pair
argument. The function requires a total of (number of input parameters + 2) *
NumberSamples model simulations.

Show the mean model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(sobolResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying 'Alphas' for the lower
and upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100 * alpha and 100 * (1 - alpha) quantiles of all simulated model responses.

plotData(sobolResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

 removeobservable

2-655

Plot the time course of the first- and total-order Sobol indices.

h = plot(sobolResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

2 Methods

2-656

The first-order Sobol index of an input parameter gives the fraction of the overall response variance
that can be attributed to variations in the input parameter alone. The total-order index gives the
fraction of the overall response variance that can be attributed to any joint parameter variations that
include variations of the input parameter.

From the Sobol indices plots, parameters L1 and w0 seem to be the most sensitive parameters to the
tumor weight before the dose was applied at t = 7. But after the dose is applied, k1 and k2 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
total variance plot also shows a larger variance for the after-dose stage at t > 35 than for the before-
dose stage of the tumor growth, indicating that k1 and k2 might be more important parameters to
investigate further. The fraction of unexplained variance shows some variance at around t = 33, but
the total variance plot shows little variance at t = 33, meaning the unexplained variance could be
insignificant. The fraction of unexplained variance is calculated as 1 - (sum of all the first-order Sobol
indices), and the total variance is calculated using var(response), where response is the model
response at every time point.

You can also display the magnitudes of the sensitivities in a bar plot. Darker colors mean that those
values occur more often over the whole time course.

bar(sobolResults);

 removeobservable

2-657

You can specify more samples to increase the accuracy of the Sobol indices, but the simulation can
take longer to finish. Use addsamples to add more samples. For example, if you specify 1500
samples, the function performs 1500 * (2 + number of input parameters) simulations.

gsaMoreSamples = addsamples(gsaResults,1500)

The “SimulationInfo” on page 2-0 property of the result object contains various information for
computing the Sobol indices. For instance, the model simulation data (SimData) for each simulation
using a set of parameter samples is stored in the SimData field of the property. This field is an array
of SimData objects.

sobolResults.SimulationInfo.SimData

 SimBiology SimData Array : 1000-by-7

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 7000 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(sobolResults.SimulationInfo.ValidSample)

2 Methods

2-658

ans = 1x7 logical array

 1 1 1 1 1 1 1

SimulationInfo.ValidSample is a table of logical values. It has the same size as
SimulationInfo.SimData. If ValidSample indicates that any simulations failed, you can get more
information about those simulation runs and the samples used for those runs by extracting
information from the corresponding column of SimulationInfo.SimData. Suppose that the fourth
column contains one or more failed simulation runs. Get the simulation data and sample values used
for that simulation using getSimulationResults.

[samplesUsed,sd,validruns] = getSimulationResults(sobolResults,4);

You can add custom expressions as observables and compute Sobol indices for the added observables.
For example, you can compute the Sobol indices for the maximum tumor weight by defining a custom
expression as follows.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
sobolObs = addobservable(sobolResults,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(sobolObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1280 800];

 removeobservable

2-659

You can also remove the observable by specifying its name.

gsaNoObs = removeobservable(sobolObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Perform GSA by Computing Elementary Effects

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

2 Methods

2-660

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, define model parameters of interest, which are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1'};
outputName = 'tumor_weight';

Then perform GSA by computing the elementary effects using sbioelementaryeffects. Use 100
as the number of samples and set ShowWaitBar to true to show the simulation progress.

rng('default');
eeResults = sbioelementaryeffects(m1,modelParamNames,outputName,Variants=v,Doses=d,NumberSamples=100,ShowWaitbar=true);

Show the median model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(eeResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying Alphas for the lower and
upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100*alpha and 100*(1-alpha) quantiles of all simulated model responses.

plotData(eeResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

 removeobservable

2-661

Plot the time course of the means and standard deviations of the elementary effects.

h = plot(eeResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

2 Methods

2-662

The mean of effects explains whether variations in input parameter values have any effect on the
tumor weight response. The standard deviation of effects explains whether the sensitivity change is
dependent on the location in the parameter domain.

From the mean of effects plots, parameters L1 and w0 seem to be the most sensitive parameters to
the tumor weight before the dose is applied at t = 7. But, after the dose is applied, k1 and L0 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
plots of standard deviation of effects show more deviations for the larger parameter values in the
later stage (t > 35) than for the before-dose stage of the tumor growth.

You can also display the magnitudes of the sensitivities in a bar plot. Each color shading represents a
histogram representing values at different times. Darker colors mean that those values occur more
often over the whole time course.

bar(eeResults);

 removeobservable

2-663

You can also plot the parameter grids and samples used to compute the elementary effects.

plotGrid(eeResults)

2 Methods

2-664

You can specify more samples to increase the accuracy of the elementary effects, but the simulation
can take longer to finish. Use addsamples to add more samples.

eeResults2 = addsamples(eeResults,200);

The SimulationInfo property of the result object contains various information for computing the
elementary effects. For instance, the model simulation data (SimData) for each simulation using a set
of parameter samples is stored in the SimData field of the property. This field is an array of SimData
objects.

eeResults2.SimulationInfo.SimData

 SimBiology SimData Array : 1500-by-1

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 1500 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(eeResults2.SimulationInfo.ValidSample)

 removeobservable

2-665

ans = logical
 1

You can add custom expressions as observables and compute the elementary effects of the added
observables. For example, you can compute the effects for the maximum tumor weight by defining a
custom expression as follows.

% Suppress an information warning that is issued.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
eeObs = addobservable(eeResults2,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(eeObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1500 800];

You can also remove the observable by specifying its name.

eeNoObs = removeobservable(eeObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

Input Arguments
gsaObj — Results from global sensitivity analysis
SimBiology.gsa.Sobol object | SimBiology.gsa.ElementaryEffects object

2 Methods

2-666

Results from global sensitivity analysis, specified as a SimBiology.gsa.Sobol or
SimBiology.gsa.ElementaryEffects object.

obsNames — Names of observable expressions
character vector | string | string vector | cell array of character vector

Names of observable expressions, specified as a character vector, string, string vector, or cell array of
character vectors.
Data Types: char | string | cell

Output Arguments
results — Updated results
SimBiology.gsa.Sobol | SimBiology.gsa.ElementaryEffects

Updated results after removal of the Sobol indices or elementary effects for specified observables,
returned as a SimBiology.gsa.Sobol or SimBiology.gsa.ElementaryEffects object.

References
[1] Saltelli, Andrea, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano

Tarantola. “Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the
Total Sensitivity Index.” Computer Physics Communications 181, no. 2 (February 2010): 259–
70. https://doi.org/10.1016/j.cpc.2009.09.018.

[2] Morris, Max D. “Factorial Sampling Plans for Preliminary Computational Experiments.”
Technometrics 33, no. 2 (May 1991): 161–74.

[3] Sohier, Henri, Jean-Loup Farges, and Helene Piet-Lahanier. “Improvement of the Representativity
of the Morris Method for Air-Launch-to-Orbit Separation.” IFAC Proceedings Volumes 47, no.
3 (2014): 7954–59.

See Also
SimBiology.gsa.Sobol | SimBiology.gsa.ElementaryEffects | sbiosobol |
sbioelementaryeffects

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2020a

 removeobservable

2-667

removevariant (model)
Remove variant from model

Syntax
variantObj = removevariant(modelObj, 'NameValue')

variantObj = removevariant(modelObj, variantObj)

Arguments
modelObj Specify the Model object from which you want to remove the

variant.
variantObj Specify the Variant object to return from the model object.

Description
variantObj = removevariant(modelObj, 'NameValue') removes a SimBiology variant object
with the name NameValue from the model object modelObj and returns the variant object to
variantObj. The variant object Parent property is assigned [] (empty).

A SimBiology variant object stores alternate values for properties on a SimBiology model. For more
information on variants, see Variant object.

variantObj = removevariant(modelObj, variantObj) removes a SimBiology variant object
(variantObj) and returns the variant object variantObj.

To view the variants stored on a model object, use the getvariant method. To copy a variant object
to another model, use copyobj. To add a variant object to a SimBiology model, use the addvariant
method.

Examples
1 Create a model containing several variants.

modelObj = sbiomodel('mymodel');
variantObj1 = addvariant(modelObj, 'v1');
variantObj2 = addvariant(modelObj, 'v2');
variantObj3 = addvariant(modelObj, 'v3');

2 Remove a variant object using its name.

removevariant(modelObj, 'v1');
3 Remove a variant object using its index number.

a Get the index number of the variant in the model.

vObjs = getvariant(modelObj)

2 Methods

2-668

SimBiology Variant Array

 Index: Name: Active:
 1 v2 false
 2 v3 false

b Remove the variant object.

removevariant(modelObj, vObjs(2));

See Also
addvariant, getvariant, Model object, Variant object

Introduced in R2007b

 removevariant (model)

2-669

rename
Rename object and update expressions

Syntax
rename(Obj, 'NewNameValue')

Arguments
Obj Abstractkineticlaw, compartment, event, kinetic law, model, parameter,

RepeatDose, reaction, rule, ScheduleDose, species, unit, unitprefix,
variant, or observable object.

'NewNameValue' Specify the new name.

Description
rename(Obj, 'NewNameValue'), changes the Name property of the object, Obj to NewNameValue
and updates any uses of it in the model such as rules, events, reactions, variants, and doses to use the
new name.

If the new name is already being used by another model component, the new name will be qualified
to ensure that it is unique. For example if you change a species named A to K, and a parameter with
the name K exists, the species will be qualified as CompartmentName.K to indicate that the
reference is to the species. If you are referring to an object by its qualified name, for example
CompartmentName.A and you change the species name, the reference will contain the qualified
name in its updated form, for example, CompartmentName.K

When you want to change the name of a compartment, parameter, species, or reaction object, use this
method instead of set.

Note The set method only changes the Name property of the object, except for species and
compartments. The method updates the species or compartment object's Name property and any
reaction strings referring to the species or compartment to use the new name.

Examples
1 Create a model object that contains a species A in a rule.

m = sbiomodel('cell');
s = addspecies(m, 'A');
r = addrule(m, 'A = 4');

2 Rename the species to Y

rename(s, 'Y');
3 See that the rule expression is now updated.

r

2 Methods

2-670

SimBiology Rule Array

Index: RuleType: Rule:
1 initialAssignment Y = 4

See Also
set

Introduced in R2008b

 rename

2-671

resetoptions
Reset optional SimBiology fit problem properties

Syntax
fitProblem2 = resetoptions(fitProblem1,propertyNames)

Description
fitProblem2 = resetoptions(fitProblem1,propertyNames) resets the specified properties
propertyNames of a SimBiology fitproblem object fitProblem1 back to their default values.

Examples

Reset Optional SimBiology Fit Problem Properties

Create a fitproblem object.

fp1 = fitproblem

fp1 =
 fitproblem with properties:

 Required:
 Data: [0x0 groupedData]
 Estimated: [1x0 estimatedInfo]
 FitFunction: "sbiofit"
 Model: [0x0 SimBiology.Model]
 ResponseMap: [1x0 string]

 Optional:
 Doses: [0x0 SimBiology.Dose]
 FunctionName: "auto"
 Options: []
 ProgressPlot: 0
 UseParallel: 0
 Variants: [0x0 SimBiology.Variant]

 sbiofit options:
 ErrorModel: "constant"
 Pooled: "auto"
 SensitivityAnalysis: "auto"
 Weights: []

The object has required and optional properties. resetoptions lets you reset the optional
properties back to default values.

Change two of the optional properties to some nondefault values.

fp1.ProgressPlot = true;
fp1.FunctionName = "lsqnonlin";

2 Methods

2-672

Reset the properties back to their default values.

fp2 = resetoptions(fp1,["ProgressPlot","FunctionName"]);
fp2.ProgressPlot

ans = logical
 0

fp2.FunctionName

ans =
"auto"

Input Arguments
fitProblem1 — SimBiology fit problem
fitproblem object

SimBiology fit problem, specified as a fitproblem object.

propertyNames — Names of fit problem object properties
character vector | string scalar | string vector | cell array of character vectors

Names of fit problem object properties to reset to default values, specified as a character vector,
string scalar, string vector, or cell array of character vectors.
Data Types: char | string | cell

Output Arguments
fitProblem2 — New SimBiology fit problem object
fitproblem object

New SimBiology fit problem object after resetting the specified properties to default values, returned
as a fitproblem object.

See Also
fitproblem

Introduced in R2021b

 resetoptions

2-673

rename
Rename entry from SimBiology.Scenarios object

Syntax
sObj = rename(sObj,entryNameOrIndex,newName)
sObj = rename(sObj,entryIndex,subIndex,newName)

Description
sObj = rename(sObj,entryNameOrIndex,newName) renames the entry (or subentry on page 2-
744) entryNameorIndex to newName.

sObj = rename(sObj,entryIndex,subIndex,newName) renames the subentry subIndex to
newName.

Examples

Generate Different Simulation Scenarios for Glucose-Insulin Response

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo','m1');

The model contains different parameter values and initial conditions that represents different insulin
impairments (such as Type 2 diabetes, low insulin sensitivity, and so on) stored in five variants.

variants = getvariant(m1)

variants =
 SimBiology Variant Array

 Index: Name: Active:
 1 Type 2 diabetic false
 2 Low insulin se... false
 3 High beta cell... false
 4 Low beta cell ... false
 5 High insulin s... false

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Select a dose that represents a single meal of 78 grams of glucose.

singleMeal = sbioselect(m1,'Name','Single Meal');

2 Methods

2-674

Create a Scenarios object to represent different initial conditions combined with the dose. That is,
create a scenario object where each variant is paired (or combined) with the dose, for a total of five
simulation scenarios.

sObj = SimBiology.Scenarios;
add(sObj,'cartesian','variants',variants);
add(sObj,'cartesian','dose',singleMeal)

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ________ ___________________ ______

 Entry 1 variants SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

sObj contains two entries. Use the generate function to combine the entries and generate five
scenarios. The function returns a scenarios table, where each row represents a scenario and each
column represents an entry of the Scenarios object.

scenariosTbl = generate(sObj)

scenariosTbl=5×2 table
 variants dose
 ______________________ _________________________

 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose

Change the entry name of the first entry.

rename(sObj,1,'Insulin Impairements')

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ____________________ ___________________ ______

 Entry 1 Insulin Impairements SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

Create a SimFunction object to simulate the generated scenarios. Use the Scenarios object as the
input and specify the plasma glucose and insulin concentrations as reponses (outputs of the function
to be plotted). Specify [] for the dose input argument since the Scenarios object already has the
dosing information.

f = createSimFunction(m1,sObj,{'[Plasma Glu Conc]','[Plasma Ins Conc]'},[])

 rename

2-675

f =
SimFunction

Parameters:

 Name Value Type Units
 _________________________ ______ _____________ ___

 {'Plasma Volume (Glu)' } 1.88 {'parameter'} {'deciliter' }
 {'k1' } 0.065 {'parameter'} {'1/minute' }
 {'k2' } 0.079 {'parameter'} {'1/minute' }
 {'Plasma Volume (Ins)' } 0.05 {'parameter'} {'liter' }
 {'m1' } 0.19 {'parameter'} {'1/minute' }
 {'m2' } 0.484 {'parameter'} {'1/minute' }
 {'m4' } 0.1936 {'parameter'} {'1/minute' }
 {'m5' } 0.0304 {'parameter'} {'minute/picomole' }
 {'m6' } 0.6469 {'parameter'} {'dimensionless' }
 {'Hepatic Extraction' } 0.6 {'parameter'} {'dimensionless' }
 {'kmax' } 0.0558 {'parameter'} {'1/minute' }
 {'kmin' } 0.008 {'parameter'} {'1/minute' }
 {'kabs' } 0.0568 {'parameter'} {'1/minute' }
 {'kgri' } 0 {'parameter'} {'1/minute' }
 {'f' } 0.9 {'parameter'} {'dimensionless' }
 {'a' } 0 {'parameter'} {'1/milligram' }
 {'b' } 0.82 {'parameter'} {'dimensionless' }
 {'c' } 0 {'parameter'} {'1/milligram' }
 {'d' } 0.01 {'parameter'} {'dimensionless' }
 {'kp1' } 2.7 {'parameter'} {'milligram/minute' }
 {'kp2' } 0.0021 {'parameter'} {'1/minute' }
 {'kp3' } 0.009 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'kp4' } 0.0618 {'parameter'} {'(milligram/minute)/picomole' }
 {'ki' } 0.0079 {'parameter'} {'1/minute' }
 {'[Ins Ind Glu Util]' } 1 {'parameter'} {'milligram/minute' }
 {'Vm0' } 2.5129 {'parameter'} {'milligram/minute' }
 {'Vmx' } 0.047 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'Km' } 225.59 {'parameter'} {'milligram' }
 {'p2U' } 0.0331 {'parameter'} {'1/minute' }
 {'K' } 2.28 {'parameter'} {'picomole/(milligram/deciliter)' }
 {'alpha' } 0.05 {'parameter'} {'1/minute' }
 {'beta' } 0.11 {'parameter'} {'(picomole/minute)/(milligram/deciliter)'}
 {'gamma' } 0.5 {'parameter'} {'1/minute' }
 {'ke1' } 0.0005 {'parameter'} {'1/minute' }
 {'ke2' } 339 {'parameter'} {'milligram' }
 {'Basal Plasma Glu Conc'} 91.76 {'parameter'} {'milligram/deciliter' }
 {'Basal Plasma Ins Conc'} 25.49 {'parameter'} {'picomole/liter' }

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

2 Methods

2-676

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

Simulate the model for 24 hours and plot the simulation data. The data contains five runs, where each
run represents a scenario in the Scenarios object.

sd = f(sObj,24);
sbioplot(sd)

ans =
 Axes (SbioPlot) with properties:

 XLim: [0 30]
 YLim: [0 450]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.0920 0.1100 0.2956 0.8150]
 Units: 'normalized'

 Show all properties

If you have Statistics and Machine Learning Toolbox™, you can also draw sample values for model
quantities from various probability distributions. For instance, suppose that the parameters Vmx and

 rename

2-677

kp3, which are known for the low and high insulin sensitivity, follow the lognormal distribution. You
can generate sample values for these parameters from such a distribution, and perform a scan to
explore model behavior.

Define the lognormal probability distribution object for Vmx.

pd_Vmx = makedist('lognormal')

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = 0
 sigma = 1

By definition, the parameter mu is the mean of logarithmic values. To vary the parameter value
around the base (model) value of the parameter, set mu to log(model_value). Set the standard
deviation (sigma) to 0.2. For a small sigma value, the mean of a lognormal distribtion is
approximately equal to log(model_value). For details, see “Lognormal Distribution” (Statistics and
Machine Learning Toolbox).

Vmx = sbioselect(m1,'Name','Vmx');
pd_Vmx.mu = log(Vmx.Value);
pd_Vmx.sigma = 0.2

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = -3.05761
 sigma = 0.2

Similarly define the probability distribution for kp3.

pd_kp3 = makedist('lognormal');
kp3 = sbioselect(m1,'Name','kp3');
pd_kp3.mu = log(kp3.Value);
pd_kp3.sigma = 0.2

pd_kp3 =
 LognormalDistribution

 Lognormal distribution
 mu = -4.71053
 sigma = 0.2

Now define a joint probability distribution to draw sample values for Vmx and kp3, with a rank
correlation to specify some correlation between these two parameters. Note that this correlation
assumption is for the illustration purposes of this example only and may not be biologically relevant.

First remove the variants entry (entry 1) from sObj.

remove(sObj,1)

ans =
 Scenarios (1 scenarios)

2 Methods

2-678

 Name Content Number
 ____ _______________ ______

 Entry 1 dose SimBiology dose 1

 See also Expression property.

Add an entry that defines the joint probability distribution with a rank correlation matrix.

add(sObj,'cartesian',["Vmx","kp3"],[pd_Vmx, pd_kp3],'RankCorrelation',[1,0.5;0.5,1])

ans =
 Scenarios (2 scenarios)

 Name Content Number
 ____ ______________________ ___________

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 2 (default)
 + Entry 2.2) kp3 Lognormal distribution 2 (default)

 See also Expression property.

By default, the number of samples to draw from the joint distribution is set to 2. Increase the number
of samples.

updateEntry(sObj,2,'Number',50)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Verify that the Scenarios object can be simulated with the model. The verify function throws an
error if any entry does not resolve uniquely to an object in the model or the entry contents have
inconsistent lengths (sample sizes). The function throws a warning if multiple entries resolve to the
same object in the model.

verify(sObj,m1)

Generate the simulation scenarios. Plot the sample values using plotmatrix. You can see the value
of Vmx is varied around its model value 0.047 and that of kp3 around 0.009.

sTbl = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl.Vmx,sTbl.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";

 rename

2-679

ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios using the same SimFunction you created previously. You do not need to create
a new SimFunction object even though the Scenarios object has been updated.

sd2 = f(sObj,24);
sbioplot(sd2);

2 Methods

2-680

By default, SimBiology uses the random sampling method. You can change it to the Latin hypercube
sampling (or sobol or halton) for a more systematic space-filling approach.

entry2struct = getEntry(sObj,2)

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'random'
 SamplingOptions: [0x0 struct]

entry2struct.SamplingMethod = 'lhs'

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'lhs'
 SamplingOptions: [0x0 struct]

You can now use the updated structure to modify entry 2.

 rename

2-681

updateEntry(sObj,2,entry2struct)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Visualize the sample values.

sTbl2 = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl2.Vmx,sTbl2.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios.

sd3 = f(sObj,24);
sbioplot(sd3);

2 Methods

2-682

Restore warning settings.

warning(warnSettings);

Input Arguments
sObj — Simulation scenarios
SimBiology.Scenarios object

Simulation scenarios, specified as a SimBiology.Scenarios object.

entryNameOrIndex — Entry name or index
character vector | string | scalar positive integer

Entry name or index, specified as a character vector, string, or scalar positive integer. You can also
specify the name of a subentry.

If you are specifying an index, it must be smaller than or equal to the number of entries in the object.
Data Types: double | char | string

newName — New name
character vector | string

New name for the entry, specified as a character vector or string.

 rename

2-683

Example: 'k2'
Data Types: char | string

entryIndex — Entry index
scalar positive integer

Entry index, specified as a scalar positive integer. The entry index must be smaller than or equal to
the number of entries in the object.
Data Types: double

subIndex — Entry subindex
scalar positive integer

Entry subindex, specified as a scalar positive integer. The subindex must be smaller than or equal to
the number of subentries in the entry.
Data Types: double

Output Arguments
sObj — Simulation scenarios
Scenarios object

Simulation scenarios, returned as a Scenarios object.

See Also
SimBiology.Scenarios | SimFunction object | createSimFunction (model)

Topics
“SimBiology.Scenarios Terminology” on page 2-744
“Combine Simulation Scenarios in SimBiology”

Introduced in R2019b

2 Methods

2-684

renameobservable
Rename observables in SimData

Syntax
sdout = renameobservable(sdin,oldNames,newNames)

Description
sdout = renameobservable(sdin,oldNames,newNames) returns a new SimData object (or
array of objects) sdout after renaming observables in sdin and recalculating all observable
expressions.

Examples

Calculate Statistics After Model Simulation Using Observables

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Set the target occupancy (TO) as a response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Get the dosing information.

d = getdose(m1,'Daily Dose');

Scan over different dose amounts using a SimBiology.Scenarios object. To do so, first
parameterize the Amount property of the dose. Then vary the corresponding parameter value using
the Scenarios object.

amountParam = addparameter(m1,'AmountParam','Units',d.AmountUnits);
d.Amount = 'AmountParam';
d.Active = 1;
doseSamples = SimBiology.Scenarios('AmountParam',linspace(0,300,31));

Create a SimFunction to simulate the model. Set TO as the simulation output.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:SimFunction:DOSES_NOT_EMPTY');
f = createSimFunction(m1,doseSamples,'TO',d)

f =
SimFunction

Parameters:

 Name Value Type Units

 renameobservable

2-685

 _______________ _____ _____________ ____________

 {'AmountParam'} 1 {'parameter'} {'nanomole'}

Observables:

 Name Type Units
 ______ _____________ _________________

 {'TO'} {'parameter'} {'dimensionless'}

Dosed:

 TargetName TargetDimension Amount AmountValue AmountUnits
 _______________ ___________________________________ _______________ ___________ ____________

 {'Plasma.Drug'} {'Amount (e.g., mole or molecule)'} {'AmountParam'} 1 {'nanomole'}

TimeUnits: day

warning('on','SimBiology:SimFunction:DOSES_NOT_EMPTY');

Simulate the model using the dose amounts generated by the Scenarios object. In this case, the
object generates 31 different doses; hence the model is simulated 31 times and generates a SimData
array.

doseTable = getTable(d);
sd = f(doseSamples,cs.StopTime,doseTable)

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 0

Plot the simulation results. Also add two reference lines that represent the safety and efficacy
thresholds for TO. In this example, suppose that any TO value above 0.85 is unsafe, and any TO value
below 0.15 has no efficacy.

h = sbioplot(sd);
time = sd(1).Time;
h.NextPlot = 'add';
safetyThreshold = plot(h,[min(time), max(time)],[0.85, 0.85],'DisplayName','Safety Threshold');
efficacyThreshold = plot(h,[min(time), max(time)],[0.15, 0.15],'DisplayName','Efficacy Threshold');

2 Methods

2-686

Postprocess the simulation results. Find out which dose amounts are effective, corresponding to the
TO responses within the safety and efficacy thresholds. To do so, add an observable expression to the
simulation data.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
newSD = addobservable(sd,'stat1','max(TO) < 0.85 & min(TO) > 0.15','Units','dimensionless')

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 1

The addobservable function evaluates the new observable expression for each SimData in sd and
returns the evaluated results as a new SimData array, newSD, which now has the added observable
(stat1).

SimBiology stores the observable results in two different properties of a SimData object. If the
results are scalar-valued, they are stored in SimData.ScalarObservables. Otherwise, they are

 renameobservable

2-687

stored in SimData.VectorObservables. In this example, the stat1 observable expression is
scalar-valued.

Extract the scalar observable values and plot them against the dose amounts.

scalarObs = vertcat(newSD.ScalarObservables);
doseAmounts = generate(doseSamples);
figure
plot(doseAmounts.AmountParam,scalarObs.stat1,'o','MarkerFaceColor','b')

The plot shows that dose amounts ranging from 50 to 180 nanomoles provide TO responses that lie
within the target efficacy and safety thresholds.

You can update the observable expression with different threshold amounts. The function recalculates
the expression and returns the results in a new SimData object array.

newSD2 = updateobservable(newSD,'stat1','max(TO) < 0.75 & min(TO) > 0.30');

Rename the observable expression. The function renames the observable, updates any expressions
that reference the renamed observable (if applicable), and returns the results in a new SimData
object array.

newSD3 = renameobservable(newSD2,'stat1','EffectiveDose');

Restore the warning settings.

warning('on','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');

2 Methods

2-688

Input Arguments
sdin — Input simulation data
SimData object | array of SimData objects

Input simulation data, specified as a SimData object or array of objects.

oldNames — Existing names of observables
character vector | string | string vector | cell array of character vectors

Existing names of the observables, specified as a character vector, string, string vector, or cell array
of character vectors.
Example: {'max_drug','mean_drug'}
Data Types: char | string | cell

newNames — New names for observables
character vector | string | string vector | cell array of character vectors

New names for the observables, specified as a character vector, string, string vector, or cell array of
character vectors. The number of new names must match the number of old names.

Each new name must be unique in the SimData object, meaning it cannot match the name of any
other observable, species, compartment, parameter, or reaction referenced in the SimData object.
Example: {'MAX','MEAN'}
Data Types: char | string | cell

Output Arguments
sdout — Simulation data with observable results
SimData object | array of SimData objects

Simulation data with observable results, returned as a SimData object or array of objects.

See Also
SimData | updateobservable | addobservable

Introduced in R2020a

 renameobservable

2-689

reorder (model, compartment, kinetic law)
Reorder component lists

Syntax
modelObj = reorder(Obj,NewOrder)

Input Arguments
Obj Model, compartment, or kinetic law object.
NewOrder Object vector in the new order. If Obj is a model object,

NewOrder can be an array of compartment, event, parameter,
reaction, rule, variant, or dose objects. If Obj is a compartment
object, NewOrder must be an array of species objects. If Obj is a
kinetic law object, NewOrder must be an array of parameter objects.

Warning As of 2017b, reordering rules has no effect on simulation
results because the rules are evaluated as a unified system of
constraints. For details, see “Evaluation Order of Rules”.

Description
modelObj = reorder(Obj,NewOrder) reorders the component vector modelObj to be in the
order specified.

Use this method to reorder any of the component vectors, such as compartments, events, parameters,
rules, species, doses, and variants. When reordered, the vector of components must contain the same
objects as the original list of objects, though they can be in a different order.

Examples

Reorder Reactions in SimBiology Model

Import a model.

modelObj = sbmlimport('lotka');

Display reactions in the model.

modelObj.Reactions

ans =
 SimBiology Reaction Array

 Index: Reaction:
 1 x + y1 -> 2 y1 + x
 2 y1 + y2 -> 2 y2

2 Methods

2-690

 3 y2 -> z

Reverse the order of reactions in the model.

reorder(modelObj,modelObj.Reactions([3 2 1]));

Display the new order of reactions.

modelObj.Reactions

ans =
 SimBiology Reaction Array

 Index: Reaction:
 1 y2 -> z
 2 y1 + y2 -> 2 y2
 3 x + y1 -> 2 y1 + x

See Also
Model object | Compartment object | KineticLaw object

Introduced in R2007b

 reorder (model, compartment, kinetic law)

2-691

RepeatDose object
Define drug dosing protocol

Description
A RepeatDose object defines a series of doses to the amount of a species during a simulation. The
TargetName property of a dose object defines the species that receives the dose.

Each dose is the same amount, as defined by the Amount property, and given at equally spaced times,
as defined by the Interval property. The RepeatCount property defines the number of injections in
the series, excluding the initial injection. The Rate property defines how fast each dose is given.

To use a dose object in a simulation you must add the dose object to a model object and set the
Active property of the dose object to true. Set the Active property to true if you always want the
dose to be applied before simulating the model.

Warning The Active property of the RepeatDose object will be removed in a future release.
Explicitly specify a dose or an array of doses as an input argument when you simulate a model using
sbiosimulate.

When there are multiple active RepeatDose objects on a model and if there are duplicate
specifications for a property value, the last occurrence for the property value in the array of dose, is
used during simulation. You can find out which dose is applied last by looking at the indices of the
dose objects stored on the model.

You can set these dose properties to model parameters: Amount, Interval, Rate, RepeatCount,
StartTime, LagParameterName and DurationParameterName. You can set these properties,
except LagParameterName and DurationParameterName, to either a numeric value or the name
of a model-scoped parameter (as a character vector or string). Parameterizing dose properties
provides more flexibility for different dosing applications, such as scaling the dose amount by body
weight. For details, see “Parameterized and Adaptive Doses”.

Constructor Summary
sbiodose Construct dose object

Method Summary
Methods for RepeatDose objects

2 Methods

2-692

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
getTable(ScheduleDose,RepeatDose)

Return data from SimBiology dose object as table
rename Rename object and update expressions
set Set SimBiology object properties
setTable(ScheduleDose,RepeatDose)

Set dosing information from table to dose object

Property Summary
Properties for RepeatDose objects

Active Indicate object in use during simulation
Amount Amount of dose
AmountUnits Dose amount units
DurationParameterName Parameter specifying length of time to administer a dose
EventMode Determine how events that change dose parameters affect in-progress

dosing
Interval Time between doses
LagParameterName Parameter specifying time lag for dose
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Rate Rate of dose
RateUnits Units for dose rate
RepeatCount Dose repetitions
StartTime Start time for initial dose time
Tag Specify label for SimBiology object
TargetName Species receiving dose
TimeUnits Show time units for dosing and simulation
Type Display SimBiology object type
UserData Specify data to associate with object

Examples

Scale Dose Amount by Body Weight

Parameterize the Amount property of a dose to scale it by the body weight of a patient.

 RepeatDose object

2-693

Create a simple model with linear elimination and an amount parameter.

model = sbiomodel('simple model');
compartment = addcompartment(model,'Central',1);
compartment.CapacityUnits = 'liter';
species = addspecies(model,'drug');
species.InitialAmountUnits = 'milligram';

% Elimination rate
elimParam = addparameter(model,'kel',0.1);
elimParam.ValueUnits = '1/hour';

% Elimination reaction
reaction = addreaction(model,'drug -> null');
reaction.ReactionRate = 'kel*drug';
amountParam = addparameter(model,'A',50);
amountParam.ConstantValue = false;
amountParam.ValueUnits = 'milligram'

amountParam =
 SimBiology Parameter Array

 Index: Name: Value: Units:
 1 A 50 milligram

Create a dose with its Amount property set to the amount parameter 'A'.

dose = adddose(model,'adaptive dose','repeat');
dose.Amount = 'A';

Set other dose properties.

dose.TargetName = 'drug';
dose.StartTime = 0;
dose.TimeUnits = 'hour';
dose.Interval = 24;
dose.RepeatCount = 7;

Add a parameter to represent the body weight.

weightParam = addparameter(model,'weight', 80);
weightParam.ValueUnits = 'kilogram';

Scale the dose amount by the body weight using an initial assignment rule.

scaleParam = addparameter(model,'doseAmountPerWeight',0.6);
scaleParam.ValueUnits = 'milligram/kilogram';
rule = addrule(model,'A = weight*doseAmountPerWeight','initialAssignment');

Simulate the model for 7 days and plot the results.

configset = getconfigset(model);
configset.StopTime = 7*24;
configset.TimeUnits = 'hour';
[time, drugAndAmount] = sbiosimulate(model,dose);
plot(time, drugAndAmount);
legend('drug','A');

2 Methods

2-694

Change Dose Behavior In Response to Changes in Model Parameters

Create a simple model with linear elimination, an amount parameter, and a rate parameter.

model = sbiomodel('simple model');
compartment = addcompartment(model,'Central',1);
compartment.CapacityUnits = 'liter';
species = addspecies(model,'drug');
species.InitialAmountUnits = 'milligram';

% Elimination rate
elimParam = addparameter(model,'kel',0.1);
elimParam.ValueUnits = '1/hour';

% Elimination reaction
reaction = addreaction(model,'drug -> null');
reaction.ReactionRate = 'kel*drug';

% Add amount and rate parameters
amountParam = addparameter(model,'A',50);
amountParam.ConstantValue = false;
amountParam.ValueUnits = 'milligram'

amountParam =
 SimBiology Parameter Array

 RepeatDose object

2-695

 Index: Name: Value: Units:
 1 A 50 milligram

rateParam = addparameter(model,'R',10);
rateParam.ValueUnits = 'milligram/hour'

rateParam =
 SimBiology Parameter Array

 Index: Name: Value: Units:
 1 R 10 milligram/hour

Create a dose with its Amount and Rate properties set to the amount and rate parameters 'A' and 'R',
respectively.

dose = adddose(model,'adaptive dose','repeat');
dose.Amount = 'A';
dose.Rate = 'R';

Set other dose properties.

dose.TargetName = 'drug';
dose.StartTime = 0;
dose.TimeUnits = 'hour';
dose.Interval = 24;
dose.RepeatCount = 7;

Prepare the configuration set to simulate the model for 7 days.

configset = getconfigset(model);
configset.StopTime = 7*24;
configset.TimeUnits = 'hour';

Add an event to reset the dose amount to 10 at time >= 26.

event = addevent(model,'time >= 26','A = 10');

Set the EventMode property to 'stop'. This setting causes any ongoing dose event to stop at 26 hours.

dose.EventMode = 'stop';

Simulate the model. The second dose event stops at 26 hours, and the subsequent dose events
continue with the new dose amount of 10.

[time, drugAndAmount] = sbiosimulate(model,dose);
figure
plot(time, drugAndAmount);
legend('drug','A');

2 Methods

2-696

Alternatively, you can allow the ongoing dose event to finish before applying the new dose amount by
setting EventMode to 'continue'.

dose.EventMode = 'continue';

Simulate the model. In this case, the second dose event continues to 26 hours.

[time, drugAndAmount] = sbiosimulate(model,dose);
figure
plot(time, drugAndAmount);
legend('drug','A');

 RepeatDose object

2-697

See Also
Model object | ScheduleDose object | sbiodose | sbiosimulate

Topics
“Parameterized and Adaptive Doses”

Introduced in R2010a

2 Methods

2-698

resample
Resample simulation data onto new time vector

Syntax
newSimData = resample(simdata)
newSimData = resample(simdata,timeVector)
newSimData = resample(simdata,timeVector,method)

Description
newSimData = resample(simdata) resamples the simulation data in simdata to a common time
vector and returns newSimData.

newSimData = resample(simdata,timeVector) resamples the simulation data to the specified
time vector timeVector.

newSimData = resample(simdata,timeVector,method) resamples the simulation data using
the specified interpolation method.

Examples

Resample Simulation Data

Load the radioactive decay model.

sbioloadproject('radiodecay');

Simulate the model.

sd = sbiosimulate(m1);
sbioplot(sd);

 resample

2-699

Resample the simulation data between time points from 1 to 5 with the linear interpolation method.

newsd = resample(sd,[1:5],'linear');
sbioplot(newsd);

2 Methods

2-700

Change the solver to perform an ensemble run.

cs = getconfigset(m1);
cs.SolverType = 'ssa';

Perform an ensemble run.

sdEnsemble = sbioensemblerun(m1,10);

Resample the ensemble data between time points 1 and 10.

newsdEnsemble = resample(sdEnsemble,[1:10],'linear');

Compare the time steps.

newsdEnsemble(1).Time

ans = 10×1

 1
 2
 3
 4
 5
 6
 7
 8
 9

 resample

2-701

 10

sdEnsemble(1).Time

ans = 999×1

 0
 0.0004
 0.0006
 0.0047
 0.0049
 0.0058
 0.0105
 0.0131
 0.0143
 0.0144
 ⋮

Input Arguments
simdata — Simulation data
SimData object | array of SimData objects

Simulation data, specified as a SimData object or array of SimData objects. If you specify an array of
SimData objects with different time courses, the function selects the time vector from a SimData
object with the earliest stop time as the common time vector.

timeVector — Time vector
[] (default) | numeric vector

Time vector, specified as a numeric vector. The default value [] means that the function selects the
time vector from simdata with the earliest stop time as the common time vector.

If timeVector includes time points outside the time interval of the SimData objects in simdata,
resample performs extrapolation if the underlying interpolation “method” on page 2-0 supports
it. Otherwise, the function returns NaNs for those time points. See the help for the MATLAB function
corresponding to the interpolation method in use for information on how the function performs the
extrapolation.

method — Interpolation method
'interp1q' (default) | character vector | string

Interpolation method for resampling, specified as a character vector or string. The valid choices
follow.

• 'interp1q' — Use the interp1q function.
• To use the interp1 function, specify one of the following methods:

• 'nearest'
• 'linear'
• 'spline'

2 Methods

2-702

• 'pchip'
• 'cubic'
• 'v5cubic' (same as 'cubic')

• 'zoh' — Specify the zero-order hold.

Note The 'cubic' method changed in R2020b to perform cubic convolution. In previous releases,
'cubic' was the same as 'pchip'. For details, see interp1.

Output Arguments
newSimData — Resampled simulation data
SimData object | array of SimData objects

Resampled simulation data, returned as a SimData object or array of SimData objects.

See Also
SimData | sbiosimulate

Introduced in R2007b

 resample

2-703

resample
Resample Sobol indices or elementary effects to new time vector

Syntax
results = resample(gsaObj,timeVector)
results = resample(gsaObj,timeVector,method)

Description
results = resample(gsaObj,timeVector) resamples model evaluations to a vector of new time
points. By default, the function uses the interp1q interpolation method.

results = resample(gsaObj,timeVector,method) specifies the interpolation method.

Examples

Resample Sobol Indices to New Time Points

Load the lotka model.

m = sbmlimport("lotka");

Decompose the variance of predators y2 into attributions of the initial values of the prey y1 and
predators.

sobolResults = sbiosobol(m,["y1","y2"],"y2","StopTime",1);
plot(sobolResults);

2 Methods

2-704

Resample the Sobol indices to a new time vector.

newSobolResults = resample(sobolResults,linspace(0,1,50));
plot(newSobolResults);

 resample

2-705

Input Arguments
gsaObj — Results from global sensitivity analysis
SimBiology.gsa.Sobol object | SimBiology.gsa.ElementaryEffects object

Results from global sensitivity analysis, specified as a SimBiology.gsa.Sobol or
SimBiology.gsa.ElementaryEffects object.

timeVector — New time points
numeric vector

New time points, specified as a nonempty real numeric vector containing finite and increasing values.

If timeVector includes time points outside the time interval encompassed by the simulation data in
sobolObj, resample performs extrapolation. The function issues a warning and throws an error if
resampling fails due to extrapolation.

See the help for the MATLAB function corresponding to the interpolation method in use for
information on how the function performs the extrapolation.
Data Types: double

method — Interpolation method
'interp1q' (default) | string | character vector

Interpolation method, specified as a string or character vector. The valid options follows.

2 Methods

2-706

• 'interp1q' — Use the interp1q function.
• Use the interp1 function by specifying one of the following methods:

• 'nearest'
• 'linear'
• 'spline'
• 'pchip'
• 'v5cubic'

• 'zoh' — Specify the zero-order hold.

Data Types: char | string

Output Arguments
results — Resampled results
SimBiology.gsa.Sobol object | SimBiology.gsa.ElementaryEffects

Resampled simulation results computed at new time points, returned as a SimBiology.gsa.Sobol
or SimBiology.gsa.ElementaryEffects object. If the input is a SimBiology.gsa.Sobol
object, the returned results contain resampled simulation results and Sobol indices computed at new
time points. If the input is an SimBiology.gsa.ElementaryEffects object, the results contain
resampled simulation results and elementary effects computed at new time points.

See Also
SimBiology.gsa.Sobol | SimBiology.gsa.ElementaryEffects | sbiosobol |
sbioelementaryeffects

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2020a

 resample

2-707

reset (root)
Delete all model objects from root object

Syntax
reset(sbioroot)

Description
reset(sbioroot) deletes all SimBiology model objects contained by the root object. This call is
equivalent to sbioreset on page 1-226.

The root object contains a list of model objects, available units, unit prefixes, and kinetic laws.

To add a kinetic law to the user-defined library, use the sbioaddtolibrary function. To add a unit
to the user-defined library, use sbiounit followed by sbioaddtolibrary. To add a unit prefix to
the user-defined library, use sbiounitprefix followed by sbioaddtolibrary.

Examples
1 Query sbioroot, which has two model objects.

sbioroot

 SimBiology Root Contains:

 Models: 2
 Builtin Abstract Kinetic Laws: 3
 User Abstract Kinetic Laws: 1
 Builtin Units: 54
 User Units: 0
 Builtin Unit Prefixes: 13
 User Unit Prefixes: 0

2 Call reset.

sbioroot

 SimBiology Root Contains:

 Models: 0
 Builtin Abstract Kinetic Laws: 3
 User Abstract Kinetic Laws: 1
 Builtin Units: 54
 User Units: 0
 Builtin Unit Prefixes: 13
 User Unit Prefixes: 0

See Also
sbioaddtolibrary, sbioreset, sbioroot, sbiounit, sbiounitprefix

2 Methods

2-708

Introduced in R2006a

 reset (root)

2-709

rmcontent (variant)
Remove contents from variant object

Syntax
rmcontent(variantObj, contents)

rmcontent(variantObj, idx)

Arguments
variantObj Specify the variant object from which you want to remove data. The Content

property is modified to remove the new data.
contents Specify the data you want to remove from a variant object. Contents can either be a

cell array or an array of cell arrays. A valid cell array should have the form
{'Type', 'Name', 'PropertyName', PropertyValue}, where
PropertyValue is the new value to be applied for the PropertyName. Valid Type,
Name, and PropertyName values are as follows.

'Type' 'Name' 'PropertyName'
'species' Name of the species. If there are multiple

species in the model with the same name,
specify the species as
[compartmentName.speciesName],
where compartmentName is the name of
the compartment containing the species.

'InitialAmount'

'parameter' If the parameter scope is a model, specify
the parameter name. If the parameter
scope is a kinetic law, specify
[reactionName.parameterName].

'Value'

'compartment' Name of the compartment. 'Capacity'

idx Specify the ContentIndex or indices of the data to be removed. To display the
ContentIndex, enter the object name and press Enter.

Description
rmcontent(variantObj, contents) removes the data stored in the variable contents from the
variant object (variantObj).

rmcontent(variantObj, idx) removes the data specified by the indices idx (also called
ContentIndex) from the Content property of the variant object.

2 Methods

2-710

Examples
1 Create a model containing three species in one compartment.

modelObj = sbiomodel('mymodel');
compObj = addcompartment(modelObj, 'comp1');
A = addspecies(compObj, 'A');
B = addspecies(compObj, 'B');
C = addspecies(compObj, 'C');

2 Add a variant object that varies the species' InitialAmount property.

variantObj = addvariant(modelObj, 'v1');
addcontent(variantObj, {{'species','A', 'InitialAmount', 5}, ...
{'species', 'B', 'InitialAmount', 10}, ...
{ 'species', 'C', 'InitialAmount', 15}});% Display the variant
variantObj

SimBiology Variant - v1 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 species A InitialAmount 5
 2 species B InitialAmount 10
 3 species C InitialAmount 15

3 Use the ContentIndex number to remove a species from the Content property of the variant
object.

rmcontent(variantObj, 2);
variantObj

SimBiology Variant - v1 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 species A InitialAmount 5
 2 species C InitialAmount 15

4 (Alternatively) Remove a species from the contents of the variant object using detailed reference
to the species.
rmcontent(variantObj, {'species','A', 'InitialAmount', 5});
% Display variant object
variantObj
SimBiology Variant - v1 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 species C InitialAmount 15

See Also
addvariant, rmcontent, sbiovariant

Introduced in R2007b

 rmcontent (variant)

2-711

rmproduct (reaction)
Remove species object from reaction object products

Syntax
rmproduct(reactionObj, SpeciesName)
rmproduct(reactionObj, speciesObj)

Arguments
reactionObj Reaction object.
SpeciesName Name for a model object. Enter a species name or a cell array of

species names.
speciesObj Species object. Enter a species object or an array of species objects.

Description
rmproduct(reactionObj, SpeciesName), in a reaction object (reactionObj), removes a
species object with a specified name (SpeciesName) from the property Products, removes the
species name from the property Reaction, and updates the property Stoichiometry to exclude the
species coefficient.

rmproduct(reactionObj, speciesObj) removes a species object as described above using a
MATLAB variable for a species object.

The species object is not removed from the parent model property Species. If the species object is
no longer used by any reaction, you can use the function delete to remove it from the parent object.

If one of the species specified does not exist as a product, a warning is returned.

Examples
Example 1

This example shows how to remove a product that was previously added to a reaction. You can
remove the species object using the species name.
modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'Phosphocreatine + ADP -> creatine + ATP + Pi');
rmproduct(reactionObj, 'Pi')

SimBiology Reaction Array

 Index: Reaction:
 1 Phosphocreatine + ADP -> creatine + ATP

Example 2

Remove a species object using a model index to a species object.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'A -> B + C');

2 Methods

2-712

reactionObj.Reaction
 ans =
 A -> B + C

rmproduct(reactionObj, modelObj.Species(2));
reactionObj.Reaction
 ans =
 A -> C

See Also
rmreactant

Introduced in R2006a

 rmproduct (reaction)

2-713

rmreactant (reaction)
Remove species object from reaction object reactants

Syntax
rmreactant(reactionObj, SpeciesName)
rmreactant(reactionObj, speciesObj)

Arguments
reactionObj Reaction object.
SpeciesName Name for a species object. Enter a species name or a cell array of

species names.
speciesObj Species object. Enter a species object or an array of species objects.

Description
rmreactant(reactionObj, SpeciesName), in a reaction object (reactionObj), removes a
species object with a specified name (SpeciesName) from the property Reactants, removes the
species name from the property Reaction, and updates the property Stoichiometry to exclude the
species coefficient.

rmreactant(reactionObj, speciesObj) removes a species object as described above using a
MATLAB variable for a species object, or a model index for a species object.

The species object is not removed from the parent model property Species. If the species object is
no longer used by any reaction, you can use the method delete to remove it from the parent object.

If one of the species specified does not exist as a reactant, a warning is returned.

Examples
Example 1

This example shows how to remove a reactant that was added to a reaction by mistake. You can
remove the species object using the species name.
modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'Phosphocreatine + ADP + Pi -> creatine + ATP');
rmreactant(reactionObj, 'Pi')

SimBiology Reaction Array

 Index: Reaction:
 1 Phosphocreatine + ADP -> creatine + ATP

Example 2

Remove a species object using a model index to a species object.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'A -> B + C');

2 Methods

2-714

reactionObj.Reaction
ans =
 A + B -> C

rmreactant(reactionObj, modelObj.Species(1));
reactionObj.Reaction

ans =
 A -> C

See Also
delete, rmproduct

Introduced in R2006a

 rmreactant (reaction)

2-715

Root object
Hold models, unit libraries, and abstract kinetic law libraries

Description
The SimBiology root object contains a list of the SimBiology model objects and SimBiology libraries.
The components that the libraries contain are: all available units, unit prefixes, and available abstract
kinetic law objects. There are two types of libraries: one contains components that are built in
(BuiltInLibrary), and the other contains components that are user defined
(UserDefinedLibrary).

You can retrieve SimBiology model objects from the SimBiology root object. A SimBiology model
object has its Parent property set to the SimBiology root object.

See “Property Summary” on page 2-716 for links to root object property reference pages.

Properties define the characteristics of an object. Use the get and set commands to list object
properties and change their values at the command line. You can interactively change object
properties in the SimBiology desktop.

Constructor Summary
sbioroot Return SimBiology root object

Method Summary
copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
reset (root) Delete all model objects from root object
set Set SimBiology object properties

Property Summary
BuiltInLibrary Library of built-in components
Models Contain all model objects
Type Display SimBiology object type
UserDefinedLibrary Library of user-defined components

See Also
AbstractKineticLaw object, Configset object, KineticLaw object, Model object,
Parameter object, Reaction object, Rule object, Species object

2 Methods

2-716

Introduced in R2006b

 Root object

2-717

Rule object
Hold rule for species and parameters

Description
The SimBiology rule object represents a rule, which is a mathematical expression that modifies a
species amount or a parameter value. For a description of the types of SimBiology rules, see
RuleType.

See “Property Summary” on page 2-718 for links to rule property reference pages.

Properties define the characteristics of an object. Use the get and set commands to list object
properties and change their values at the command line. You can graphically change object properties
in the graphical user interface.

Constructor Summary

addrule (model) Create rule object and add to model object

Method Summary

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
rename Rename object and update expressions
set Set SimBiology object properties

Property Summary

Active Indicate object in use during simulation
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Rule Specify species and parameter interactions
RuleType Specify type of rule for rule object
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

2 Methods

2-718

See Also
“Definitions and Evaluations of Rules in SimBiology Models”, AbstractKineticLaw object,
Configset object, KineticLaw object, Model object, Parameter object, Reaction
object, Root object, Species object

Introduced in R2006b

 Rule object

2-719

summary
Return structure array that contains estimated values and fit quality statistics

Syntax
stats = summary(resultsObj)

Description
stats = summary(resultsObj) returns a structure array stats that contains estimated values
and estimation statistics.

Examples

Estimate Two-Compartment PK Parameters

Load the sample data set.

load data10_32R.mat
gData = groupedData(data);
gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];

Create a two-compartment PK model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,"Central");
pkc1.DosingType = "Infusion";
pkc1.EliminationType = "linear-clearance";
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,"Peripheral");
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;
responseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];

Provide model parameters to estimate.

paramsToEstimate = ["log(Central)","log(Peripheral)","Q12","Cl_Central"];
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg
at a rate of 50 mg/hour.

dose = sbiodose("dose","TargetName","Drug_Central");
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = "milligram";
dose.TimeUnits = "hour";
dose.RateUnits = "milligram/hour";

2 Methods

2-720

Estimate model parameters. By default, the function estimates a set of parameter for each individual
(unpooled fit).

fitResults = sbiofit(model,gData,responseMap,estimatedParam,dose);

Plot the results.

plot(fitResults);

Plot all groups in one plot.

plot(fitResults,"PlotStyle","one axes");

 summary

2-721

Change some axes properties.

s = struct;
s.Properties.XGrid = "on";
s.Properties.YGrid = "on";
plot(fitResults,"PlotStyle","one axes","AxesStyle",s);

2 Methods

2-722

Compare the model predictions to the actual data.

plotActualVersusPredicted(fitResults)

 summary

2-723

Use boxplot to show the variation of estimated model parameters.

boxplot(fitResults)

2 Methods

2-724

Plot the distribution of residuals. This normal probability plot shows the deviation from normality and
the skewness on the right tail of the distribution of residuals. The default (constant) error model
might not be the correct assumption for the data being fitted.

plotResidualDistribution(fitResults)

 summary

2-725

Plot residuals for each response using the model predictions on x-axis.

plotResiduals(fitResults,"Predictions")

2 Methods

2-726

Get the summary of the fit results. stats.Name contains the name for each table from
stats.Table, which contains a list of tables with estimated parameter values and fit quality
statistics.

stats = summary(fitResults);
stats.Name

ans =
'Unpooled Parameter Estimates'

ans =
'Statistics'

ans =
'Unpooled Beta'

ans =
'Residuals'

ans =
'Covariance Matrix'

ans =
'Error Model'

stats.Table

 summary

2-727

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 1.422 0.12334 1.5619 0.36355 0.47163 0.15196 0.5291 0.036978
 {'2'} 1.8322 0.019672 5.3364 0.65327 0.2764 0.030799 0.86035 0.026257
 {'3'} 1.6657 0.038529 5.5632 0.37063 0.78361 0.058657 1.0233 0.027311

ans=3×7 table
 Group AIC BIC LogLikelihood DFE MSE SSE
 _____ _______ _______ _____________ ___ ________ _______

 {'1'} 60.961 64.051 -26.48 12 2.138 25.656
 {'2'} -7.8379 -4.7475 7.9189 12 0.029012 0.34814
 {'3'} -1.4336 1.6567 4.7168 12 0.043292 0.5195

ans=3×9 table
 Group Central Estimate Central StandardError Peripheral Estimate Peripheral StandardError Q12 Estimate Q12 StandardError Cl_Central Estimate Cl_Central StandardError
 _____ ________________ _____________________ ___________________ ________________________ ____________ _________________ ___________________ ________________________

 {'1'} 0.35208 0.086736 0.44589 0.23277 0.47163 0.15196 0.5291 0.036978
 {'2'} 0.60551 0.010737 1.6746 0.12242 0.2764 0.030799 0.86035 0.026257
 {'3'} 0.51027 0.02313 1.7162 0.066621 0.78361 0.058657 1.0233 0.027311

ans=24×4 table
 ID Time CentralConc PeripheralConc
 __ ____ ___________ ______________

 1 0 0 0
 1 1 0.10646 -0.74394
 1 4 1.3745 1.2726
 1 8 -0.68825 -4.2435
 1 12 0.67383 0.21806
 1 18 0.88823 1.0269
 1 24 0.48941 0.66755
 1 36 0.13632 0.22948
 2 0 0 0
 2 1 -0.026731 -0.058311
 2 4 -0.033299 -0.20544
 2 8 -0.20466 0.20696
 2 12 -0.12223 0.045409
 2 18 0.041224 0.33883
 2 24 -0.059498 0.0036257
 2 36 -0.051645 0.27616
 ⋮

ans=12×6 table
 Group Parameters log(Central) log(Peripheral) Q12 Cl_Central
 _____ ___________________ ____________ _______________ ___________ ___________

 {'1'} {'log(Central)' } 0.015213 -0.022539 -0.0086672 0.001159
 {'1'} {'log(Peripheral)'} -0.022539 0.13217 0.045746 -0.0073135
 {'1'} {'Q12' } -0.0086672 0.045746 0.023092 -0.0021484
 {'1'} {'Cl_Central' } 0.001159 -0.0073135 -0.0021484 0.0013674
 {'2'} {'log(Central)' } 0.00038701 -0.002161 -0.00010177 9.7448e-05

2 Methods

2-728

 {'2'} {'log(Peripheral)'} -0.002161 0.42676 0.019101 -0.015755
 {'2'} {'Q12' } -0.00010177 0.019101 0.00094857 -0.00073328
 {'2'} {'Cl_Central' } 9.7448e-05 -0.015755 -0.00073328 0.00068942
 {'3'} {'log(Central)' } 0.0014845 -0.0054648 -0.0013216 0.00016639
 {'3'} {'log(Peripheral)'} -0.0054648 0.13737 0.016903 -0.0072722
 {'3'} {'Q12' } -0.0013216 0.016903 0.0034406 -0.00082538
 {'3'} {'Cl_Central' } 0.00016639 -0.0072722 -0.00082538 0.00074587

ans=3×5 table
 Group Response ErrorModel a b
 _____ __________ ____________ _______ ___

 {'1'} {0x0 char} {'constant'} 1.2663 NaN
 {'2'} {0x0 char} {'constant'} 0.14751 NaN
 {'3'} {0x0 char} {'constant'} 0.18019 NaN

Input Arguments
resultsObj — Estimation results
OptimResults object | NLINResults object | vector of results objects

Estimation results, specified as an OptimResults object or NLINResults object, or vector of
results objects which contains estimation results from running sbiofit.

Output Arguments
stats — Summary statistics
structure array

Summary statistics, returned as a structure array.

Each structure contains the fields:

• Name — Name of a fit statistics
• Table — Table containing values of the corresponding fit statistics

Compatibility Considerations
summary returns structure array instead of figure
Behavior changed in R2020a

The summary function now returns a structure array instead of a figure.

See Also
NLINResults object | OptimResults object | sbiofit

Introduced in R2014a

 summary

2-729

SimBiology.Scenarios
Simulation scenarios

Description
SimBiology.Scenarios is an object that lets you generate different simulation scenarios based on
different sample values of model quantities. You can combine these quantities with different doses or
variants and simulate various scenarios to explore model behaviors under different experimental
conditions and dosing regimens.

Creation

Syntax
sObj = SimBiology.Scenarios
sObj = SimBiology.Scenarios(name,content)
sObj = SimBiology.Scenarios(quantityNames,probDist,Name,Value)

Description

sObj = SimBiology.Scenarios returns a Scenarios object sObj that contains no entries on
page 2-744.

sObj = SimBiology.Scenarios(name,content) returns a Scenarios object sObj with one
entry. name is the name of a model quantity or the name of a group of variants or doses for scenario
generation. content contains the corresponding numeric values for the model quantity or a vector of
variant objects or vector of dose objects.

sObj = SimBiology.Scenarios(quantityNames,probDist,Name,Value) specifies to
generate the sample values for one or more model quantities quantityNames from the joint
probability distribution probDist. Specify additional options for the probability distributions and
sampling method using one or more name-value pair arguments. To specify the probability
distributions, you must have Statistics and Machine Learning Toolbox.

Input Arguments

name — Entry name
character vector | string

Entry name, specified as a character vector or string.

You can set the entry name to the name of a model quantity (species, parameter, or compartment).
Alternatively, you can define a name for a group of doses or variants to be included in the sample
(scenarios) generation.
Example: "k1"
Data Types: char | string

2 Methods

2-730

content — Model quantity values or vector of doses or variants
numeric vector | vector of RepeatDose or ScheduleDose objects | vector of variant objects

Model quantity values, or a vector of doses or variants, specified as a numeric vector, vector of
RepeatDose or ScheduleDose objects, or vector of variant objects.

If you specify a quantity name for the name input argument, set content to a numeric vector.

If you specify a name for a group of doses or variants, set content to a vector of dose objects or
vector of variant objects.
Example: [0.5,1,1.5]

quantityNames — Names of model quantities
character vector | string | string vector | cell array of character vectors

Names of model quantities for the sample (scenario) generation, specified as a character vector,
string, string vector, or cell array of character vectors.
Example: ["k12","k21"]
Data Types: char | string | cell

probDist — Probability distributions
vector of probability distribution objects | character vector | string | string vector | cell array of
character vectors

Probability distributions to generate sample values for model quantities, specified as a vector of
probability distribution objects, character vector, string, string vector, or cell array of character
vectors containing the names of supported probability distributions. To specify the probability
distributions, you must have Statistics and Machine Learning Toolbox.

Use the makedist function to create distribution objects. For a list of supported distributions, see
“distname” (Statistics and Machine Learning Toolbox).
Example: [pd1,pd2]

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Number',10 specifies to generate 10 samples.

Number — Number of samples
[] (default) | positive scalar

Number of samples to draw from probability distributions, specified as the comma-separated pair
consisting of 'Number' and a positive scalar. The default value [] means that the function infers the
number of samples from other entries. If the number cannot be inferred, the number is set to 2.
Example: 'Number',5

RankCorrelation — Rank correlation matrix
[] (default) | numeric matrix

Rank correlation matrix for the joint probability distribution, specified as the comma-separated pair
consisting of 'RankCorrelation' and a numeric matrix. The default behavior is that when both

 SimBiology.Scenarios

2-731

'RankCorrelation' and 'Covariance' are set to [], SimBiology.Scenarios draws
uncorrelated samples from the joint probability distribution.

You cannot specify 'RankCorrelation' if 'Covariance' is set. The number of columns in the
matrix must match the number of specified distributions. The matrix must be symmetric with
diagonal values of 1. All of its eigenvalues must also be positive.
Example: 'RankCorrelation',[1 0.3;0.3 1]

Mean — Mean values
numeric vector

Mean values of quantities, specified as the comma-separated pair consisting of 'Mean' and a
numeric vector.

You can specify mean values for normal distributions only. The number of mean values must equal the
number of specified probability distributions.
Example: 'Mean',[0.5,1.5]

Covariance — Covariance matrix
[] (default) | numeric matrix

Covariance matrix for the joint probability distribution, specified as the comma-separated pair
consisting of 'Covariance' and a numeric matrix. The default behavior is that if both
'RankCorrelation' and 'Covariance' are set to [], SimBiology.Scenarios draws
uncorrelated samples from the joint probability distribution. You cannot specify 'Covariance' if you
specify 'RankCorrelation'.

You can specify the covariance matrix for normal distributions only. The number of columns in the
matrix must match the number of specified distributions. All of its eigenvalues must also be
nonnegative.
Example: 'Covariance',[0.25 0.15;0.15 0.25]

SamplingMethod — Sampling method
'random' (default) | 'lhs' | 'copula' | 'sobol' | 'halton'

Sampling method, specified as the comma-separated pair consisting of 'SamplingMethod' and a
character vector or string. Depending on whether probability distributions with
'RankCorrelation' or normal distributions with 'Covariance' are specified, the sampling
techniques differ.

If an entry contains a (joint) normal distribution with Covariance specified, the sampling methods
are:

• 'random' – Draw random samples from the specified normal distribution using mvnrnd.
• 'lhs' – Draw Latin hypercube samples from the specified normal distributions using lhsnorm.

For details, see “Generating Quasi-Random Numbers” (Statistics and Machine Learning Toolbox).

If an entry contains a (joint) distribution with no Covariance specified, the sampling methods are:

• 'random' – Draw random samples from the specified probability distributions using random.
• 'lhs' – Draw Latin hypercube samples from the specified probability distributions using an

algorithm similar to lhsdesign. This approach is a more systematic space-filling approach than

2 Methods

2-732

random sampling. For details, see “Generating Quasi-Random Numbers” (Statistics and Machine
Learning Toolbox).

• 'copula' – Draw random samples using a copula (Statistics and Machine Learning Toolbox). Use
this option to impose correlations between samples using copulas.

• 'sobol' – Use the sobol sequence (sobolset) which is transformed using the inverse cumulative
distribution function (icdf) of the specified probability distributions. Use this method for highly
systematic space-filling. For details, see “Generating Quasi-Random Numbers” (Statistics and
Machine Learning Toolbox).

• 'halton' – Use the halton sequence (haltonset) which is transformed using the inverse
cumulative distribution function (icdf) of the specified probability distributions. For details, see
“Generating Quasi-Random Numbers” (Statistics and Machine Learning Toolbox).

If no Covariance is specified, SimBiology.Scenarios essentially performs two steps. The first
step is to generate samples using one of the above sampling methods. For lhs, sobol, and halton
methods, the generated uniform samples are transformed to samples from the specified distribution
using the inverse cumulative distribution function icdf. Then, as the second step, the samples are
correlated using the Iman-Conover algorithm if RankCorrelation is specified. For random, the
samples are drawn directly from the specified distributions and the samples are then correlated using
the Iman-Conover algorithm.
Example: 'SamplingMethod','lhs'

SamplingOptions — Options for sampling method
struct

Options for the sampling method, specified as a scalar struct. The options differ depending on the
sampling method: sobol, halton, or lhs.

For sobol and halton, specify each field name and value of the structure according to each name-
value argument of the sobolset or haltonset function. SimBiology uses the default value of 1 for
the Skip argument for both methods. For all other name-value arguments, the software uses the
same default values of sobolset or haltonset. For instance, set up a structure for the Leap and
Skip options with nondefault values as follows.

s1.Leap = 50;
s1.Skip = 0;

For lhs, there are three samplers that support different sampling options.

• If you specify a covariance matrix, SimBiology uses lhsnorm for sampling. SamplingOptions
argument is not allowed.

• Otherwise, use the field name UseLhsdesign to select a sampler.

• If the value is true, SimBiology uses lhsdesign. You can use the name-value arguments of
lhsdesign to specify the field names and values.

• If the value is false (default), SimBiology uses a nonconfigurable Latin hypercube sampler
that is different from lhsdesign. This sampler does not require Statistics and Machine
Learning Toolbox. SamplingOptions cannot contain any other options, except
UseLhsdesign.

For instance, set up a structure to use lhsdesign with the Criterion and Iterations options.

 SimBiology.Scenarios

2-733

s2.UseLhsdesign = true;
s2.Criterion = "correlation";
s2.Iterations = 10;

You cannot specify sampling options for the random and copula methods.
Data Types: struct

Properties
Expression — Combination expression
character vector

This property is read-only.

Combination expression summarizing the combination of entries in the object, specified as a
character vector. The plus + sign indicates the elementwise combination, and the cross x sign
indicates the cartesian combination. For details, see “Combine Simulation Scenarios in SimBiology”.
Example: '(k1 + k2 + k3) x doses'
Data Types: char

NumberOfEntries — Number of entries
positive integer

Number of entries in the scenarios object, specified as a positive integer.
Example: 4
Data Types: double

RandomSeed — Seed or state for random number generation
[] (default) | nonnegative integer smaller than 232 | structure returned by rng

Seed for random number generation to obtain reproducible scenarios, specified as a nonnegative
integer smaller than 232 or structure returned by rng that defines the random state. The default
value [] means that the generated scenarios will be different every time the generate function is
called unless you set the random seed before calling the function or use reproducible sequences such
as Sobol or Halton.
Example: 10
Data Types: double | struct

Object Functions
add Add quantity values, doses, or variants to SimBiology.Scenarios object
getEntry Get entry contents from SimBiology.Scenarios object
updateEntry Update entry contents from SimBiology.Scenarios object
rename Rename entry from SimBiology.Scenarios object
remove Remove entries from SimBiology.Scenarios object
verify Verify SimBiology.Scenarios object
generate Generate scenarios from SimBiology.Scenarios object and return table
getNumberScenarios Return number of scenarios from SimBiology.Scenarios object

2 Methods

2-734

Examples

Generate Different Simulation Scenarios for Glucose-Insulin Response

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo','m1');

The model contains different parameter values and initial conditions that represents different insulin
impairments (such as Type 2 diabetes, low insulin sensitivity, and so on) stored in five variants.

variants = getvariant(m1)

variants =
 SimBiology Variant Array

 Index: Name: Active:
 1 Type 2 diabetic false
 2 Low insulin se... false
 3 High beta cell... false
 4 Low beta cell ... false
 5 High insulin s... false

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Select a dose that represents a single meal of 78 grams of glucose.

singleMeal = sbioselect(m1,'Name','Single Meal');

Create a Scenarios object to represent different initial conditions combined with the dose. That is,
create a scenario object where each variant is paired (or combined) with the dose, for a total of five
simulation scenarios.

sObj = SimBiology.Scenarios;
add(sObj,'cartesian','variants',variants);
add(sObj,'cartesian','dose',singleMeal)

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ________ ___________________ ______

 Entry 1 variants SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

sObj contains two entries. Use the generate function to combine the entries and generate five
scenarios. The function returns a scenarios table, where each row represents a scenario and each
column represents an entry of the Scenarios object.

 SimBiology.Scenarios

2-735

scenariosTbl = generate(sObj)

scenariosTbl=5×2 table
 variants dose
 ______________________ _________________________

 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose

Change the entry name of the first entry.

rename(sObj,1,'Insulin Impairements')

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ____________________ ___________________ ______

 Entry 1 Insulin Impairements SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

Create a SimFunction object to simulate the generated scenarios. Use the Scenarios object as the
input and specify the plasma glucose and insulin concentrations as reponses (outputs of the function
to be plotted). Specify [] for the dose input argument since the Scenarios object already has the
dosing information.

f = createSimFunction(m1,sObj,{'[Plasma Glu Conc]','[Plasma Ins Conc]'},[])

f =
SimFunction

Parameters:

 Name Value Type Units
 _________________________ ______ _____________ ___

 {'Plasma Volume (Glu)' } 1.88 {'parameter'} {'deciliter' }
 {'k1' } 0.065 {'parameter'} {'1/minute' }
 {'k2' } 0.079 {'parameter'} {'1/minute' }
 {'Plasma Volume (Ins)' } 0.05 {'parameter'} {'liter' }
 {'m1' } 0.19 {'parameter'} {'1/minute' }
 {'m2' } 0.484 {'parameter'} {'1/minute' }
 {'m4' } 0.1936 {'parameter'} {'1/minute' }
 {'m5' } 0.0304 {'parameter'} {'minute/picomole' }
 {'m6' } 0.6469 {'parameter'} {'dimensionless' }
 {'Hepatic Extraction' } 0.6 {'parameter'} {'dimensionless' }
 {'kmax' } 0.0558 {'parameter'} {'1/minute' }
 {'kmin' } 0.008 {'parameter'} {'1/minute' }
 {'kabs' } 0.0568 {'parameter'} {'1/minute' }
 {'kgri' } 0 {'parameter'} {'1/minute' }

2 Methods

2-736

 {'f' } 0.9 {'parameter'} {'dimensionless' }
 {'a' } 0 {'parameter'} {'1/milligram' }
 {'b' } 0.82 {'parameter'} {'dimensionless' }
 {'c' } 0 {'parameter'} {'1/milligram' }
 {'d' } 0.01 {'parameter'} {'dimensionless' }
 {'kp1' } 2.7 {'parameter'} {'milligram/minute' }
 {'kp2' } 0.0021 {'parameter'} {'1/minute' }
 {'kp3' } 0.009 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'kp4' } 0.0618 {'parameter'} {'(milligram/minute)/picomole' }
 {'ki' } 0.0079 {'parameter'} {'1/minute' }
 {'[Ins Ind Glu Util]' } 1 {'parameter'} {'milligram/minute' }
 {'Vm0' } 2.5129 {'parameter'} {'milligram/minute' }
 {'Vmx' } 0.047 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'Km' } 225.59 {'parameter'} {'milligram' }
 {'p2U' } 0.0331 {'parameter'} {'1/minute' }
 {'K' } 2.28 {'parameter'} {'picomole/(milligram/deciliter)' }
 {'alpha' } 0.05 {'parameter'} {'1/minute' }
 {'beta' } 0.11 {'parameter'} {'(picomole/minute)/(milligram/deciliter)'}
 {'gamma' } 0.5 {'parameter'} {'1/minute' }
 {'ke1' } 0.0005 {'parameter'} {'1/minute' }
 {'ke2' } 339 {'parameter'} {'milligram' }
 {'Basal Plasma Glu Conc'} 91.76 {'parameter'} {'milligram/deciliter' }
 {'Basal Plasma Ins Conc'} 25.49 {'parameter'} {'picomole/liter' }

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

Simulate the model for 24 hours and plot the simulation data. The data contains five runs, where each
run represents a scenario in the Scenarios object.

sd = f(sObj,24);
sbioplot(sd)

 SimBiology.Scenarios

2-737

ans =
 Axes (SbioPlot) with properties:

 XLim: [0 30]
 YLim: [0 450]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.0920 0.1100 0.2956 0.8150]
 Units: 'normalized'

 Show all properties

If you have Statistics and Machine Learning Toolbox™, you can also draw sample values for model
quantities from various probability distributions. For instance, suppose that the parameters Vmx and
kp3, which are known for the low and high insulin sensitivity, follow the lognormal distribution. You
can generate sample values for these parameters from such a distribution, and perform a scan to
explore model behavior.

Define the lognormal probability distribution object for Vmx.

pd_Vmx = makedist('lognormal')

pd_Vmx =
 LognormalDistribution

2 Methods

2-738

 Lognormal distribution
 mu = 0
 sigma = 1

By definition, the parameter mu is the mean of logarithmic values. To vary the parameter value
around the base (model) value of the parameter, set mu to log(model_value). Set the standard
deviation (sigma) to 0.2. For a small sigma value, the mean of a lognormal distribtion is
approximately equal to log(model_value). For details, see “Lognormal Distribution” (Statistics and
Machine Learning Toolbox).

Vmx = sbioselect(m1,'Name','Vmx');
pd_Vmx.mu = log(Vmx.Value);
pd_Vmx.sigma = 0.2

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = -3.05761
 sigma = 0.2

Similarly define the probability distribution for kp3.

pd_kp3 = makedist('lognormal');
kp3 = sbioselect(m1,'Name','kp3');
pd_kp3.mu = log(kp3.Value);
pd_kp3.sigma = 0.2

pd_kp3 =
 LognormalDistribution

 Lognormal distribution
 mu = -4.71053
 sigma = 0.2

Now define a joint probability distribution to draw sample values for Vmx and kp3, with a rank
correlation to specify some correlation between these two parameters. Note that this correlation
assumption is for the illustration purposes of this example only and may not be biologically relevant.

First remove the variants entry (entry 1) from sObj.

remove(sObj,1)

ans =
 Scenarios (1 scenarios)

 Name Content Number
 ____ _______________ ______

 Entry 1 dose SimBiology dose 1

 See also Expression property.

Add an entry that defines the joint probability distribution with a rank correlation matrix.

 SimBiology.Scenarios

2-739

add(sObj,'cartesian',["Vmx","kp3"],[pd_Vmx, pd_kp3],'RankCorrelation',[1,0.5;0.5,1])

ans =
 Scenarios (2 scenarios)

 Name Content Number
 ____ ______________________ ___________

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 2 (default)
 + Entry 2.2) kp3 Lognormal distribution 2 (default)

 See also Expression property.

By default, the number of samples to draw from the joint distribution is set to 2. Increase the number
of samples.

updateEntry(sObj,2,'Number',50)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Verify that the Scenarios object can be simulated with the model. The verify function throws an
error if any entry does not resolve uniquely to an object in the model or the entry contents have
inconsistent lengths (sample sizes). The function throws a warning if multiple entries resolve to the
same object in the model.

verify(sObj,m1)

Generate the simulation scenarios. Plot the sample values using plotmatrix. You can see the value
of Vmx is varied around its model value 0.047 and that of kp3 around 0.009.

sTbl = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl.Vmx,sTbl.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

2 Methods

2-740

Simulate the scenarios using the same SimFunction you created previously. You do not need to create
a new SimFunction object even though the Scenarios object has been updated.

sd2 = f(sObj,24);
sbioplot(sd2);

 SimBiology.Scenarios

2-741

By default, SimBiology uses the random sampling method. You can change it to the Latin hypercube
sampling (or sobol or halton) for a more systematic space-filling approach.

entry2struct = getEntry(sObj,2)

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'random'
 SamplingOptions: [0x0 struct]

entry2struct.SamplingMethod = 'lhs'

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'lhs'
 SamplingOptions: [0x0 struct]

You can now use the updated structure to modify entry 2.

2 Methods

2-742

updateEntry(sObj,2,entry2struct)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Visualize the sample values.

sTbl2 = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl2.Vmx,sTbl2.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios.

sd3 = f(sObj,24);
sbioplot(sd3);

 SimBiology.Scenarios

2-743

Restore warning settings.

warning(warnSettings);

More About
SimBiology.Scenarios Terminology

This section annotates the command line display of the SimBiology.Scenarios object and explains
the terms shown in the output. Specifically, it explains these terminologies: Scenarios, Entry,
Subentry, Name, Content, Number, Expression, inconsistent and Diagnosis.

A consistent Scenarios object has entries that have the correct number of samples so that entries
can be combined without error. An example of a consistent Scenarios object is shown next.

2 Methods

2-744

An inconsistent Scenarios object has one or more entries with incorrect number of samples. You need
to correct these entries before you can use the object for simulation. An example of an inconsistent
object is shown next.

 SimBiology.Scenarios

2-745

The Diagnosis column suggests which entries to fix to have the correct number of samples. Use
updateEntry, rename, and remove to edit the entries.

References
[1] Iman, R., and W.J. Conover. 1982. A distribution-free approach to inducing rank correlation among

input variables. Communications in Statistics - Simulation and Computation. 11(3):311–334.

See Also
SimFunction object | createSimFunction (model)

Topics
“Combine Simulation Scenarios in SimBiology”

Introduced in R2019b

2 Methods

2-746

ScheduleDose object
Define drug dosing protocol

Description
A ScheduleDose object defines a series of doses to the amount of a species during a simulation. The
TargetName property defines the species that receives the dose.

Each dose can have a different amount, as defined by an amount array in the Amount property. Each
dose can be given at specified times, as defined by a time array in the Time property. A rate array in
the Rate property defines how fast each dose is given. At each time point in the time array, a dose is
given with the corresponding amount and rate.

To use a dose object in a simulation you must add the dose object to a model object and set the
Active property of the dose object to true. Set the Active property to true if you always want the
dose to be applied before simulating the model.

Warning The Active property of the ScheduleDose object will be removed in a future release.
Explicitly specify a dose or an array of doses as an input argument when you simulate a model using
sbiosimulate.

When there are multiple active ScheduleDdose objects on a model, and there are duplicate
specifications for a property value, the simulation uses the last occurrence for the property value in
the array of doses. You can find out which dose you applied last by looking at the indices of the dose
objects stored on the model.

Tip You can create a combination of bolus and infusion doses by setting the rate property of a
ScheduleDose object to a vector containing zeros and non-zeros.

Constructor Summary
sbiodose Construct dose object

Method Summary
Methods for ScheduleDose objects

 ScheduleDose object

2-747

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
getTable(ScheduleDose,RepeatDose)

Return data from SimBiology dose object as table
rename Rename object and update expressions
set Set SimBiology object properties
setTable(ScheduleDose,RepeatDose)

Set dosing information from table to dose object

Property Summary
Properties for ScheduleDose objects

Active Indicate object in use during simulation
Amount Amount of dose
AmountUnits Dose amount units
DurationParameterName Parameter specifying length of time to administer a dose
EventMode Determine how events that change dose parameters affect in-progress

dosing
LagParameterName Parameter specifying time lag for dose
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Rate Rate of dose
RateUnits Units for dose rate
Tag Specify label for SimBiology object
TargetName Species receiving dose
Time Simulation time steps or schedule dose times
TimeUnits Show time units for dosing and simulation
Type Display SimBiology object type
UserData Specify data to associate with object

See Also
Model object, RepeatDose object, sbiodose, sbiosimulate

Introduced in R2010a

2 Methods

2-748

select
Select simulation data from SimData object using expressions

Syntax
[t,x,names] = select(simdata,query)
sdOut = select(simdata,query)
___ = select(simdata,query,'Format',formatValue)

Description
[t,x,names] = select(simdata,query) returns the simulation time points t, the simulation
data x, and corresponding names for the data columns that match query.

sdOut = select(simdata,query) returns the simulation results that match the query as a
SimData object sdOut.

___ = select(simdata,query,'Format',formatValue) returns the queried simulation data
in the specified data format.

Examples

Select Simulation Data Using Names and Regular Expressions

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo.sbproj','m1');

Suppress an information warning that is issued during simulations.

warnSettings = warning('off', 'SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Simulate a single meal for a normal subject for 7 hours.

singleMeal = sbioselect(m1,'Name','Single Meal');
cs = getconfigset(m1,'active');
cs.StopTime = 7;
sd = sbiosimulate(m1,singleMeal)

 SimBiology Simulation Data

 ModelName: Cobelli's Glucose-Insulin System
 Logged Data:
 Species: 15
 Compartment: 0
 Parameter: 24
 Sensitivity: 0
 Observable: 0

 select

2-749

sbioplot(sd);

Select all species data logged in the SimData object sd.

[t,x,names] = select(sd,{'Type','species'});
names

names = 15x1 cell
 {'Glucose appearance.Dose' }
 {'Glucose appearance.Stomach Glu Solid' }
 {'Glucose appearance.Stomach Glu Tritur'}
 {'Glucose appearance.Stomach Glu' }
 {'Glucose appearance.Gut Glu' }
 {'Glucose appearance.Plasma Glu' }
 {'Glucose appearance.Plasma Glu Conc' }
 {'Glucose appearance.Tissue Glu' }
 {'Insulin secretion.Interstitial Ins' }
 {'Insulin secretion.Portal Ins' }
 {'Insulin secretion.Liver Ins' }
 {'Insulin secretion.Plasma Ins' }
 {'Insulin secretion.Plasma Ins Conc' }
 {'Insulin secretion.Ins Delay 1' }
 {'Insulin secretion.Ins Delay 2' }

Plot data for the glucose rate of appearance and glucose utilization, namely Glu Appear Rate and Glu
Util.

2 Methods

2-750

newsd = select(sd,{'Type','parameter','name',{'Glu Appear Rate'; 'Glu Util'}})

 SimBiology Simulation Data

 ModelName: Cobelli's Glucose-Insulin System
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 2
 Sensitivity: 0
 Observable: 0

sbioplot(newsd);

Compare data for the plasma glucose concentration (the species named Plasma Glu Conc) and
insulin secretion rate (the parameter named Ins Secr). Use selectbyname to extract data by
specifying the corresponding names.

newsd2 = selectbyname(sd,{'Plasma Glu Conc','Ins Secr'})

 SimBiology Simulation Data

 ModelName: Cobelli's Glucose-Insulin System
 Logged Data:
 Species: 1

 select

2-751

 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 0

sbioplot(newsd2);

Select data for all species and parameters that have Glu in their names.

newsd3 = select(sd,{'Where','Name','regexp','Glu'})

 SimBiology Simulation Data

 ModelName: Cobelli's Glucose-Insulin System
 Logged Data:
 Species: 7
 Compartment: 0
 Parameter: 11
 Sensitivity: 0
 Observable: 0

newsd3.DataNames

ans = 18x1 cell
 {'Stomach Glu Solid' }

2 Methods

2-752

 {'Stomach Glu Tritur' }
 {'Stomach Glu' }
 {'Gut Glu' }
 {'Plasma Glu' }
 {'Plasma Glu Conc' }
 {'Tissue Glu' }
 {'Stomach Glu After Dosing'}
 {'Glu Appear Rate' }
 {'Glu Prod' }
 {'Plasma Glu Conc Rate' }
 {'Ins Dep Glu Util' }
 {'Glu Util' }
 {'Glu Excretion' }
 {'Glu Excretion Mode' }
 {'Delayed Glu Signal' }
 {'Delayed Glu Signal Mode' }
 {'Basal Glu Prod' }

You can also return the selected data as a structure.

sdStruct = select(sd,{'Where','Name','regexp','Glu'},'Format','struct');

Restore the warning settings.

warning(warnSettings);

Input Arguments
simdata — Simulation data
SimData object | array of SimData objects

Simulation data, specified as a SimData object or array of SimData objects.

query — Search query
cell array of character vectors | string vector

Search query, specified as a cell array of character vectors or a string vector. The query consists of
some combination of name-value pair arguments or 'Where' clauses. For a more complete
description of the query syntax, including 'Where' clauses and their supported condition types, see
sbioselect. However, the only boolean operator that the function supports is and.

You can use any of the metadata fields available in the DataInfo property of a SimData object in the
query. The fields include 'Type', 'Name', 'Units', 'Compartment' (for species only), and
'Reaction' (for parameters only).
Example: {'Type','species'}
Data Types: string | cell

formatValue — Simulation data format
character vector | string

Simulation data format, specified as a character vector or string. Some formats require you to specify
only one output argument. The valid formats follow.

 select

2-753

• 'num' — This format returns simulation time points and simulation data in numeric arrays and
the names of quantities and sensitivities as a cell array. This format is the default when you run
getdata with multiple output arguments.

• 'nummetadata' — This format returns a cell array of metadata structures instead of the names
of quantities and sensitivities as the third output argument.

• 'numqualnames' — This format returns qualified names in the third output argument to resolve
ambiguities.

You must specify only one output argument for the following formats.

• 'simdata' — This format returns data in a new SimData object or an array of SimData objects.
This format is the default when you specify a single output argument.

• 'struct' — This format returns a structure or structure array that contains both data and
metadata.

• 'ts' — This format returns data as a cell array.

• If simdata is scalar, the cell array is an m-by-1 array, where each element is a timeseries
object. m is the number of quantities and sensitivities logged during the simulation.

• If simdata is not scalar, the cell array is k-by-1, where each element of the cell array is an m-
by-1 cell array of timeseries objects. k is the size of simdata, and m is the number of
quantities or sensitivities in each SimData object in simdata. In other words, the function
returns an individual time series for each state or column and for each SimData object in
simdata.

• 'tslumped' — This format returns the data as a cell array of timeseries objects, combining
data from each SimData object into a single time series.

Output Arguments
t — Simulation time points
numeric vector | cell array

Simulation time points, returned as a numeric vector or cell array. If simdata is scalar, t is an n-by-1
vector, where n is the number of time points. If simdata is an array of objects, t is a k-by-1 cell array,
where k is the size of simdata.

x — Simulation data
numeric matrix | cell array

Simulation data, returned as a numeric matrix or cell array. If simdata is scalar, x is an n-by-m
matrix, where n is the number of time points and m is the number of quantities and sensitivities
logged during the simulation. If simdata is an array of objects, x is a k-by-1 cell array, where k is the
size of simdata.

names — Names of quantities and sensitivities
cell array

Names of quantities and sensitivities logged during the simulation, returned as a cell array. If
simdata is scalar, names is an m-by-1 cell array. If simdata is an array of objects, names is a k-by-1
cell array, where k is the size of simdata.

sdOut — Simulation results
SimData object

2 Methods

2-754

Simulation results, returned as a SimData object.

See Also
get | set | SimData

Introduced in R2007b

 select

2-755

selectbyname
Select simulation data by name from SimData object

Syntax
[t,x,names] = selectbyname(simdata,selectNames)
sdOut = selectbyname(simdata,selectNames)
___ = selectbyname(simdata,selectNames,'Format',formatValue)

Description
[t,x,names] = selectbyname(simdata,selectNames) returns the simulation time points t,
the simulation data x, and corresponding names for the states specified by selectNames.

sdOut = selectbyname(simdata,selectNames) returns the simulation results of the states
specified by selectNames as a SimData object sdOut.

___ = selectbyname(simdata,selectNames,'Format',formatValue) returns the
simulation data in the specified data format.

Examples

Select Simulation Data Using Names and Regular Expressions

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo.sbproj','m1');

Suppress an information warning that is issued during simulations.

warnSettings = warning('off', 'SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Simulate a single meal for a normal subject for 7 hours.

singleMeal = sbioselect(m1,'Name','Single Meal');
cs = getconfigset(m1,'active');
cs.StopTime = 7;
sd = sbiosimulate(m1,singleMeal)

 SimBiology Simulation Data

 ModelName: Cobelli's Glucose-Insulin System
 Logged Data:
 Species: 15
 Compartment: 0
 Parameter: 24
 Sensitivity: 0
 Observable: 0

2 Methods

2-756

sbioplot(sd);

Select all species data logged in the SimData object sd.

[t,x,names] = select(sd,{'Type','species'});
names

names = 15x1 cell
 {'Glucose appearance.Dose' }
 {'Glucose appearance.Stomach Glu Solid' }
 {'Glucose appearance.Stomach Glu Tritur'}
 {'Glucose appearance.Stomach Glu' }
 {'Glucose appearance.Gut Glu' }
 {'Glucose appearance.Plasma Glu' }
 {'Glucose appearance.Plasma Glu Conc' }
 {'Glucose appearance.Tissue Glu' }
 {'Insulin secretion.Interstitial Ins' }
 {'Insulin secretion.Portal Ins' }
 {'Insulin secretion.Liver Ins' }
 {'Insulin secretion.Plasma Ins' }
 {'Insulin secretion.Plasma Ins Conc' }
 {'Insulin secretion.Ins Delay 1' }
 {'Insulin secretion.Ins Delay 2' }

Plot data for the glucose rate of appearance and glucose utilization, namely Glu Appear Rate and Glu
Util.

 selectbyname

2-757

newsd = select(sd,{'Type','parameter','name',{'Glu Appear Rate'; 'Glu Util'}})

 SimBiology Simulation Data

 ModelName: Cobelli's Glucose-Insulin System
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 2
 Sensitivity: 0
 Observable: 0

sbioplot(newsd);

Compare data for the plasma glucose concentration (the species named Plasma Glu Conc) and
insulin secretion rate (the parameter named Ins Secr). Use selectbyname to extract data by
specifying the corresponding names.

newsd2 = selectbyname(sd,{'Plasma Glu Conc','Ins Secr'})

 SimBiology Simulation Data

 ModelName: Cobelli's Glucose-Insulin System
 Logged Data:
 Species: 1

2 Methods

2-758

 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 0

sbioplot(newsd2);

Select data for all species and parameters that have Glu in their names.

newsd3 = select(sd,{'Where','Name','regexp','Glu'})

 SimBiology Simulation Data

 ModelName: Cobelli's Glucose-Insulin System
 Logged Data:
 Species: 7
 Compartment: 0
 Parameter: 11
 Sensitivity: 0
 Observable: 0

newsd3.DataNames

ans = 18x1 cell
 {'Stomach Glu Solid' }

 selectbyname

2-759

 {'Stomach Glu Tritur' }
 {'Stomach Glu' }
 {'Gut Glu' }
 {'Plasma Glu' }
 {'Plasma Glu Conc' }
 {'Tissue Glu' }
 {'Stomach Glu After Dosing'}
 {'Glu Appear Rate' }
 {'Glu Prod' }
 {'Plasma Glu Conc Rate' }
 {'Ins Dep Glu Util' }
 {'Glu Util' }
 {'Glu Excretion' }
 {'Glu Excretion Mode' }
 {'Delayed Glu Signal' }
 {'Delayed Glu Signal Mode' }
 {'Basal Glu Prod' }

You can also return the selected data as a structure.

sdStruct = select(sd,{'Where','Name','regexp','Glu'},'Format','struct');

Restore the warning settings.

warning(warnSettings);

Input Arguments
simdata — Simulation data
SimData object | array of SimData objects

Simulation data, specified as a SimData object or array of SimData objects.

selectNames — Names of states
character vector | string | string vector | cell array of character vectors

Names of states that you want to select data for, specified as a character vector, string, string vector,
or cell array of character vectors.
Example: {'x1','x2','x3'}
Data Types: char | string | cell

formatValue — Simulation data format
character vector | string

Simulation data format, specified as a character vector or string. Some formats require you to specify
only one output argument. The valid formats follow.

• 'num' — This format returns simulation time points and simulation data in numeric arrays and
the names of quantities and sensitivities as a cell array. This format is the default when you run
getdata with multiple output arguments.

• 'nummetadata' — This format returns a cell array of metadata structures instead of the names
of quantities and sensitivities as the third output argument.

2 Methods

2-760

• 'numqualnames' — This format returns qualified names in the third output argument to resolve
ambiguities.

You must specify only one output argument for the following formats.

• 'simdata' — This format returns data in a new SimData object or an array of SimData objects.
This format is the default when you specify a single output argument.

• 'struct' — This format returns a structure or structure array that contains both data and
metadata.

• 'ts' — This format returns data as a cell array.

• If simdata is scalar, the cell array is an m-by-1 array, where each element is a timeseries
object. m is the number of quantities and sensitivities logged during the simulation.

• If simdata is not scalar, the cell array is k-by-1, where each element of the cell array is an m-
by-1 cell array of timeseries objects. k is the size of simdata, and m is the number of
quantities or sensitivities in each SimData object in simdata. In other words, the function
returns an individual time series for each state or column and for each SimData object in
simdata.

• 'tslumped' — This format returns the data as a cell array of timeseries objects, combining
data from each SimData object into a single time series.

Output Arguments
t — Simulation time points
numeric vector | cell array

Simulation time points, returned as a numeric vector or cell array. If simdata is scalar, t is an n-by-1
vector, where n is the number of time points. If simdata is an array of objects, t is a k-by-1 cell array,
where k is the size of simdata.

x — Simulation data
numeric matrix | cell array

Simulation data, returned as a numeric matrix or cell array. If simdata is scalar, x is an n-by-m
matrix, where n is the number of time points and m is the number of quantities and sensitivities
logged during the simulation. If simdata is an array of objects, x is a k-by-1 cell array, where k is the
size of simdata.

names — Names of quantities and sensitivities
cell array

Names of quantities and sensitivities logged during the simulation, returned as a cell array. If
simdata is scalar, names is an m-by-1 cell array. If simdata is an array of objects, names is a k-by-1
cell array, where k is the size of simdata.

sdOut — Simulation results
SimData object

Simulation results, returned as a SimData object.

See Also
get | set | SimData

 selectbyname

2-761

Introduced in R2007b

2 Methods

2-762

set
Set SimBiology object properties

Syntax
set(sobj,Name,Value)

Description
set(sobj,Name,Value) sets the properties of sobj, a SimBiology object, using one or more name-
value pair arguments. Name is the property name and Value is the corresponding value. The property
cannot be a read-only property. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Examples

Set SimBiology Object Properties

Load the G-protein model.

sbioloadproject('gprotein.sbproj');

Select the kGd parameter.

kgd = sbioselect(m1,'Name','kGd');

Display the properties of the parameter.

get(kgd)

ans = struct with fields:
 ValueUnits: ''
 ConstantValue: 1
 Constant: 1
 Value: 0.1100
 Units: ''
 BoundaryCondition: 0
 Name: 'kGd'
 Parent: [1x1 SimBiology.Model]
 Notes: ''
 Tag: ''
 Type: 'parameter'
 UserData: []

Change the values of multiple properties of the object.

set(kgd,'Constant',false,'Value',0.06)

Check the updated property values.

get(kgd)

 set

2-763

ans = struct with fields:
 ValueUnits: ''
 ConstantValue: 0
 Constant: 0
 Value: 0.0600
 Units: ''
 BoundaryCondition: 0
 Name: 'kGd'
 Parent: [1x1 SimBiology.Model]
 Notes: ''
 Tag: ''
 Type: 'parameter'
 UserData: []

Update a common property of multiple objects.

set(m1.Parameters,'Constant',false)

Check the property values.

[m1.Parameters.Constant]

ans = 1x9 logical array

 0 0 0 0 0 0 0 0 0

Input Arguments
sobj — Object
SimBiology object | array of Simbiology objects

Object, specified as any SimBiology object or array of objects. You can use an array of objects to set
the value of a common property.

See Also
get | SimData

Introduced in R2008b

2 Methods

2-764

setactiveconfigset (model)
Set active configuration set for model object

Syntax
configsetObj = setactiveconfigset(modelObj, 'NameValue')
configsetObj2 = setactiveconfigset(modelObj, configsetObj1)

Description
configsetObj = setactiveconfigset(modelObj, 'NameValue') sets the configuration set
NameValue to be the active configuration set for the model object modelObj and returns to
configsetObj.

configsetObj2 = setactiveconfigset(modelObj, configsetObj1) sets the configset
configsetObj1 to be the active configset for modelObj and returns to configsetObj2. Any
change in one of these two configset objects configsetObj1 and configsetObj2 is reflected in the
other. To copy over a configset object from one model object to another, use the copyobj
method.

The active configuration set contains the settings that are be used during a simulation. A default
configuration set is attached to any new model.

Examples
1 Create a model object by importing the oscillator.xml file, and add a Configset object to

the model.

modelObj = sbmlimport('oscillator');
configsetObj = addconfigset(modelObj, 'myset');

2 Configure the simulation stop criteria by setting the StopTime, MaximumNumberOfLogs, and
MaximumWallClock properties of the Configset object. Set the stop criteria to a simulation
time of 3000 seconds, 50 logs, or a wall clock time of 10 seconds, whichever comes first.

set(configsetObj, 'StopTime', 3000, 'MaximumNumberOfLogs', 50,...
 'MaximumWallClock', 10)
get(configsetObj)

 Active: 0
 CompileOptions: [1x1 SimBiology.CompileOptions]
 Name: 'myset'
 Notes: ''
 RuntimeOptions: [1x1 SimBiology.RuntimeOptions]
 SensitivityAnalysisOptions: [1x1 SimBiology.SensitivityAnalysisOptions]
 SolverOptions: [1x1 SimBiology.ODESolverOptions]
 SolverType: 'ode15s'
 StopTime: 3000
 MaximumNumberOfLogs: 50
 MaximumWallClock: 10
 TimeUnits: 'second'
 Type: 'configset'

 setactiveconfigset (model)

2-765

3 Set the new Configset object to be active, simulate the model using the new Configset
object, and plot the result.

 setactiveconfigset(modelObj, configsetObj);
[t,x] = sbiosimulate(modelObj);
plot (t,x)

See Also
Model object, addconfigset, getconfigset, removeconfigset

Introduced in R2006a

2 Methods

2-766

setparameter (kineticlaw)
Specify specific parameters in kinetic law object

Syntax
setparameter(kineticlawObj, 'ParameterVariablesValue',
'ParameterVariableNamesValue')

Arguments
ParameterVariableValue Specify the value of the parameter variable in

the kinetic law object.
ParameterVariableNamesValue Specify the parameter name with which to

configure the parameter variable in the kinetic
law object. Determines parameters in the
ReactionRate equation.

Description
Configure ParameterVariableNames in the kinetic law object.

setparameter(kineticlawObj, 'ParameterVariablesValue',
'ParameterVariableNamesValue') configures the ParameterVariableNames property of the
kinetic law object (kineticlawObj). ParameterVariableValue corresponds to one of the
character vectors in kineticlawObj ParameterVariables property. The corresponding element
in the kineticlawObjParameterVariableNames property is configured to
ParameterVariableNamesValue. For example, if ParameterVariables is {'Vm', 'Km'} and
ParameterVariablesValue is specified as Vm, then the first element of the
ParameterVariableNames cell array is configured to ParameterVariableNamesValue.

Examples
Create a model, add a reaction, and then assign the ParameterVariableNames for the reaction rate
equation.

1 Create the model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of the type 'Henri-Michaelis-Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm and Km) that

should be set. To set these variables:

setparameter(kineticlawObj,'Vm', 'Va');
setparameter(kineticlawObj,'Km', 'Ka');

 setparameter (kineticlaw)

2-767

4 Verify that the parameter variables are correct.

get (kineticlawObj, 'ParameterVariableNames')

MATLAB returns:

ans =

 'Va' 'Ka'

See Also
addparameter, getspecies, setspecies

Introduced in R2006a

2 Methods

2-768

setspecies (kineticlaw)
Specify species in kinetic law object

Syntax
setspecies(kineticlawObj, 'SpeciesVariablesValue',
'SpeciesVariableNamesValue')

Arguments
SpeciesVariablesValue Specify the species variable in the kinetic law

object.
SpeciesVariableNamesValue Specify the species name with which to configure

the species variable in the kinetic law object.
Determines the species in the ReactionRate
equation.

Description
setspecies configures the kinetic law object SpeciesVariableNames property.

setspecies(kineticlawObj, 'SpeciesVariablesValue',
'SpeciesVariableNamesValue') configures the SpeciesVariableNames property of the kinetic
law object, kineticlawObj. SpeciesVariablesValue corresponds to one of the character vectors
in the SpeciesVariables property of kineticlawObj. The corresponding element in
kineticlawObj SpeciesVariableNames property is configured to
SpeciesVariableNamesValue.

For example, if SpeciesVariables are {'S', 'S1'} and SpeciesVariablesValue is specified
as S1, the first element of the SpeciesVariableNames cell array is configured to
SpeciesVariableNamesValue.

Examples
Create a model, add a reaction, and assign the SpeciesVariableNames for the reaction rate
equation.

1 Create the model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of the type 'Henri-Michaelis-Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has one species variable (S) that should be set.

To set this variable:

 setspecies (kineticlaw)

2-769

setspecies(kineticlawObj,'S', 'a');
4 Verify that the species variable is correct.

get (kineticlawObj, 'SpeciesVariableNames')

MATLAB returns:

ans =

'a'

See Also
addparameter, getspecies, setparameter

Introduced in R2006a

2 Methods

2-770

setTable(ScheduleDose,RepeatDose)
Set dosing information from table to dose object

Syntax
setTable(doseObj,tbl)

Description
setTable(doseObj,tbl) sets the dosing data from a table tbl to a dose object doseObj.

Input Arguments
doseObj — Dose object
ScheduleDose object | RepeatDose object | array of dose objects

Dose object, specified as a ScheduleDose object or RepeatDose object or array of these
objects.

tbl — Dosing data
table | cell array of tables

Dosing data, specified as a table or cell array of tables. If doseObj is an array of dose objects, then
tbl must be a cell array of tables of the same size as doseObj.

If doseObj is a ScheduleDose object, tbl must have 2 or 3 variables (columns) representing dose
time, amount, and rate (optional). The variable names (tbl.Properties.VariableNames) must be
'Time', 'Amount', and 'Rate' (optional), respectively.

If doseObj is a RepeatDose object, tbl must have only one row with 4 or 5 variables (columns)
representing dose start time, amount, interval, repeat count, and rate (optional). The variable names
(tbl.Properties.VariableNames) must be 'StartTime', 'Amount', 'Interval',
'RepeatCount', and 'Rate' (optional), respectively. The value of each variable can be a numeric
scalar or the name of a parameter (if the property is parameterized).

The units of tbl variables (tbl.Properties.VariableUnits), if any, are copied over to the
corresponding property units of doseObj.

Examples

Set a Table of Dosing Data to a RepeatDose Object

Create a table containing dose start time, amount, interval, repeat count, and rate.

StartTime = 5;
Amount = 500;
Interval = 1;
RepeatCount = 3;

 setTable(ScheduleDose,RepeatDose)

2-771

Rate = 1;
tbl = table(StartTime,Amount,Interval,RepeatCount,Rate);

Create a RepeatDose object, and set the dosing information from the table.

rdose = sbiodose('rdose','repeat');
setTable(rdose,tbl);

Set a Table of Dosing Data to a ScheduleDose Object

Create a table containing dose time and amount.

Time = [1 2 3 4 5]';
Amount = [10 15 20 25 30]';
tbl = table(Time,Amount);

Create a ScheduleDose object, and set the dosing information from the table.

sdose = sbiodose('sdose','schedule');
setTable(sdose,tbl);

Set an Array of Dosing Tables to an Array of Dose Objects

Create a table containing dose time and amount.

Time = [1 2 3 4 5]';
Amount = [10 15 20 25 30]';
tbl1 = table(Time,Amount);

Create a table containing dose start time, amount, interval, repeat count, and rate.

StartTime = 5;
Amount = 500;
Interval = 1;
RepeatCount = 3;
Rate = 1;
tbl2 = table(StartTime,Amount,Interval,RepeatCount,Rate);

Create a cell array of dose tables.

tblArray = {tbl1,tbl2};

Create ScheduleDose and RepeatDose objects

sdose = sbiodose('sdose','schedule');
rdose = sbiodose('rdose','repeat');
doseArray = [sdose,rdose];

Set the cell array of dose tables to dose objects.

setTable(doseArray,tblArray);

2 Methods

2-772

See Also
getTable | ScheduleDose object | RepeatDose object

Introduced in R2014a

 setTable(ScheduleDose,RepeatDose)

2-773

SimData
Simulation data

Description
The SimData object contains simulation data, which includes time and state data, as well as
metadata, such as the types and names for the logged states or the configuration set used during
simulation.

You can access time data, state data, and metadata stored in the object through the object properties.
Use dot notation to query the object properties or change properties that are not read-only. You can
also use the get and set commands.

You can store data from multiple simulation runs as an array of SimData objects. You can use any
SimData function on an array of SimData objects.

Creation
Create a SimData object in one of the following ways.

• Return a SimData object after simulating a model using sbiosimulate.
• Return a SimData object after simulating a model using a SimFunction object.
• Return an array of SimData objects after multiple stochastic ensemble runs using

sbioensemblerun.
• Export the simulation results to the command line after simulating a model using the SimBiology

Model Analyzer app.

Properties
Data — Simulation data
mx0 empty double matrix (default) | matrix

This property is read-only.

Simulation data, specified as an m-by-n matrix. m is the number of time steps in the simulation and n
is the number of quantities and sensitivities logged during the simulation. View the corresponding
time steps by accessing the Time property, and view the corresponding logged quantity information
by accessing the DataInfo property.
Data Types: double

DataCount — Number of species, compartments, parameters, and sensitivities
structure

This property is read-only.

2 Methods

2-774

Number of species, compartments, parameters, and sensitivities, specified as a structure. The
structure contains the fields Species, Compartment, Parameter, and Sensitivity. The default
value for each field is 0.
Data Types: struct

DataInfo — Metadata labels for simulation data
0-by-1 empty cell array (default) | cell array of structures

This property is read-only.

Metadata labels for simulation data, specified as an n-by-1 cell array of structures. n is the number of
quantities and sensitivities logged during simulation. The ith cell contains metadata labeling the ith
column of the matrix in the Data property.

The possible types of structures follow.

Type Fields
Species • Type — 'species'

• Name — Species name
• Compartment — Compartment that the species is in
• Units — Species unit

Parameter • Type — 'parameter'
• Name — Parameter name
• Reaction — Name of the reaction that the parameter is scoped to, or '' if the parameter is

scoped to the model
• Units — Parameter unit

Compartment • Type — 'compartment'
• Owner — Compartment owner
• Name — Compartment name
• Units — Compartment unit

 SimData

2-775

Type Fields
Sensitivity • Type — 'sensitivity'

• Name — Sensitivity name, for example, 'd[tumor_weight]/d[k2]'
• OutputType — Sensitivity output type ('species' or 'parameter').
• OutputName — Sensitivity output name
• OutputQualifier — Sensitivity output qualifier. If the output is a species, its output qualifier

is the name of the compartment that the species is in. If the output is a model-scoped
parameter, its output qualifier is ''. If the output is a reaction-scoped parameter, its output
qualifier is the name of the reaction that the parameter is scoped to.

• InputType — Sensitivity input type ('species', 'parameter', or 'compartment')
• InputName — Sensitivity input name
• InputQualifier — Sensitivity input qualifier. If the input is a species, its input qualifier is the

name of the compartment that the species is in. If the input is a model-scoped parameter, its
input qualifier is ''. If the input is a reaction-scoped parameter, its input qualifier is the
name of the reaction that the parameter is scoped to. If the input is a compartment, its input
qualifier is either '' or name of the parent compartment.

• Units — Sensitivity unit
Observable • Scalar — Flag to indicate if the observable is scalar-valued or vector-valued.

• Expression — Observable expression
• Type — 'observable'
• Name — Observable name
• Units — Observable unit

Data Types: cell

DataNames — Labels for simulation data
0-by-1 empty cell array (default) | n-by-1 cell array of character vectors

This property is read-only.

Labels for simulation data, specified as an n-by-1 cell array of character vectors. n is the number of
logged quantities and sensitivities. In other words, the DataNames property contains the names that
label the columns of the data matrix in the Data property.
Data Types: cell

ScalarObservables — Results from scalar-valued observable expressions
table

This property is read-only.

Results from scalar-valued observable expressions, specified as a table. Each table variable
corresponds to each observable. The name of a variable is the same as that of a scalar-valued
observable. However, if the observable name is too long, it is truncated and used as the table variable
name. A suffix '_N' is also added, where N is a positive integer. The VariableDescriptions
property of the table contains the untruncated names.

If you specified any units for the observable, the units are copied to the VariableUnits property of
the table.

2 Methods

2-776

Data Types: table

VectorObservables — Results from vector-valued observable expressions
table

This property is read-only.

Results from vector-valued observable expressions, specified as a table. Each table variable
corresponds to each observable. The name of a variable is the same as that of a vector-valued
observable. However, if the observable name is too long, it is truncated and used as the table variable
name. A suffix '_N' is also added, where N is a positive integer. The VariableDescriptions
property of the table contains the untruncated names.

If you specified any units for the observable, the units are copied to the VariableUnits property of
the table.
Data Types: table

ModelName — Name of model
'' (default) | character vector

This property is read-only.

Name of the simulated model, specified as a character vector.
Data Types: char

Name — SimData object name
0-by-0 empty character array (default) | character vector | string

SimData object name, specified as a character vector or string.
Data Types: char | string

Notes — Additional information
0-by-0 empty character array (default) | character vector | string

Additional information that you can add for the SimData object, specified as a character vector or
string.
Data Types: char | string

RunInfo — Information about simulation run
structure

This property is read-only.

Information about the simulation run that generated the simulation data, specified as a structure. The
structure contains the following fields.

• Configset — A struct form of the configuration set used during simulation. The configuration
set corresponds to the model active configset. The default is [].

• SimulationDate — The date and time of simulation. The default is ''.
• SimulationType — Either 'single run' or 'ensemble run', depending on whether you

create the object using sbiosimulate or sbioensemblerun. The default is ''.

 SimData

2-777

• Variant — A struct form of the variant(s) used during simulation. The default is [].

Data Types: struct

Time — Simulation time steps
column vector

This property is read-only.

Simulation time steps, specified as a column vector.
Data Types: double

TimeUnits — Simulation time units
'second' (default) | character vector

This property is read-only.

Simulation time units, specified as a character vector.

If you simulate a model created using sbiomodel, the default TimeUnits value of the corresponding
SimData object is 'second'.

If you simulate model created using PKModelDesign, the default TimeUnits value is 'hour'.
Data Types: char

UserData — Data to associate with object
[] (default) | any supported data type

Data to associate with the object, specified as any supported data type.

Object Functions
addobservable Add observable expressions to SimData
display Display summary of SimBiology object
getdata Get simulation data from SimData object
getsensmatrix Get 3-D sensitivity matrix from SimData object
remove Remove simulation data from SimData object using expressions
removebyname Remove simulation data by name from SimData object
renameobservable Rename observables in SimData
resample Resample simulation data onto new time vector
select Select simulation data from SimData object using expressions
selectbyname Select simulation data by name from SimData object
updateobservable Update observable expressions or units in SimData

Examples

Initialize Simulation Using Previous Simulation Results

Load the G protein model.

sbioloadproject gprotein.sbproj;

Check the initial amounts of species.

2 Methods

2-778

m1.Species

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed G 7000
 2 unnamed Gd 3000
 3 unnamed Ga 0
 4 unnamed RL 0
 5 unnamed L 6.022e+17
 6 unnamed R 10000
 7 unnamed Gbg 3000

Select only the species as the states to log for simulation.

cs = getconfigset(m1);
allspecies = sbioselect(m1,'Type','species');
cs.RuntimeOptions.StatesToLog = allspecies;

Simulate the model.

sd = sbiosimulate(m1);

Use the Data property of the SimData object sd to get the states at the final time point. The Data
property is an m-by-n matrix, where m is the number of time steps and n is the number of quantities
logged.

finalData = sd.Data(end,:);

Use the DataInfo property to get the names of logged states.

info = sd.DataInfo;

Loop through the species and set their initial values.

numSpecies = length(info);
vObj = addvariant(m1,'initCond');
for i = 1:numSpecies
 addcontent(vObj,{'species',info{i}.Name,'Value',finalData(i)});
end
commit(vObj,m1);

Verify the species initial amounts.

m1.Species

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed G 8562.5
 2 unnamed Gd 0.109565
 3 unnamed Ga 1437.39
 4 unnamed RL 1820.54
 5 unnamed L 6.022e+17
 6 unnamed R 11.1125

 SimData

2-779

 7 unnamed Gbg 1437.5

Calculate Statistics After Model Simulation Using Observables

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Set the target occupancy (TO) as a response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Get the dosing information.

d = getdose(m1,'Daily Dose');

Scan over different dose amounts using a SimBiology.Scenarios object. To do so, first
parameterize the Amount property of the dose. Then vary the corresponding parameter value using
the Scenarios object.

amountParam = addparameter(m1,'AmountParam','Units',d.AmountUnits);
d.Amount = 'AmountParam';
d.Active = 1;
doseSamples = SimBiology.Scenarios('AmountParam',linspace(0,300,31));

Create a SimFunction to simulate the model. Set TO as the simulation output.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:SimFunction:DOSES_NOT_EMPTY');
f = createSimFunction(m1,doseSamples,'TO',d)

f =
SimFunction

Parameters:

 Name Value Type Units
 _______________ _____ _____________ ____________

 {'AmountParam'} 1 {'parameter'} {'nanomole'}

Observables:

 Name Type Units
 ______ _____________ _________________

 {'TO'} {'parameter'} {'dimensionless'}

Dosed:

 TargetName TargetDimension Amount AmountValue AmountUnits
 _______________ ___________________________________ _______________ ___________ ____________

 {'Plasma.Drug'} {'Amount (e.g., mole or molecule)'} {'AmountParam'} 1 {'nanomole'}

2 Methods

2-780

TimeUnits: day

warning('on','SimBiology:SimFunction:DOSES_NOT_EMPTY');

Simulate the model using the dose amounts generated by the Scenarios object. In this case, the
object generates 31 different doses; hence the model is simulated 31 times and generates a SimData
array.

doseTable = getTable(d);
sd = f(doseSamples,cs.StopTime,doseTable)

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 0

Plot the simulation results. Also add two reference lines that represent the safety and efficacy
thresholds for TO. In this example, suppose that any TO value above 0.85 is unsafe, and any TO value
below 0.15 has no efficacy.

h = sbioplot(sd);
time = sd(1).Time;
h.NextPlot = 'add';
safetyThreshold = plot(h,[min(time), max(time)],[0.85, 0.85],'DisplayName','Safety Threshold');
efficacyThreshold = plot(h,[min(time), max(time)],[0.15, 0.15],'DisplayName','Efficacy Threshold');

 SimData

2-781

Postprocess the simulation results. Find out which dose amounts are effective, corresponding to the
TO responses within the safety and efficacy thresholds. To do so, add an observable expression to the
simulation data.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
newSD = addobservable(sd,'stat1','max(TO) < 0.85 & min(TO) > 0.15','Units','dimensionless')

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 1

The addobservable function evaluates the new observable expression for each SimData in sd and
returns the evaluated results as a new SimData array, newSD, which now has the added observable
(stat1).

SimBiology stores the observable results in two different properties of a SimData object. If the
results are scalar-valued, they are stored in SimData.ScalarObservables. Otherwise, they are

2 Methods

2-782

stored in SimData.VectorObservables. In this example, the stat1 observable expression is
scalar-valued.

Extract the scalar observable values and plot them against the dose amounts.

scalarObs = vertcat(newSD.ScalarObservables);
doseAmounts = generate(doseSamples);
figure
plot(doseAmounts.AmountParam,scalarObs.stat1,'o','MarkerFaceColor','b')

The plot shows that dose amounts ranging from 50 to 180 nanomoles provide TO responses that lie
within the target efficacy and safety thresholds.

You can update the observable expression with different threshold amounts. The function recalculates
the expression and returns the results in a new SimData object array.

newSD2 = updateobservable(newSD,'stat1','max(TO) < 0.75 & min(TO) > 0.30');

Rename the observable expression. The function renames the observable, updates any expressions
that reference the renamed observable (if applicable), and returns the results in a new SimData
object array.

newSD3 = renameobservable(newSD2,'stat1','EffectiveDose');

Restore the warning settings.

warning('on','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');

 SimData

2-783

Compatibility Considerations
delete function of SimData has been removed
Behavior changed in R2022a

The delete function of the SimData object has been removed.

See Also
Model | Parameter | Species | Compartment | Reaction

Introduced in R2007b

2 Methods

2-784

SimFunction object
Function-like interface to execute SimBiology models

Description
The SimFunction object provides an interface that allows you to execute a SimBiology model like a
function and a workflow to perform parameter scans (in parallel if Parallel Computing Toolbox is
available), Monte Carlo simulations, and scans with multiple or vectorized doses. Since a
SimFunction object can be executed like a function handle, you can customize it to integrate
SimBiology models with other MATLAB products and other custom analyses (such as visual predictive
checks).

Use the createSimFunction method to construct the SimFunction object. SimFunction objects are
immutable once created and automatically accelerated at the first function execution.

Syntax
If you specified any dosing information when you called createSimFunction to construct the
SimFunction object F, then F has the following syntaxes.

simdata = F(phi,t_stop,u,t_output) returns a SimData object simdata after simulating a
SimBiology model using the initial conditions or simulation scenarios specified in phi, simulation stop
time, t_stop, dosing information, u, and output time, t_output.

simdata = F(phi,t_stop,u) runs simulations using the input arguments phi, t_stop, and u.

If you did not specify any dosing information when you called createSimFunction, then F has the
following syntaxes:

simdata = F(phi,t_stop) returns a SimData object simdata after simulating the model using
initial conditions or simulation scenarios specified in phi, and simulation stop time, t_stop.

simdata = F(phi,t_stop,[],t_output) uses the input arguments phi, t_stop, empty dosed
argument [], and t_output. You must specify u, the dosing information, as an empty array[] for
this signature. When t_output is empty and t_stop is specified, the simulations report the solver
time points until t_stop. When t_output is specified and t_stop is empty, only the time points in
t_output are reported. When both are specified, the reported time points are the union of solver
time points and the time points in t_output. If the last t_output is greater than the corresponding
t_stop, then simulation proceeds until the last time point in t_output.

simdata = F(phi,tbl) uses the input arguments phi and tbl. Using this signature only lets you
specify output times as one of the variables of tbl. Any data row in tbl where all dependent variable
columns having NaN values is ignored.

[T,Y] = F(_) returns T, a cell array of numeric vector, and Y, a cell array of 2-D numeric matrices,
using any of the input arguments in the preceding syntaxes.

 SimFunction object

2-785

Input Arguments
phi

One of the following:

• Empty array [] or empty cell array {}, meaning to perform simulations using the baseline initial
values, that is, the values listed in the Parameter property of the SimFunction object, without
altering them.

• Matrix of size S-by-P, where S is the number of simulations to perform and P is the number of
parameters specified in the params argument when you called createSimFunction to construct
F. Each simulation is performed with the parameters specified in the corresponding row of phi.

• S-by-V matrix of variant objects or a cell column vector of length S, where each element consists
of a row vector of variant objects. S is the number of simulations to perform, and V is the number
of variant objects. These variants are only allowed to modify the SimFunction input parameters,
that is, model elements that were specified as the params input argument when you called
createSimFunction. In other words, you must specify the variant parameters as the input
parameters when you create the SimFunction object. Any SimFunction input parameters that
are not specified in the variants use their baseline initial values.

If, within a row of variants, multiple entries refer to the same model element, the last occurrence
is used for simulation.

• Scalar SimBiology.Scenarios object containing S number of scenarios.

When phi is specified as a 1-by-P or 1-by-V matrix (or a Scenarios object with only one scenario),
then all simulations use the same parameters, and the number of simulations is determined from the
t_stop, u, or t_output argument in that order. For example, if phi and t_stop have a single row
and u is a matrix of size N-by-DoseTargets, the number of simulations is determined as N.

When phi is specified as a SimBiology.Scenarios object, all scenarios are simulated. Variants are
applied before values from the scenarios are set.

t_stop

• Scalar specifying the same stop time for all simulations
• Vector of size N specifying a stop time for each simulation for all N simulations

u

• Empty array [] to apply no doses during simulation unless you specify phi as a Scenarios
object that has doses defined in its entries.

• table of dosing information with two or three variables containing ScheduleDose data
(ScheduleDose table), namely, dose time, dose amount, and dose rate (optional). Name the table
variables as follows.

u.Properties.VariableNames = {'Time','Amount','Rate'};

If UnitConversion is on, specify units for each variable. For instance, you can specify units as
follows.

u.Properties.VariableUnits = {'second','molecule','molecule/second'};

2 Methods

2-786

This table can have multiple rows, where each row represents a dose applied to the dose target at
a specified dose time with a specified amount and rate if available.

• table with one row and five variables containing RepeatDose data (RepeatDose table). Dose
rate variable is optional. Name the variables as follows.
u.Properties.VariableNames = {'StartTime','Amount','Rate','Interval','RepeatCount'};

If UnitConversion is on, specify units for each variable. Units for 'RepeatCount' variable can
be empty '' or 'dimensionless'. The unit of the 'Amount' variable must be dimensionally
consistent with that of the target species. For example, if the unit of target species is in an amount
unit (such as mole or molecule), then the 'Amount' variable unit must have the same dimension,
i.e., its unit must be an amount unit and cannot be a mass unit (such as gram or kilogram). The
unit for the 'Rate' variable must be dimensionally consistent as well.
u.Properties.VariableUnits = {'second','molecule','molecule/second','second','dimensionless'};

Tip If you already have a dose object (ScheduleDose or RepeatDose), you can get this dose
table by using the getTable method of the object.

• Cell array of tables of size 1-by-N, where N is the number of dose targets. Each cell can represent
either table as described previously.

• Cell array of tables of size S-by-N, where S is the number of simulations and N is the number of
dose targets. Each cell represents a table. S is equal to the number of rows in phi.

If u is a cell array of tables, then:

• If phi is also a Scenarios object, the combined number of doses in the Scenarios object and
the number of columns in u must equal to the number of elements in the Dosed property of the
SimFunction object. In other words, the dosing information that you specified during the
creation of the SimFunction object must be consistent with the dosing information you specify in
the execution of the object. The total number of elements for the Dosed property is equal to the
combination of any doses from the input Scenarios object and doses in the dosed input
argument on page 2-0 of createSimFunction.

• If phi is not a Scenarios object, the number of columns (N) in the cell array u must be equal to
the number of elements in the Dosed property of the SimFunction object. The order of dose
tables must also match the order of dosed species in createSimFunction. That is, SimBiology
assumes one-to-one correspondence between the columns of u and dose targets specified in the
Dosed property of the SimFunction object, meaning the doses (dose tables) in the first column of
u are applied to the first dose target in the Dosed property and so on.

• The ith dose for the jth dose target is ignored if u{i,j} = [].
• If the ith dose is not parameterized, u{i,j} can be [] or either type of table (the ScheduleDose

or RepeatDose table).
• If the ith dose is parameterized, u{i,j} must be [] or a RepeatDose table with one row and a

column for each property (StartTime, Amount, Rate, Interval, RepeatCount) that is not
parameterized. It is not required to create a column for a dose property that is parameterized. If
all of the properties are parameterized, you can pass in a table with one row and no columns to
specify the parameterized dose is applied during simulations. To create such table, use
table.empty(1,0).

t_output

• Vector of monotonically increasing output times that is applied to all simulations

 SimFunction object

2-787

• Cell array containing a single time vector that is applied to all simulations
• Cell array of vectors representing output times. The ith cell element provides the output times for

the ith simulation. The number of elements in the cell array must match the number of rows
(simulations) in phi.

tbl

table or dataset that has time and dosing information such as group labels, independent variable,
dependent variable(s), amount(s), and rate(s). You must name the variables of the table or data set as
'GROUP','TIME','DEPENDENTVAR1','DEPENDENTVAR2',...,'AMOUNT1','RATE1','AMOUNT2
','RATE2',.... The rate variable is optional for each dose.

If the Dosed property of the SimFunction object F is empty, then amount- and rate-related variables
are not required. The number of groups in tbl must be equal to the number of rows, or the number
of scenarios, in phi. The combined dosing information in phi, if phi is a SimBiology.Scenarios
object, and the number of amount and rate columns in tbl must be equal to the number of doses in
the Dosed property of the object F. If tbl has additional columns, they are ignored.

If UnitConversion is on, specify a unit for each variable. The unit of 'Amount' variable must be
dimensionally consistent with that of the target species. See the description of the input argument u
for details.

Output Arguments
simdata

Array of SimData objects that contains results from executing the SimFunction F. The number of
elements in the simdata array is the same as the number of rows in phi. The number of columns in
each element of the simdata array, that is, simdata(i).Data, is equal to the number of elements
in the observed cell array which was specified when creating F.

T

Cell array containing a numeric vector of size S x 1. S is the number of simulations. The ith element
of T contains the time point from the ith simulation.

Y

Cell array of 2-D numeric matrices. The ith element of Y contains data from the ith simulation. The
number of rows in T{i} is equal to the number of rows in Y{i}.

Constructor Summary

createSimFunction (model) Create SimFunction object

Method Summary

accelerate(SimFunction) Prepare SimFunction object for accelerated simulations
isAccelerated(SimFunction) Determine if SimFunction object is accelerated

2 Methods

2-788

Property Summary
Parameters table with variables named:

• 'Name'
• 'Value'
• 'Type'
• 'Units' (only if UnitConversion is turned on)

The table contains information about model quantities (species, compartments,
or parameters) that define the inputs of a SimFunction object. For instance,
this table can contain parameters or species whose values are being scanned by
the SimFunction object. This property is read only.

Observables table with variables named:

• 'Name'
• 'Type'
• 'Units' (only if UnitConversion is turned on)

This table contains information about model quantities (species, compartments,
or parameters) that define the output of a SimFunction object. This property
is read only.

Dosed table containing dosing information with variables named:

• 'TargetName'
• 'TargetDimension' (only if UnitConversion is turned on)

In addition, the table also contains variables for each property that is
parameterized. For each parameterized property, two variables are added to this
table. The first variable has the same name as the property name and the value
is the name of the specified parameter. The second variable has the property
name suffixed by Value (PropertyNameValue), and the value is the default value
of the parameter. If the UnitConversion is on, the unit column is also added
with the name PropertyNameUnits.

Suppose the Amount property of a repeat dose targeting the Drug species is
parameterized by setting it to a model parameter called AmountParam with the
value of 10 milligram, and UnitConversion is on. The Dosed table contains
the following variables:

TargetName TargetDimen
sion

Amount AmountValue AmountUnits

'Drug' 'Mass
(e.g.,
gram)'

'AmountPara
m'

10 'milligram'

UseParallel Logical. If true and Parallel Computing Toolbox is available, SimFunction is
executed in parallel. This property is read-only.

 SimFunction object

2-789

UnitConversion Logical. If true:

• During the execution of the SimFunction object, phi is assumed to be in
the same units as units for corresponding model quantities specified in the
params argument when the object was created using the
createSimFunction method.

• Time (t_output or t_stop) is assumed to be in the same unit as the
TimeUnits property of the active configset object of the SimBiology
model from which F was created.

• Variables of dose tables (u) must have units specified by setting
u.Properties.VariableUnits to a cell array of appropriate units. The
dimension of the dose target such as an amount (molecule, mole, etc.) or
mass (gram, kilogram, etc.), is stored on the Dosed property of F.

• The simulation result is in the same units as those specified on the
corresponding quantities in the SimBiology model from which F was created.

This property is read only.
AutoAccelerate Logical. When true, the model is accelerated on the first evaluation of the

SimFunction object.

This property is read only.
DependentFiles Cell array of character vectors containing the names of files that the model

depends on. This property is used for deployment. This property is read only.
TimeUnits Character vector that represents the time units.

Examples

Simulate Model of Glucose-Insulin Response with Different Initial Conditions

This example shows how to simulate the glucose-insulin responses for the normal and diabetic
subjects.

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo', 'm1')

The model contains different initial conditions stored in various variants.

variants = getvariant(m1);

Get the initial conditions for the type 2 diabetic patient.

type2 = variants(1)

type2 =
 SimBiology Variant - Type 2 diabetic (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Plasma Volume ... Value 1.49
 2 parameter k1 Value 0.042

2 Methods

2-790

 3 parameter k2 Value 0.071
 4 parameter Plasma Volume ... Value 0.04
 5 parameter m1 Value 0.379
 6 parameter m2 Value 0.673
 7 parameter m4 Value 0.269
 8 parameter m5 Value 0.0526
 9 parameter m6 Value 0.8118
 10 parameter Hepatic Extrac... Value 0.6
 11 parameter kmax Value 0.0465
 12 parameter kmin Value 0.0076
 13 parameter kabs Value 0.023
 14 parameter kgri Value 0.0465
 15 parameter f Value 0.9
 16 parameter a Value 6e-05
 17 parameter b Value 0.68
 18 parameter c Value 0.00023
 19 parameter d Value 0.09
 20 parameter kp1 Value 3.09
 21 parameter kp2 Value 0.0007
 22 parameter kp3 Value 0.005
 23 parameter kp4 Value 0.0786
 24 parameter ki Value 0.0066
 25 parameter [Ins Ind Glu U... Value 1
 26 parameter Vm0 Value 4.65
 27 parameter Vmx Value 0.034
 28 parameter Km Value 466.21
 29 parameter p2U Value 0.084
 30 parameter K Value 0.99
 31 parameter alpha Value 0.013
 32 parameter beta Value 0.05
 33 parameter gamma Value 0.5
 34 parameter ke1 Value 0.0007
 35 parameter ke2 Value 269
 36 parameter Basal Plasma G... Value 164.18
 37 parameter Basal Plasma I... Value 54.81

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Create SimFunction objects to simulate the glucose-insulin response for the normal and diabetic
subjects.

• Specify an empty array {} for the second input argument to denote that the model will be
simulated using the base parameter values (that is, no parameter scanning will be performed).

• Specify the plasma glucose and insulin concentrations as responses (outputs of the function to be
plotted).

• Specify the species Dose as the dosed species. This species represents the initial concentration of
glucose at the start of the simulation.

normSim = createSimFunction(m1,{},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose')

normSim =
SimFunction

 SimFunction object

2-791

Parameters:

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

For the diabetic patient, specify the initial conditions using the variant type2.

diabSim = createSimFunction(m1,{},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose',type2)

diabSim =
SimFunction

Parameters:

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

Select a dose that represents a single meal of 78 grams of glucose at the start of the simulation.

singleMeal = sbioselect(m1,'Name','Single Meal');

Convert the dosing information to the table format.

mealTable = getTable(singleMeal);

Simulate the glucose-insulin response for a normal subject for 24 hours.

sbioplot(normSim([],24,mealTable));

2 Methods

2-792

Simulate the glucose-insulin response for a diabetic subject for 24 hours.

sbioplot(diabSim([],24,mealTable));

 SimFunction object

2-793

Perform a Scan Using Variants

Suppose you want to perform a parameter scan using an array of variants that contain different initial
conditions for different insulin impairments. For example, the model m1 has variants that correspond
to the low insulin sensitivity and high insulin sensitivity. You can simulate the model for both
conditions via a single call to the SimFunction object.

Select the variants to scan.

varToScan = sbioselect(m1,'Name',...
 {'Low insulin sensitivity','High insulin sensitivity'});

Check which model parameters are being stored in each variant.

varToScan(1)

ans =
 SimBiology Variant - Low insulin sensitivity (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Vmx Value 0.0235
 2 parameter kp3 Value 0.0045

varToScan(2)

ans =
 SimBiology Variant - High insulin sensitivity (inactive)

2 Methods

2-794

 ContentIndex: Type: Name: Property: Value:
 1 parameter Vmx Value 0.094
 2 parameter kp3 Value 0.018

Both variants store alternate values for Vmx and kp3 parameters. You need to specify them as input
parameters when you create a SimFunction object.

Create a SimFunction object to scan the variants.

variantScan = createSimFunction(m1,{'Vmx','kp3'},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose');

Simulate the model and plot the results. Run 1 include simulation results for the low insulin
sensitivity and Run 2 for the high insulin sensitivity.

sbioplot(variantScan(varToScan,24,mealTable));

Low insulin sensitivity lead to increased and prolonged plasma glucose concentration.

Restore warning settings.

warning(warnSettings);

 SimFunction object

2-795

Scan Initial Amounts of a Species from a Radioactive Decay Model

This example shows how to scan initial amounts of a species from a radioactive decay model with the
first-order reaction dz

dt = c ⋅ x, where x and z are species and c is the forward rate constant.

Load the sample project containing the radiodecay model m1.

sbioloadproject radiodecay;

Create a SimFunction object f to scan initial amounts of species x.

f = createSimFunction(m1,{'x'},{'x','z'},[])

f =
SimFunction

Parameters:

 Name Value Type Units
 _____ _____ ___________ ____________

 {'x'} 1000 {'species'} {'molecule'}

Observables:

 Name Type Units
 _____ ___________ ____________

 {'x'} {'species'} {'molecule'}
 {'z'} {'species'} {'molecule'}

Dosed: None

TimeUnits: second

Define four different initial amounts of species x for scanning. The number of rows indicates the total
number of simulations, and each simulation uses the parameter value specified in each row of the
vector.

phi = [200; 400; 600; 800];

Run simulations until the stop time is 20 and plot the simulation results.

sbioplot(f(phi, 20));

2 Methods

2-796

Simulate a Model and Scan Parameters with Doses

This example shows how to simulate and scan a parameter of a radiodecay model while a species is
being dosed.

Load the sample project containing the radiodecay model m1.

sbioloadproject radiodecay;

Create a SimFunction object f specifying parameter Reaction1.c to be scanned and species x as
a dosed target.

f = createSimFunction(m1,{'Reaction1.c'},{'x','z'},{'x'});

Define a scalar dose of amount 200 molecules given at three time points (5, 10, and 15 seconds).

dosetime = [5 10 15];
dose = [200 200 200];
u = table(dosetime', dose');
u.Properties.VariableNames = {'Time','Amount'};
u.Properties.VariableUnits = {'second','molecule'};

Define the parameter values for Reaction1.c to scan.

phi = [0.1 0.2 0.5]';

 SimFunction object

2-797

Simulate the model for 20 seconds and plot the results.

sbioplot(f(phi,20,u));

You can also specify different dose amounts at different times.

d1 = table(5,100);
d1.Properties.VariableNames = {'Time','Amount'};
d1.Properties.VariableUnits = {'second','molecule'};
d2 = table(10,300);
d2.Properties.VariableNames = {'Time','Amount'};
d2.Properties.VariableUnits = {'second','molecule'};
d3 = table(15,600);
d3.Properties.VariableNames = {'Time','Amount'};
d3.Properties.VariableUnits = {'second','molecule'};

Simulate the model using these doses and plot the results.

sbioplot(f(phi,20,{d1;d2;d3}));

2 Methods

2-798

You can also define a cell array of dose tables.

u = cell(3,1);
dosetime = [5 10 15];
dose = [200 200 200];
u{1} = table(dosetime',dose');
u{1}.Properties.VariableNames = {'Time','Amount'};
u{1}.Properties.VariableUnits = {'second','molecule'};
dosetime2 = [2 6 12];
dose2 = [500 500 500];
u{2} = table(dosetime2', dose2');
u{2}.Properties.VariableNames = {'Time','Amount'};
u{2}.Properties.VariableUnits = {'second','molecule'};
dosetime3 = [3 8 18];
dose3 = [100 100 100];
u{3} = table(dosetime3', dose3');
u{3}.Properties.VariableNames = {'Time','Amount'};
u{3}.Properties.VariableUnits = {'second','molecule'};

Simulate the model using the dose tables and plot results.

sbioplot(f(phi,20,u));

 SimFunction object

2-799

References
[1] Gillespie, D.T. (1977). Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of

Physical Chemistry. 81(25), 2340–2361.

See Also
SimBiology.Scenarios | SimFunctionSensitivity object | createSimFunction |
sbiosampleerror | sbiosampleparameters | ScheduleDose object | RepeatDose object

Topics
“PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
“Model Simulation”

Introduced in R2014a

2 Methods

2-800

SimFunctionSensitivity object
SimFunctionSensitivity object, subclass of SimFunction object

Description
The SimFunctionSensitivity object is a subclass of SimFunction object. It allows you to
compute sensitivity.

Syntax
The SimFunctionSensitivity object shares all syntaxes of the SimFunction object. It has the
following additional syntax.

[T,Y,SensMatrix] = F(___) returns T, a cell array of numeric vector, Y, a cell array of 2-D
numeric matrices, and SensMatrix, a cell array of 3-D numeric matrix containing calculated
sensitivities of model quantities. SensMatrix contains a matrix of size TimePoints x Outputs x
Inputs. TimePoints is the total number of time points, Outputs is the total number of output factors,
and Inputs is the total number of input factors.

If you specify a single output argument, the object returns an SimData object or array of SimData
objects with sensitivity information.

Property Summary
The SimFunctionSensitivity object shares all properties of the SimFunction object. It has
the following additional properties.

SensitivityOutp
uts

table with variables named:

• 'Name'
• 'Type'
• 'Units' (only if UnitConversion is turned on)

This table contains information about model quantities (species or parameters)
for which you want to compute the sensitivities. Sensitivity output factors are
the numerators of time-dependent derivatives described in “Sensitivity Analysis
in SimBiology”. This property is read only.

SensitivityInpu
ts

table with variables named:

• 'Name'
• 'Type'
• 'Units' (only if UnitConversion is turned on)

This table contains information about model quantities (species, compartments,
or parameters) with respect to which you want to compute the sensitivities.
Sensitivity input factors are the denominators of time-dependent derivatives
described in “Sensitivity Analysis in SimBiology”. This property is read only.

 SimFunctionSensitivity object

2-801

SensitivityNorm
alization

Character vector specifying the normalization method for calculated
sensitivities. The following examples show how sensitivities of a species x with
respect to a parameter k are calculated for each normalization type.

• 'None' — No normalization.

∂x(t)
∂k

• 'Half' — Normalization relative to the numerator only.

1
x(t)

∂x(t)
∂k

• 'Full' — Full dedimensionalization

k
x(t)

∂x(t)
∂k

Examples

Calculate Sensitivities Using SimFunctionSensitivity Object

This example shows how to calculate the sensitivities of some species in the Lotka-Volterra model
using the SimFunctionSensitivity object.

Load the sample project.

sbioloadproject lotka;

Define the input parameters.

params = {'Reaction1.c1', 'Reaction2.c2'};

Define the observed species, which are the outputs of simulation.

observables = {'y1', 'y2'};

Create a SimFunctionSensitivity object. Set the sensitivity output factors to all species (y1 and
y2) specified in the observables argument and input factors to those in the params argument (c1
and c2) by setting the name-value pair argument to 'all'.

f = createSimFunction(m1,params,observables,[],'SensitivityOutputs','all','SensitivityInputs','all','SensitivityNormalization','Full')

f =
SimFunction

Parameters:

 Name Value Type
 ________________ _____ _____________

 {'Reaction1.c1'} 10 {'parameter'}
 {'Reaction2.c2'} 0.01 {'parameter'}

Observables:

2 Methods

2-802

 Name Type
 ______ ___________

 {'y1'} {'species'}
 {'y2'} {'species'}

Dosed: None

Sensitivity Input Factors:

 Name Type
 ________________ _____________

 {'Reaction1.c1'} {'parameter'}
 {'Reaction2.c2'} {'parameter'}

Sensitivity Output Factors:

 Name Type
 ______ ___________

 {'y1'} {'species'}
 {'y2'} {'species'}

Sensitivity Normalization:

Full

Calculate sensitivities by executing the object with c1 and c2 set to 10 and 0.1, respectively. Set the
output times from 1 to 10. t contains time points, y contains simulation data, and sensMatrix is the
sensitivity matrix containing sensitivities of y1 and y2 with respect to c1 and c2.

[t,y,sensMatrix] = f([10,0.1],[],[],1:10);

Retrieve the sensitivity information at time point 5.

temp = sensMatrix{:};
sensMatrix2 = temp(t{:}==5,:,:);
sensMatrix2 = squeeze(sensMatrix2)

sensMatrix2 = 2×2

 37.6987 -6.8447
 -40.2791 5.8225

The rows of sensMatrix2 represent the output factors (y1 and y2). The columns represent the input
factors (c1 and c2).

sensMatrix2 =

∂y1
∂c1

∂y2
∂c1

∂y1
∂c2

∂y2
∂c2

Set the stop time to 15, without specifying the output times. In this case, the output times are the
solver time points by default.

 SimFunctionSensitivity object

2-803

sd = f([10,0.1],15);

Retrieve the calculated sensitivities from the SimData object sd.

[t,y,outputs,inputs] = getsensmatrix(sd);

Plot the sensitivities of species y1 and y2 with respect to c1.

figure;
plot(t,y(:,:,1));
legend(outputs);
title('Sensitivities of species y1 and y2 with respect to parameter c1');
xlabel('Time');
ylabel('Sensitivity');

Plot the sensitivities of species y1 and y2 with respect to c2.

figure;
plot(t,y(:,:,2));
legend(outputs);
title('Sensitivities of species y1 and y2 with respect to parameter c2');
xlabel('Time');
ylabel('Sensitivity');

2 Methods

2-804

Alternatively, you can use sbioplot.

sbioplot(sd);

 SimFunctionSensitivity object

2-805

You can also plot the sensitivity matrix using the time integral for the calculated sensitivities of y1
and y2. The plot indicates y1 and y2 are more sensitive to c1 than c2.

[~, in, out] = size(y);
result = zeros(in, out);
for i = 1:in
 for j = 1:out
 result(i,j) = trapz(t(:),abs(y(:,i,j)));
 end
end
figure;
hbar = bar(result);
haxes = hbar(1).Parent;
haxes.XTick = 1:length(outputs);
haxes.XTickLabel = outputs;
legend(inputs,'Location','NorthEastOutside');
ylabel('Sensitivity');

2 Methods

2-806

See Also
SimFunction object | createSimFunction | sbiosampleerror | sbiosampleparameters

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2015a

 SimFunctionSensitivity object

2-807

simulate
Class: SimBiology.export.Model

Simulate exported SimBiology model

Syntax
[t,x,names] = simulate(model)
[t,x,names] = simulate(model,initialValues)
[t,x,names] = simulate(model,initialValues,doses)
simDataObj = simulate(___)

Description
[t,x,names] = simulate(model) simulates a model, using the default initial values specified by
model.InitialValues (which are always equal to the InitialValue property on the
corresponding ValueInfo object). simulate returns:

• t, time samples.
• x, simulation data that contain variation in the quantity of states over time.
• names, column labels of simulation data x.

You can set additional simulation options using the property
SimBiology.export.Model.SimulationOptions.

[t,x,names] = simulate(model,initialValues) simulates a model, using the values specified
in initialValues as the initial values of the simulation.

[t,x,names] = simulate(model,initialValues,doses) simulates the model, using the
specified initial values and doses.

simDataObj = simulate(___) returns simulation data in a SimData object simDataObj
using any of the input arguments in the previous syntaxes. The simDataObj contains time and state
data, as well as metadata, such as the types and names for the reported states. You can access the
time, data, and names stores in simDataObj using the properties simDataObj.Time,
simDataObj.Data, and simDataObj.DataNames, respectively.

Input Arguments
model

SimBiology.export.Model object.

initialValues

Vector of values for simulate to use as the initial values of the simulation. initialValues must
have the same number of elements as model.InitialValues.

Default: Values specified in model.InitialValues.

2 Methods

2-808

doses

Vector of dose objects specifying the doses used for simulation. The input dose objects must be a
subset of the doses in the exported model, as returned by getdose.

Default: All dose objects in the exported model.

Output Arguments
t

n-by-1 vector of time samples from the simulation, where n is the number of time samples.

x

n-by-m matrix of simulation data, where n is the number of time samples and m is the number of
states logged during the simulation. Each column of x describes the variation in the quantity of a
state over time.

names

m-by-1 cell array of character vectors with names labeling the rows and columns of x, respectively.

simDataObj

SimData object containing simulation time and state data, as well as metadata, such as the types
and names for the reported states.

Examples

Simulate an Exported SimBiology Model

Load a sample SimBiology model object, and select the species y1 and y2 for simulation.

modelObj = sbmlimport('lotka');
modelObj.getconfigset.RuntimeOptions.StatesToLog = ...
 sbioselect(modelObj,'Name',{'y1','y2'});

Export the model object.

em = export(modelObj);

Simulate the exported model.

[t,y] = simulate(em);

figure()
plot(t,y)

 simulate

2-809

Modify the initial conditions, and simulate again.

xIndex = em.getIndex('x');
em.InitialValues(xIndex) = em.InitialValues(xIndex)*1.1;
[t,y] = simulate(em);

figure()
plot(t,y)

2 Methods

2-810

See Also
SimBiology.export.Model | getdose | SimBiology.export.ValueInfo |
SimBiology.export.SimulationOptions | SimData object | export

Topics
“PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics”
“Deploy a SimBiology Exported Model”

 simulate

2-811

SimBiology.gsa.Sobol
Object containing first- and total-order Sobol indices

Description
The SimBiology.gsa.Sobol object contains global sensitivity analysis results returned by
sbiosobol. The object contains the computed first- and total-order Sobol indices related to the
decomposition of the variance of model output with respect to sensitivity inputs [1].

Creation
Create a SimBiology.gsa.Sobol object using sbiosobol.

Properties
ParameterSamples — Sampled parameter values
table

This property is read-only.

Sampled parameter values, specified as a table. The parameter sample values are used for
approximating the Sobol indices. For details, see “Saltelli Method to Compute Sobol Indices” on page
2-821.
Data Types: table

Observables — Names of model responses or observables
cell array of character vectors

This property is read-only.

Names of model responses or observables, specified as a cell array of character vectors.
Data Types: char

Time — Time points
column numeric vector

This property is read-only.

Time points at which Sobol indices are computed, specified as a column numeric vector. The property
is [] if all observables are scalars.
Data Types: double

SobolIndices — Computed sobol indices
structure array

This property is read-only.

2 Methods

2-812

Computed sobol indices, specified as a structure array. The size of the array is
[params,observables], where params is the number of input parameters and observables is the
number of observables.

Each structure contains the following fields.

• Parameter — Name of an input parameter, specified as a character vector
• Observable — Name of an observable, specified as a character vector
• FirstOrder — First-order Sobol index, specified as a numeric vector
• TotalOrder — Total-order Sobol index, specified as a numeric vector.

If all observables are scalar, then the FirstOrder and TotalOrder fields are specified as scalars. If
some observables are scalars and some are vectors, FirstOrder and TotalOrder are numeric
vectors of length Time. Scalar observables are scalar-expanded, where each time point has the same
value.
Data Types: struct

Variance — Variance values for time courses of observables
table

This property is read-only.

Variance values for time courses of observables, specified as a table. Each column of the table
contains the variance values for the time courses of each observable.

If all observables are scalars, then the Variance table has one row. If some observables are scalars
and some are vectors, then the variances for scalar observables are scalar-expanded, where each row
has the same value.

The VariableNames property of the table (Variance.Properties.VariableNames) is a cell
array of character vectors containing the names of observables provided as inputs to sbiosobol.
Names are truncated if needed. The VariableDescriptions property contains the untruncated
observable names.
Data Types: table

SimulationInfo — Simulation information used for computing Sobol indices
structure

This property is read-only.

Simulation information, such as simulation data and parameter samples, used for computing Sobol
indices, specified as a structure. The structure contains the following fields.

• SimFunction — SimFunction object used for simulating model responses or observables.
• SimData — SimData array of size [NumberSamples,2 + params], where NumberSamples on

page 1-0 is the number of samples and params on page 1-0 is the number of input
parameters.

• The first column contains the model simulation results from ParameterSamples.
• The second column contains simulation results from SupportSamples.
• The rest of the columns contain simulation results from combinations of parameter values from

ParameterSamples and SupportSamples. For information on retrieving the model

 SimBiology.gsa.Sobol

2-813

simulation results and samples for a specified column (index) from this SimData array, see
getSimulationResults. For details on how Sobol indices are computed, see the “Saltelli
Method to Compute Sobol Indices” on page 2-821.

• OutputTimes — Numeric column vector containing the common time vector of all SimData
objects.

• Bounds — Numeric matrix of size [params,2]. params is the number of input parameters. The
first column contains the lower bounds and the second column contains the upper bounds for
sensitivity inputs.

• DoseTables — Cell array of dose tables used for the SimFunction evaluation. DoseTables is
the output of getTable(doseInput), where doseInput is the value specified for the 'Doses'
name-value pair argument in the call to sbiosobol, sbiompgsa, or sbioelementaryeffects.
If no doses are applied, this field is set to [].

• ValidSample — Logical matrix of size [NumberSamples,2 + params] indicating whether a
simulation result for a particular sample failed. Resampling of the simulation data (SimData) can
result in NaN values if the data is extrapolated. Such SimData are indicated as invalid.

• InterpolationMethod — Name of the interpolation method for SimData.
• SamplingMethod — Name of the sampling method used to draw ParameterSamples.
• RandomState — Structure containing the state of rng before drawing ParameterSamples.
• SupportSamples — Table of parameter sample values used for approximating the Sobol indices.

For details, see “Saltelli Method to Compute Sobol Indices” on page 2-821.

Data Types: struct

Object Functions
resample Resample Sobol indices or elementary effects to new time vector
addobservable Compute Sobol indices or elementary effects for new observable expression
removeobservable Remove Sobol indices or elementary effects of observables
getSimulationResults Retrieve model simulation results and sample values used for computing

Sobol indices
addsamples Add additional samples to increase accuracy of Sobol indices or elementary

effects analysis
plotData Plot quantile summary of model simulations from global sensitivity analysis

(requires Statistics and Machine Learning Toolbox)
plot Plot first- and total-order Sobol indices and variances
bar Create bar plot of first- and total-order Sobol indices

Examples

Perform Global Sensitivity Analysis by Computing First- and Total-Order Sobol Indices

Load the “Tumor Growth Model”.

sbioloadproject tumor_growth_vpop_sa.sbproj

Get a variant with the estimated parameters and the dose to apply to the model.

v = getvariant(m1);
d = getdose(m1,'interval_dose');

Get the active configset and set the tumor weight as the response.

2 Methods

2-814

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor
growth is sensitive to.

First, retrieve model parameters of interest that are involved in the pharmacodynamics of the tumor
growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1','k2'};
outputName = 'tumor_weight';

Then perform GSA by computing the first- and total-order Sobol indices using sbiosobol. Set
'ShowWaitBar' to true to show the simulation progress. By default, the function uses 1000
parameter samples to compute the Sobol indices [1].

rng('default');
sobolResults = sbiosobol(m1,modelParamNames,outputName,Variants=v,Doses=d,ShowWaitBar=true)

sobolResults =
 Sobol with properties:

 Time: [444x1 double]
 SobolIndices: [5x1 struct]

 SimBiology.gsa.Sobol

2-815

 Variance: [444x1 table]
 ParameterSamples: [1000x5 table]
 Observables: {'[Tumor Growth Model].tumor_weight'}
 SimulationInfo: [1x1 struct]

You can change the number of samples by specifying the 'NumberSamples' name-value pair
argument. The function requires a total of (number of input parameters + 2) *
NumberSamples model simulations.

Show the mean model response, the simulation results, and a shaded region covering 90% of the
simulation results.

plotData(sobolResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying 'Alphas' for the lower
and upper quantiles of all model responses. For instance, an alpha value of 0.1 plots a shaded region
between the 100 * alpha and 100 * (1 - alpha) quantiles of all simulated model responses.

plotData(sobolResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

2 Methods

2-816

Plot the time course of the first- and total-order Sobol indices.

h = plot(sobolResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 SimBiology.gsa.Sobol

2-817

The first-order Sobol index of an input parameter gives the fraction of the overall response variance
that can be attributed to variations in the input parameter alone. The total-order index gives the
fraction of the overall response variance that can be attributed to any joint parameter variations that
include variations of the input parameter.

From the Sobol indices plots, parameters L1 and w0 seem to be the most sensitive parameters to the
tumor weight before the dose was applied at t = 7. But after the dose is applied, k1 and k2 become
more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The
total variance plot also shows a larger variance for the after-dose stage at t > 35 than for the before-
dose stage of the tumor growth, indicating that k1 and k2 might be more important parameters to
investigate further. The fraction of unexplained variance shows some variance at around t = 33, but
the total variance plot shows little variance at t = 33, meaning the unexplained variance could be
insignificant. The fraction of unexplained variance is calculated as 1 - (sum of all the first-order Sobol
indices), and the total variance is calculated using var(response), where response is the model
response at every time point.

You can also display the magnitudes of the sensitivities in a bar plot. Darker colors mean that those
values occur more often over the whole time course.

bar(sobolResults);

2 Methods

2-818

You can specify more samples to increase the accuracy of the Sobol indices, but the simulation can
take longer to finish. Use addsamples to add more samples. For example, if you specify 1500
samples, the function performs 1500 * (2 + number of input parameters) simulations.

gsaMoreSamples = addsamples(gsaResults,1500)

The “SimulationInfo” on page 2-0 property of the result object contains various information for
computing the Sobol indices. For instance, the model simulation data (SimData) for each simulation
using a set of parameter samples is stored in the SimData field of the property. This field is an array
of SimData objects.

sobolResults.SimulationInfo.SimData

 SimBiology SimData Array : 1000-by-7

 Index: Name: ModelName: DataCount:
 1 - Tumor Growth Model 1
 2 - Tumor Growth Model 1
 3 - Tumor Growth Model 1
 ...
 7000 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the ValidSample
field of SimulationInfo. In this example, the field shows no failed simulation runs.

all(sobolResults.SimulationInfo.ValidSample)

 SimBiology.gsa.Sobol

2-819

ans = 1x7 logical array

 1 1 1 1 1 1 1

SimulationInfo.ValidSample is a table of logical values. It has the same size as
SimulationInfo.SimData. If ValidSample indicates that any simulations failed, you can get more
information about those simulation runs and the samples used for those runs by extracting
information from the corresponding column of SimulationInfo.SimData. Suppose that the fourth
column contains one or more failed simulation runs. Get the simulation data and sample values used
for that simulation using getSimulationResults.

[samplesUsed,sd,validruns] = getSimulationResults(sobolResults,4);

You can add custom expressions as observables and compute Sobol indices for the added observables.
For example, you can compute the Sobol indices for the maximum tumor weight by defining a custom
expression as follows.

% Suppress an information warning that is issued during simulation.
warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
% Add the observable expression.
sobolObs = addobservable(sobolResults,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(sobolObs,ShowMedian=true,ShowMean=false);
h2.Position(:) = [100 100 1280 800];

2 Methods

2-820

You can also remove the observable by specifying its name.

gsaNoObs = removeobservable(sobolObs,'Maximum tumor_weight');

Restore the warning settings.

warning(warnSettings);

More About
Saltelli Method to Compute Sobol Indices

sbiosobol implements the Saltelli method [1] to compute Sobol indices.

Consider a SimBiology model response Y expressed as a mathematical model Y = f X1, X2, X3, ..., Xk ,
where Xi is a model parameter and i = 1,…,k.

The first-order Sobol index (Si) gives the fraction of the overall response variance V(Y) that can be
attributed to variations in Xi alone. Si is defined as follows.

Si =
VXi EX ∼ i Y Xi

V Y

The total-order Sobol index (STi) gives the fraction of the overall response variance V(Y) that can be
attributed to any joint parameter variations that include variations of Xi. STi is defined as follows.

STi = 1−
VX ∼ i EXi Y X ∼ i

V Y =
EX ∼ i VXi Y X ∼ i

V Y

To compute individual values for Y corresponding to samples of parameters X1, X1, …, Xk, consider
two independent sampling matrices A and B.

A =

X11 X12 ... X1k
X21 X22 ... X2k
...

Xn1 Xn2 ... Xnk

B =

X11′ X12′ ... X1k′
X21′ X22′ ... X2k′
...

Xn1′ Xn2′ ... Xnk′

n is the sample size. Each row of the matrices A and B corresponds to one parameter sample set,
which is a single realization of model parameter values.

Estimates for Si and STi are obtained from model simulation results using sample values from the

matrices A, B, and AB
i
, which is a matrix where all columns are from A except the ith column, which

is from B for i = 1, 2, …, params.

 SimBiology.gsa.Sobol

2-821

AB
i

=

X11 X12 ... X1i′ ... X1k
X21 X22 ... X2i′ ... X2k
...

Xn1 Xn2 ... Xni′ ... Xnk

The formulas to approximate the first- and total-order Sobol indices are as follows.

S i =

1
n ∑j = 1

n
f (B) j f AB

i

j− f (A) j

V(Y)

S Ti =

1
2n ∑j = 1

n
f (A) j− f AB

i

j

2

V(Y)

f(A), f(B), and f AB
i

j are the model simulation results using the parameter sample values from

matrices A, B, and AB
i
.

The matrix A corresponds to the ParameterSamples property of the Sobol results object
(resultsObj.ParameterSamples). The matrix B corresponds to the SupportSamples property
(resultsObj.SimulationInfo.SupportSamples).

The AB
i
 matrices are stored in the SimData structure of the SimulationInfo on page 2-0

property (resultsObj.SimulationInfo.SimData). The size of SimulationInfo.SimData is
NumberSamples-by-params + 2, where NumberSamples on page 1-0 is the number of samples
and param on page 1-0 is the number of input parameters. The number of columns is 2 +
params because the first column of SimulationInfo.SimData contains the model simulation
results using the sample matrix A. The second column contains simulation results using
SupportSamples, which is another sample matrix B. The rest of the columns contain simulation

results using AB
1
, AB

2
, …, AB

i
, …, AB

params
. See getSimulationResults to retrieve the model

simulation results and samples for a specified ith index (AB
i
) from the SimulationInfo.SimData

array.

Tips
The results object can contain a significant amount of simulation data (SimData). The size of the
object exceeds (1 + number of observables) * number of output time points * (2 +
number of parameters) * number of samples * 8 bytes. For example, if you have one
observable, 500 output time points, 8 parameters, and 100,000 samples, the object size is (1 + 1)
* 500 * (2 + 8) * 100000 * 8 bytes = 8 GB. If you need to save such large objects, use this
syntax:

save(fileName,variableName,'-v7.3');

For details, see MAT-file version.

2 Methods

2-822

References
[1] Saltelli, Andrea, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano

Tarantola. “Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the
Total Sensitivity Index.” Computer Physics Communications 181, no. 2 (February 2010): 259–
70. https://doi.org/10.1016/j.cpc.2009.09.018.

See Also
sbiosobol | sbiompgsa | Observable

Topics
“Sensitivity Analysis in SimBiology”

Introduced in R2020a

 SimBiology.gsa.Sobol

2-823

Species object
Object containing species information

Description
The SimBiology species object represents a species, which is a chemical or entity that participates in
reactions, for example, DNA, ATP, Pi, creatine, G-Protein, or Mitogen-Activated Protein
Kinase (MAPK). Species amounts can vary or remain constant during a simulation. The name of
each species must be unique within the same compartment and the species object cannot have the
same name as any observable object in the model.

To add species that participate in reactions, add the reaction to the model. The process of adding the
reaction to the model creates a compartment object (unnamed) and the necessary species objects.

Alternatively, create and add a species object to a compartment object, using the addspecies
method at the command line.

See “Property Summary” on page 2-824 for links to species property reference pages. Properties
define the characteristics of an object. Use the get and set commands to list object properties and
change their values at the command line. You can graphically change object properties in the
graphical user interface.

Constructor Summary

addspecies (model,
compartment)

Create species object and add to compartment object within model
object

Method Summary
Methods for species objects

copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
findUsages Find out how a species, parameter, or compartment is used in a model
get Get SimBiology object properties
move Move SimBiology species or parameter object to new parent
rename Rename object and update expressions
set Set SimBiology object properties

Property Summary
Properties for species objects

2 Methods

2-824

BoundaryCondition Indicate species boundary condition
Constant Specify variable or constant species amount, parameter value, or compartment

capacity
ConstantAmount Specify variable or constant species amount
InitialAmount Species initial amount
InitialAmountUnits Species initial amount units
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Tag Specify label for SimBiology object
Type Display SimBiology object type
Units Units for species amount, parameter value, compartment capacity, observable

expression
UserData Specify data to associate with object
Value Value of species, compartment, or parameter object

See Also
Compartment object, Configset object, KineticLaw object, Model object, Parameter
object, Reaction object, Root object, Rule object

Introduced in R2006b

 Species object

2-825

Unit object
Hold information about user-defined unit

Description
The SimBiology unit object holds information about user-defined units. To create a unit, create the
unit object and add the unit to the library using the sbioaddtolibrary function.

Use the unit object property Composition to specify the composition of your units. See “Property
Summary” on page 2-826 for links to unit object property reference pages.

Properties define the characteristics of an object. Use the get and set commands to list object
properties and change their values at the command line. You can graphically change unit object
properties in the SimBiology desktop. For more information, see “SimBiology Model Component
Libraries”.

Constructor Summary

sbiounit Create user-defined unit

Method Summary

delete Delete SimBiology object
display Display summary of SimBiology object
findUsages Find out how a unit or unit prefix is used
get Get SimBiology object properties
rename Rename object and update expressions
set Set SimBiology object properties

Property Summary

Composition Unit composition
Multiplier Relationship between defined unit and base unit
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

2 Methods

2-826

See Also
AbstractKineticLaw object, KineticLaw object, Model object, Parameter object,
Reaction object, Root object, Rule object, Species object, UnitPrefix object

Introduced in R2008a

 Unit object

2-827

UnitPrefix object
Hold information about user-defined unit prefix

Description
The SimBiology unit prefix object holds information about user-defined unit prefixes. To create a unit
prefix, create the unit prefix object and add the unit prefix to the library using the
sbioaddtolibrary function.

Use the unit prefix object property Exponent, to specify the exponent of your unit prefix. See
“Property Summary” on page 2-828 for links to unit prefix object property reference pages.

Properties define the characteristics of an object. Use the get and set commands to list object
properties and change their values at the command line. You can graphically change unit prefix
object properties in the SimBiology desktop. For more information, see “SimBiology Model
Component Libraries”.

Constructor Summary
sbiounitprefix Create user-defined unit prefix

Method Summary
delete Delete SimBiology object
display Display summary of SimBiology object
findUsages Find out how a unit or unit prefix is used
get Get SimBiology object properties
rename Rename object and update expressions
set Set SimBiology object properties

Property Summary
Exponent Exponent value of unit prefix
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

See Also
AbstractKineticLaw object, KineticLaw object, Model object, Parameter object,
Reaction object, Root object, Rule object, Species object, Unit object

2 Methods

2-828

Introduced in R2008a

 UnitPrefix object

2-829

updateEntry
Update entry contents from SimBiology.Scenarios object

Syntax
sObj = updateEntry(sObj,entryNameOrIndex,Name,Value)
sObj = updateEntry(sObj,entryIndex,subIndex,Name,Value)

Description
sObj = updateEntry(sObj,entryNameOrIndex,Name,Value) updates the contents of the entry
(or subentry on page 2-744) entryNameOrIndex as specified by one or more name-value pair
arguments. You must specify at least one name-value pair argument.

sObj = updateEntry(sObj,entryIndex,subIndex,Name,Value) updates the contents of the
subentry subIndex as specified by one or more name-value arguments. You must specify at least one
name-value pair argument.

Examples

Generate Different Simulation Scenarios for Glucose-Insulin Response

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo','m1');

The model contains different parameter values and initial conditions that represents different insulin
impairments (such as Type 2 diabetes, low insulin sensitivity, and so on) stored in five variants.

variants = getvariant(m1)

variants =
 SimBiology Variant Array

 Index: Name: Active:
 1 Type 2 diabetic false
 2 Low insulin se... false
 3 High beta cell... false
 4 Low beta cell ... false
 5 High insulin s... false

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Select a dose that represents a single meal of 78 grams of glucose.

singleMeal = sbioselect(m1,'Name','Single Meal');

2 Methods

2-830

Create a Scenarios object to represent different initial conditions combined with the dose. That is,
create a scenario object where each variant is paired (or combined) with the dose, for a total of five
simulation scenarios.

sObj = SimBiology.Scenarios;
add(sObj,'cartesian','variants',variants);
add(sObj,'cartesian','dose',singleMeal)

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ________ ___________________ ______

 Entry 1 variants SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

sObj contains two entries. Use the generate function to combine the entries and generate five
scenarios. The function returns a scenarios table, where each row represents a scenario and each
column represents an entry of the Scenarios object.

scenariosTbl = generate(sObj)

scenariosTbl=5×2 table
 variants dose
 ______________________ _________________________

 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose

Change the entry name of the first entry.

rename(sObj,1,'Insulin Impairements')

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ____________________ ___________________ ______

 Entry 1 Insulin Impairements SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

Create a SimFunction object to simulate the generated scenarios. Use the Scenarios object as the
input and specify the plasma glucose and insulin concentrations as reponses (outputs of the function
to be plotted). Specify [] for the dose input argument since the Scenarios object already has the
dosing information.

f = createSimFunction(m1,sObj,{'[Plasma Glu Conc]','[Plasma Ins Conc]'},[])

 updateEntry

2-831

f =
SimFunction

Parameters:

 Name Value Type Units
 _________________________ ______ _____________ ___

 {'Plasma Volume (Glu)' } 1.88 {'parameter'} {'deciliter' }
 {'k1' } 0.065 {'parameter'} {'1/minute' }
 {'k2' } 0.079 {'parameter'} {'1/minute' }
 {'Plasma Volume (Ins)' } 0.05 {'parameter'} {'liter' }
 {'m1' } 0.19 {'parameter'} {'1/minute' }
 {'m2' } 0.484 {'parameter'} {'1/minute' }
 {'m4' } 0.1936 {'parameter'} {'1/minute' }
 {'m5' } 0.0304 {'parameter'} {'minute/picomole' }
 {'m6' } 0.6469 {'parameter'} {'dimensionless' }
 {'Hepatic Extraction' } 0.6 {'parameter'} {'dimensionless' }
 {'kmax' } 0.0558 {'parameter'} {'1/minute' }
 {'kmin' } 0.008 {'parameter'} {'1/minute' }
 {'kabs' } 0.0568 {'parameter'} {'1/minute' }
 {'kgri' } 0 {'parameter'} {'1/minute' }
 {'f' } 0.9 {'parameter'} {'dimensionless' }
 {'a' } 0 {'parameter'} {'1/milligram' }
 {'b' } 0.82 {'parameter'} {'dimensionless' }
 {'c' } 0 {'parameter'} {'1/milligram' }
 {'d' } 0.01 {'parameter'} {'dimensionless' }
 {'kp1' } 2.7 {'parameter'} {'milligram/minute' }
 {'kp2' } 0.0021 {'parameter'} {'1/minute' }
 {'kp3' } 0.009 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'kp4' } 0.0618 {'parameter'} {'(milligram/minute)/picomole' }
 {'ki' } 0.0079 {'parameter'} {'1/minute' }
 {'[Ins Ind Glu Util]' } 1 {'parameter'} {'milligram/minute' }
 {'Vm0' } 2.5129 {'parameter'} {'milligram/minute' }
 {'Vmx' } 0.047 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'Km' } 225.59 {'parameter'} {'milligram' }
 {'p2U' } 0.0331 {'parameter'} {'1/minute' }
 {'K' } 2.28 {'parameter'} {'picomole/(milligram/deciliter)' }
 {'alpha' } 0.05 {'parameter'} {'1/minute' }
 {'beta' } 0.11 {'parameter'} {'(picomole/minute)/(milligram/deciliter)'}
 {'gamma' } 0.5 {'parameter'} {'1/minute' }
 {'ke1' } 0.0005 {'parameter'} {'1/minute' }
 {'ke2' } 339 {'parameter'} {'milligram' }
 {'Basal Plasma Glu Conc'} 91.76 {'parameter'} {'milligram/deciliter' }
 {'Basal Plasma Ins Conc'} 25.49 {'parameter'} {'picomole/liter' }

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

2 Methods

2-832

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

Simulate the model for 24 hours and plot the simulation data. The data contains five runs, where each
run represents a scenario in the Scenarios object.

sd = f(sObj,24);
sbioplot(sd)

ans =
 Axes (SbioPlot) with properties:

 XLim: [0 30]
 YLim: [0 450]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.0920 0.1100 0.2956 0.8150]
 Units: 'normalized'

 Show all properties

If you have Statistics and Machine Learning Toolbox™, you can also draw sample values for model
quantities from various probability distributions. For instance, suppose that the parameters Vmx and

 updateEntry

2-833

kp3, which are known for the low and high insulin sensitivity, follow the lognormal distribution. You
can generate sample values for these parameters from such a distribution, and perform a scan to
explore model behavior.

Define the lognormal probability distribution object for Vmx.

pd_Vmx = makedist('lognormal')

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = 0
 sigma = 1

By definition, the parameter mu is the mean of logarithmic values. To vary the parameter value
around the base (model) value of the parameter, set mu to log(model_value). Set the standard
deviation (sigma) to 0.2. For a small sigma value, the mean of a lognormal distribtion is
approximately equal to log(model_value). For details, see “Lognormal Distribution” (Statistics and
Machine Learning Toolbox).

Vmx = sbioselect(m1,'Name','Vmx');
pd_Vmx.mu = log(Vmx.Value);
pd_Vmx.sigma = 0.2

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = -3.05761
 sigma = 0.2

Similarly define the probability distribution for kp3.

pd_kp3 = makedist('lognormal');
kp3 = sbioselect(m1,'Name','kp3');
pd_kp3.mu = log(kp3.Value);
pd_kp3.sigma = 0.2

pd_kp3 =
 LognormalDistribution

 Lognormal distribution
 mu = -4.71053
 sigma = 0.2

Now define a joint probability distribution to draw sample values for Vmx and kp3, with a rank
correlation to specify some correlation between these two parameters. Note that this correlation
assumption is for the illustration purposes of this example only and may not be biologically relevant.

First remove the variants entry (entry 1) from sObj.

remove(sObj,1)

ans =
 Scenarios (1 scenarios)

2 Methods

2-834

 Name Content Number
 ____ _______________ ______

 Entry 1 dose SimBiology dose 1

 See also Expression property.

Add an entry that defines the joint probability distribution with a rank correlation matrix.

add(sObj,'cartesian',["Vmx","kp3"],[pd_Vmx, pd_kp3],'RankCorrelation',[1,0.5;0.5,1])

ans =
 Scenarios (2 scenarios)

 Name Content Number
 ____ ______________________ ___________

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 2 (default)
 + Entry 2.2) kp3 Lognormal distribution 2 (default)

 See also Expression property.

By default, the number of samples to draw from the joint distribution is set to 2. Increase the number
of samples.

updateEntry(sObj,2,'Number',50)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Verify that the Scenarios object can be simulated with the model. The verify function throws an
error if any entry does not resolve uniquely to an object in the model or the entry contents have
inconsistent lengths (sample sizes). The function throws a warning if multiple entries resolve to the
same object in the model.

verify(sObj,m1)

Generate the simulation scenarios. Plot the sample values using plotmatrix. You can see the value
of Vmx is varied around its model value 0.047 and that of kp3 around 0.009.

sTbl = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl.Vmx,sTbl.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";

 updateEntry

2-835

ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios using the same SimFunction you created previously. You do not need to create
a new SimFunction object even though the Scenarios object has been updated.

sd2 = f(sObj,24);
sbioplot(sd2);

2 Methods

2-836

By default, SimBiology uses the random sampling method. You can change it to the Latin hypercube
sampling (or sobol or halton) for a more systematic space-filling approach.

entry2struct = getEntry(sObj,2)

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'random'
 SamplingOptions: [0x0 struct]

entry2struct.SamplingMethod = 'lhs'

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'lhs'
 SamplingOptions: [0x0 struct]

You can now use the updated structure to modify entry 2.

 updateEntry

2-837

updateEntry(sObj,2,entry2struct)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Visualize the sample values.

sTbl2 = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl2.Vmx,sTbl2.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios.

sd3 = f(sObj,24);
sbioplot(sd3);

2 Methods

2-838

Restore warning settings.

warning(warnSettings);

Input Arguments
sObj — Simulation scenarios
SimBiology.Scenarios object

Simulation scenarios, specified as a SimBiology.Scenarios object.

entryNameOrIndex — Entry name or index
character vector | string | scalar positive integer

Entry name or index, specified as a character vector, string, or scalar positive integer. You can also
specify the name of a subentry.

If you are specifying an index, it must be smaller than or equal to the number of entries in the object.
Data Types: double | char | string

entryIndex — Entry index
scalar positive integer

Entry index, specified as a scalar positive integer. The entry index must be smaller than or equal to
the number of entries in the object.

 updateEntry

2-839

Data Types: double

subIndex — Entry subindex
scalar positive integer

Entry subindex, specified as a scalar positive integer. The subindex must be smaller than or equal to
the number of subentries in the entry.
Data Types: double

Name-Value Pair Arguments

Specify one or more comma-separated pairs of Name,Value arguments. Name is the argument name
and Value is the corresponding value. Name must appear inside quotes. You can specify several name
and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Note You must specify at least one name-value argument.

Instead of using name-value arguments, you can also use a structure containing the corresponding
filed names and values. For instance, you can get such a structure by using the getEntry function.

Example: object = updateEntry(object,1,'Name','k1','Content',[0.4,0.5,0.6])
updates the name of entry 1 to 'k1' and its values to [0.4,0.5,0.6].

For Entries Defining Numeric Vectors, Doses, or Variants

Name — New entry name
character vector | string

New entry name, specified as the comma-separated pair consisting of 'Name' and a character vector
or string.
Example: 'Name','k_forward'
Data Types: char | string

Content — New content
numeric vector | vector of doses | vector of variants

New content, specified as the comma-separated pair consisting of 'Content' and a numeric vector,
vector of RepeatDose or ScheduleDose objects, or vector of variant objects.
Example: 'Content',[0.1 0.5 0.9]
Data Types: double

For Entries Defining Multivariate Distributions

Name — New entry names
character vector | string | string vector | cell array of character vectors

New entry names, specified as the comma-separated pair consisting of 'Name' and a character
vector, string, string vector, or cell array of character vectors.
Example: ["kel","Cl"]
Data Types: char | string | cell

2 Methods

2-840

Content — Probability distributions
vector of probability distribution objects

Probability distributions, specified as the comma-separated pair consisting of 'Content' and a
vector of probability distribution objects. If the entry has only one distribution, specify a scalar
probability distribution object. Use makedist to create the object.
Example: 'Content',[pd1,pd2]

Mean — Expected values
numeric vector

Expected values of normal distributions, specified as the comma-separated pair consisting of 'Mean'
and a numeric vector. If the entry has only one distribution, specify a numeric scalar. This name-value
pair is valid for normal distributions only.

The number of mean values must be equal to the number of distributions specified in 'Content'.
Example: 'Mean',[0.5,0.8]
Data Types: double

Number — Number of samples
[] (default) | positive scalar

Number of samples to draw from probability distributions, specified as the comma-separated pair
consisting of 'Number' and a positive scalar. The default value [] means that the function infers the
number of samples from other entries. If the number cannot be inferred, the number is set to 2.
Example: 'Number',5

RankCorrelation — Rank correlation matrix
[] (default) | numeric matrix

Rank correlation matrix for the joint probability distribution, specified as the comma-separated pair
consisting of 'RankCorrelation' and a numeric matrix. The default behavior is that when both
'RankCorrelation' and 'Covariance' are set to [], SimBiology.Scenarios draws
uncorrelated samples from the joint probability distribution.

You cannot specify 'RankCorrelation' if 'Covariance' is set. The number of columns in the
matrix must match the number of specified distributions. The matrix must be symmetric with
diagonal values of 1. All of its eigenvalues must also be positive.
Example: 'RankCorrelation',[1 0.3;0.3 1]

Covariance — Covariance matrix
[] (default) | numeric matrix

Covariance matrix for the joint probability distribution, specified as the comma-separated pair
consisting of 'Covariance' and a numeric matrix. The default behavior is that if both
'RankCorrelation' and 'Covariance' are set to [], SimBiology.Scenarios draws
uncorrelated samples from the joint probability distribution. You cannot specify 'Covariance' if you
specify 'RankCorrelation'.

You can specify the covariance matrix for normal distributions only. The number of columns in the
matrix must match the number of specified distributions. All of its eigenvalues must also be
nonnegative.

 updateEntry

2-841

Example: 'Covariance',[0.25 0.15;0.15 0.25]

SamplingMethod — Sampling method
'random' (default) | 'lhs' | 'copula' | 'sobol' | 'halton'

Sampling method, specified as the comma-separated pair consisting of 'SamplingMethod' and a
character vector or string. Depending on whether probability distributions with
'RankCorrelation' or normal distributions with 'Covariance' are specified, the sampling
techniques differ.

If an entry contains a (joint) normal distribution with Covariance specified, the sampling methods
are:

• 'random' – Draw random samples from the specified normal distribution using mvnrnd.
• 'lhs' – Draw Latin hypercube samples from the specified normal distributions using lhsnorm.

For details, see “Generating Quasi-Random Numbers” (Statistics and Machine Learning Toolbox).

If an entry contains a (joint) distribution with no Covariance specified, the sampling methods are:

• 'random' – Draw random samples from the specified probability distributions using random.
• 'lhs' – Draw Latin hypercube samples from the specified probability distributions using an

algorithm similar to lhsdesign. This approach is a more systematic space-filling approach than
random sampling. For details, see “Generating Quasi-Random Numbers” (Statistics and Machine
Learning Toolbox).

• 'copula' – Draw random samples using a copula (Statistics and Machine Learning Toolbox). Use
this option to impose correlations between samples using copulas.

• 'sobol' – Use the sobol sequence (sobolset) which is transformed using the inverse cumulative
distribution function (icdf) of the specified probability distributions. Use this method for highly
systematic space-filling. For details, see “Generating Quasi-Random Numbers” (Statistics and
Machine Learning Toolbox).

• 'halton' – Use the halton sequence (haltonset) which is transformed using the inverse
cumulative distribution function (icdf) of the specified probability distributions. For details, see
“Generating Quasi-Random Numbers” (Statistics and Machine Learning Toolbox).

If no Covariance is specified, SimBiology.Scenarios essentially performs two steps. The first
step is to generate samples using one of the above sampling methods. For lhs, sobol, and halton
methods, the generated uniform samples are transformed to samples from the specified distribution
using the inverse cumulative distribution function icdf. Then, as the second step, the samples are
correlated using the Iman-Conover algorithm if RankCorrelation is specified. For random, the
samples are drawn directly from the specified distributions and the samples are then correlated using
the Iman-Conover algorithm.
Example: 'SamplingMethod','lhs'

SamplingOptions — Options for sampling method
struct

Options for the sampling method, specified as a scalar struct. The options differ depending on the
sampling method: sobol, halton, or lhs.

For sobol and halton, specify each field name and value of the structure according to each name-
value argument of the sobolset or haltonset function. SimBiology uses the default value of 1 for
the Skip argument for both methods. For all other name-value arguments, the software uses the

2 Methods

2-842

same default values of sobolset or haltonset. For instance, set up a structure for the Leap and
Skip options with nondefault values as follows.

s1.Leap = 50;
s1.Skip = 0;

For lhs, there are three samplers that support different sampling options.

• If you specify a covariance matrix, SimBiology uses lhsnorm for sampling. SamplingOptions
argument is not allowed.

• Otherwise, use the field name UseLhsdesign to select a sampler.

• If the value is true, SimBiology uses lhsdesign. You can use the name-value arguments of
lhsdesign to specify the field names and values.

• If the value is false (default), SimBiology uses a nonconfigurable Latin hypercube sampler
that is different from lhsdesign. This sampler does not require Statistics and Machine
Learning Toolbox. SamplingOptions cannot contain any other options, except
UseLhsdesign.

For instance, set up a structure to use lhsdesign with the Criterion and Iterations options.

s2.UseLhsdesign = true;
s2.Criterion = "correlation";
s2.Iterations = 10;

Example: 'SamplingOptions',struct("Skip",5)
Data Types: struct

For Subentries of Multivariate Distributions

Name — New subentry name
character vector | string

New subentry name, specified as the comma-separated pair consisting of 'Name' and a character
vector or string.
Example: 'Name','pd2'
Data Types: char | string

Content — Probability distribution
probability distribution object

Probability distribution, specified as the comma-separated pair consisting of 'Content' and a
probability distribution object. Use makedist to create such an object.
Example: 'Content',pd2

Mean — Expected value
numeric scalar

Expected value of a normal distribution, specified as the comma-separated pair consisting of 'Mean'
and a numeric scalar. This name-value pair is valid for normal distributions only.
Example: 'Mean',0.5
Data Types: double

 updateEntry

2-843

Output Arguments
sObj — Simulation scenarios
Scenarios object

Simulation scenarios, returned as a Scenarios object.

See Also
SimBiology.Scenarios | SimFunction object | createSimFunction (model)

Topics
“SimBiology.Scenarios Terminology” on page 2-744
“Combine Simulation Scenarios in SimBiology”

Introduced in R2019b

2 Methods

2-844

updateobservable
Update observable expressions or units in SimData

Syntax
sdout = updateobservable(sdin,obsNames,obsExpressions)
sdout = updateobservable(sdin,obsNames,obsExpressions,'Units',units)
sdout = updateobservable(sdin,obsNames,'Units',units)

Description
sdout = updateobservable(sdin,obsNames,obsExpressions) returns a new SimData object
(or array of objects) sdout after copying the input SimData sdin and recalculating the observables
using updated expressions. obsNames and obsExpressions are the existing observable names and
their corresponding expressions to update, respectively. The number of expressions must match the
number of observable names.

sdout = updateobservable(sdin,obsNames,obsExpressions,'Units',units) recalculates
the observables obsNames using the updated expressions obsExpressions and the specified
units. The number of units must match the number of observable names.

sdout = updateobservable(sdin,obsNames,'Units',units) recalculates the observables
obsNames using the specified units. The number of units must match the number of observable
names.

Examples

Calculate Statistics After Model Simulation Using Observables

Load the “Target-Mediated Drug Disposition (TMDD) Model”.

sbioloadproject tmdd_with_TO.sbproj

Set the target occupancy (TO) as a response.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'TO';

Get the dosing information.

d = getdose(m1,'Daily Dose');

Scan over different dose amounts using a SimBiology.Scenarios object. To do so, first
parameterize the Amount property of the dose. Then vary the corresponding parameter value using
the Scenarios object.

amountParam = addparameter(m1,'AmountParam','Units',d.AmountUnits);
d.Amount = 'AmountParam';
d.Active = 1;
doseSamples = SimBiology.Scenarios('AmountParam',linspace(0,300,31));

 updateobservable

2-845

Create a SimFunction to simulate the model. Set TO as the simulation output.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:SimFunction:DOSES_NOT_EMPTY');
f = createSimFunction(m1,doseSamples,'TO',d)

f =
SimFunction

Parameters:

 Name Value Type Units
 _______________ _____ _____________ ____________

 {'AmountParam'} 1 {'parameter'} {'nanomole'}

Observables:

 Name Type Units
 ______ _____________ _________________

 {'TO'} {'parameter'} {'dimensionless'}

Dosed:

 TargetName TargetDimension Amount AmountValue AmountUnits
 _______________ ___________________________________ _______________ ___________ ____________

 {'Plasma.Drug'} {'Amount (e.g., mole or molecule)'} {'AmountParam'} 1 {'nanomole'}

TimeUnits: day

warning('on','SimBiology:SimFunction:DOSES_NOT_EMPTY');

Simulate the model using the dose amounts generated by the Scenarios object. In this case, the
object generates 31 different doses; hence the model is simulated 31 times and generates a SimData
array.

doseTable = getTable(d);
sd = f(doseSamples,cs.StopTime,doseTable)

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 0

Plot the simulation results. Also add two reference lines that represent the safety and efficacy
thresholds for TO. In this example, suppose that any TO value above 0.85 is unsafe, and any TO value
below 0.15 has no efficacy.

2 Methods

2-846

h = sbioplot(sd);
time = sd(1).Time;
h.NextPlot = 'add';
safetyThreshold = plot(h,[min(time), max(time)],[0.85, 0.85],'DisplayName','Safety Threshold');
efficacyThreshold = plot(h,[min(time), max(time)],[0.15, 0.15],'DisplayName','Efficacy Threshold');

Postprocess the simulation results. Find out which dose amounts are effective, corresponding to the
TO responses within the safety and efficacy thresholds. To do so, add an observable expression to the
simulation data.

% Suppress informational warnings that are issued during simulation.
warning('off','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');
newSD = addobservable(sd,'stat1','max(TO) < 0.85 & min(TO) > 0.15','Units','dimensionless')

 SimBiology Simulation Data Array: 31-by-1

 ModelName: TMDD
 Logged Data:
 Species: 0
 Compartment: 0
 Parameter: 1
 Sensitivity: 0
 Observable: 1

 updateobservable

2-847

The addobservable function evaluates the new observable expression for each SimData in sd and
returns the evaluated results as a new SimData array, newSD, which now has the added observable
(stat1).

SimBiology stores the observable results in two different properties of a SimData object. If the
results are scalar-valued, they are stored in SimData.ScalarObservables. Otherwise, they are
stored in SimData.VectorObservables. In this example, the stat1 observable expression is
scalar-valued.

Extract the scalar observable values and plot them against the dose amounts.

scalarObs = vertcat(newSD.ScalarObservables);
doseAmounts = generate(doseSamples);
figure
plot(doseAmounts.AmountParam,scalarObs.stat1,'o','MarkerFaceColor','b')

The plot shows that dose amounts ranging from 50 to 180 nanomoles provide TO responses that lie
within the target efficacy and safety thresholds.

You can update the observable expression with different threshold amounts. The function recalculates
the expression and returns the results in a new SimData object array.

newSD2 = updateobservable(newSD,'stat1','max(TO) < 0.75 & min(TO) > 0.30');

Rename the observable expression. The function renames the observable, updates any expressions
that reference the renamed observable (if applicable), and returns the results in a new SimData
object array.

2 Methods

2-848

newSD3 = renameobservable(newSD2,'stat1','EffectiveDose');

Restore the warning settings.

warning('on','SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON');

Input Arguments
sdin — Input simulation data
SimData object | array of SimData objects

Input simulation data, specified as a SimData object or array of objects.

obsNames — Names of existing observable expressions
character vector | string | string vector | cell array of character vector

Names of existing observable expressions, specified as a character vector, string, string vector, or cell
array of character vector.
Example: {'max_drug','mean_drug'}
Data Types: char | string | cell

obsExpressions — Observable expressions
character vector | string | string vector | cell array of character vectors

Observable expressions, specified as a character vector, string, string vector, or cell array of
character vectors. The number of expressions must match the number of observable names.
Example: {'max(drug)','mean(drug)'}
Data Types: char | string | cell

units — Units for observable expressions
character vector | string | string vector | cell array of character vectors

Units for the observable expressions, specified as a character vector, string, string vector, or cell
array of character vectors. The number of units must match the number of observable names.
Example: {'nanomole/liter','nanomole/liter'}
Data Types: char | string | cell

Output Arguments
sdout — Simulation data with observable results
SimData object | array of SimData objects

Simulation data with observable results, returned as a SimData object or array of objects.

See Also
SimData | renameobservable | addobservable

Introduced in R2020a

 updateobservable

2-849

Variant object
Store alternate component values

Description
The SimBiology variant object stores the names and values of model components and allows you to
use the values stored in a variant object as the alternate value to be applied during a simulation. You
can store values for species InitialAmount, parameter Value, and compartment Capacity in a
variant object. Simulating using a variant does not alter the model component values. The values
specified in the variant temporarily apply during simulation.

Using one or more variant objects associated with a model allows you to evaluate model behavior
during simulation, with different values for the various model components without having to search
and replace these values, or having to create additional models with these values. If you determine
that the values in a variant object accurately define your model, you can permanently replace the
values in your model with the values stored in the variant object, using the commit method.

To use a variant in a simulation you must add the variant object to the model object and set the
Active property of the variant to true. Set the Active property to true if you always want the
variant to be applied before simulating the model. You can also enter the variant object as an
argument to sbiosimulate; this applies the variant only for the current simulation and supersedes
any active variant objects on the model.

Warning The Active property of the Variant object will be removed in a future release.
Explicitly specify a variant or an array of variants as an input argument when you simulate a model
using sbiosimulate.

When there are multiple active variant objects on a model, if there are duplicate specifications for a
property's value, the last occurrence for the property value in the array of variants, is used during
simulation. You can find out which variant is applied last by looking at the indices of the variant
objects stored on the model. Similarly, in the Content property, if there are duplicate specifications
for a property's value, the last occurrence for the property in the Content property, is used during
simulation.

Use the addcontent method to append contents to a variant object.

See “Property Summary” on page 2-851 for links to species property reference pages. Properties
define the characteristics of an object. Use the get and set commands to list object properties and
change their values at the command line. You can graphically change object properties in the
graphical user interface.

Constructor Summary
sbiovariant Construct variant object

Method Summary
Methods for variant objects

2 Methods

2-850

addcontent (variant) Append content to variant object
commit (variant) Commit variant contents to model
copyobj Copy SimBiology object and its children
delete Delete SimBiology object
display Display summary of SimBiology object
get Get SimBiology object properties
rename Rename object and update expressions
rmcontent (variant) Remove contents from variant object
set Set SimBiology object properties
verify (model, variant) Validate and verify SimBiology model

Property Summary
Properties for variant objects

Active Indicate object in use during simulation
Content Contents of variant object
Name Specify name of object
Notes HTML text describing SimBiology object
Parent Indicate parent object
Tag Specify label for SimBiology object
Type Display SimBiology object type
UserData Specify data to associate with object

See Also
Compartment object, Configset object, Model object, Parameter object, Species
object

sbiosimulate

Introduced in R2008a

 Variant object

2-851

verify (model, variant)
Validate and verify SimBiology model

Syntax
verify(modelObj)
verify(modelObj,csObj)
verify(modelObj,dvObj)

verify(modelObj,csObj,dvObj)

verify(modelObj,csObj,variantObj,doseObj)

Description
verify(modelObj) performs checks on a Model modelObj to verify that you can simulate the
model. This function generates stacked errors and warnings if it finds any problems. To see the entire
list of errors and warnings, use sbiolasterror and sbiolastwarning. The function uses the
active configuration set, any active doses and active variants for verification.

verify(modelObj,csObj) verifies a model modelObj using the specified configset object csObj
and any active variants and active doses. Any other configsets are ignored. If you set csObj to empty
[], the function uses the active configset.

verify(modelObj,dvObj) verifies a model modelObj using doses or variants specified by dvObj
and the active configset. dvObj can be one of the following:

• Variant object
• ScheduleDose object
• RepeatDose object
• Array of doses or variants

If you set dvObj to empty [], the function uses the active configset, active variants, and active doses.

If you specify dvObj as variants, the function uses the specified variants and active doses. Any other
variants are ignored.

If you specify dvObj as doses, the function uses the specified doses and active variants. Any other
doses are ignored.

verify(modelObj,csObj,dvObj) verifies a model modelObj using a configset object csObj and
doses or variants specified by dvObj.

If you set csObj to [], then the function uses the active configset object.

If you set dvObj to [], then the function uses no variants, but uses active doses.

If you specify dvObj as variants, the function uses the specified variants and active doses. Any other
variants are ignored.

2 Methods

2-852

If you specify dvObj as doses, the function uses the specified doses and active variants. Any other
doses are ignored.

verify(modelObj,csObj,variantObj,doseObj) verifies a model modelObj using a configset
object csObj, variants (variantObj) and doses (doseObj). Any other configset, doses, and variants
are ignored.

If you set csObj to [], then the function uses the active configset object.

If you set variantObj to [], then the function uses no variants.

If you set doseObj to [], then the function uses no doses.

Input Arguments
modelObj — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object.

csObj — Configuration set object
configset object

Configuration set object, specified as a Configset object that stores simulation-specific
information.

dvObj — Dose or variant object
dose object or array of dose objects | variant object or array of variant objects

Dose or variant object, specified as a ScheduleDose object , RepeatDose object , an array of
dose objects, Variant object , or an array of variant objects.

• When dvObj is a dose object, verify uses the specified dose object as well as any active variant
objects if available.

• When dvObj is a variant object, verify uses the specified variant object as well as any active
dose objects if available.

variantObj — Variant object
variant object or array of variant objects

Variant object, specified as a Variant object or an array of variant objects.

doseObj — Dose object
dose object or array of dose objects

Dose object, specified as a ScheduleDose object , RepeatDose object , or an array of dose
objects. A dose object defines additions that are made to species amounts or parameter values.

Examples

Verify a SimBiology Model While Using a User-Defined Configset Object

Load a sample SimBiology model.

 verify (model, variant)

2-853

sbioloadproject radiodecay.sbproj

Add a new configuration set using a different stop time of 15 seconds.

csObj = addconfigset(m1,'newStopTimeConfigSet');
csObj.StopTime = 15;

Verify the model while using the configset object.

verify(m1,csObj);

After verification, check the latest errors and warnings if there is any.

sbiolasterror

ans =

 0x1 empty struct array with fields:

 Type
 MessageID
 Message

sbiolastwarning

ans =

 0x1 empty struct array with fields:

 Type
 MessageID
 Message

Simulate the model.

sim = sbiosimulate(m1,csObj);
sbioplot(sim);

2 Methods

2-854

Verify a SimBiology Model While Using Configset and Dose Objects

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Get the default configuration set from the model.

defaultConfigSet = getconfigset(m1,'default');

Add a scheduled dose of 100 molecules at 2 seconds for species x.

dObj = adddose(m1,'d1','schedule');
dObj.Amount = 100;
dObj.AmountUnits = 'molecule';
dObj.TimeUnits = 'second';
dObj.Time = 2;
dObj.TargetName = 'unnamed.x';

Verify the model while using the default configset object and added dose object.

verify(m1,defaultConfigSet,dObj);

After verification, check the latest errors and warnings if there is any.

sbiolasterror

 verify (model, variant)

2-855

ans =

 0x1 empty struct array with fields:

 Type
 MessageID
 Message

sbiolastwarning

ans =

 0x1 empty struct array with fields:

 Type
 MessageID
 Message

Simulate the model using the same configset and dose objects.

sim = sbiosimulate(m1,defaultConfigSet,dObj);

Plot the result.

sbioplot(sim);

2 Methods

2-856

Verify SimBiology Model While Using Configset, Dose, and Variant Objects

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Add a new configuration set using a different stop time of 15 seconds.

csObj = m1.addconfigset('newStopTimeConfigSet');
csObj.StopTime = 15;

Add a scheduled dose of 100 molecules at 2 seconds for species x.

dObj = adddose(m1,'d1','schedule');
dObj.Amount = 100;
dObj.AmountUnits = 'molecule';
dObj.TimeUnits = 'second';
dObj.Time = 2;
dObj.TargetName = 'unnamed.x';

Add a variant of species x using a different initial amount of 500 molecules.

vObj = addvariant(m1,'v1');
addcontent(vObj,{'species','x','InitialAmount',500});

Verify the model while using the configset, dose, and variant objects. Note that the order of
arguments should be as described.

verify(m1,csObj,vObj,dObj);

After verification, check the latest errors and warnings if there is any.

sbiolasterror

ans =

 0x1 empty struct array with fields:

 Type
 MessageID
 Message

sbiolastwarning

ans =

 0x1 empty struct array with fields:

 Type
 MessageID
 Message

Simulate the model using the same configset, variant, and dose objects.

sim = sbiosimulate(m1,csObj,vObj,dObj);

Plot the result.

sbioplot(sim);

 verify (model, variant)

2-857

See Also
sbiolasterror, sbiolastwarning

Introduced in R2006a

2 Methods

2-858

verify
Verify SimBiology.Scenarios object

Syntax
verify(sObj,model)

Description
verify(sObj,model) verifies the SimBiology.Scenarios object sObj and checks whether you
can simulate its scenarios with a given SimBiology model.

The function throws an error if any entry does not resolve uniquely to an object in the model or the
entry contents have inconsistent lengths. The function throws a warning if multiple entries resolve to
the same object in the model.

Examples

Generate Different Simulation Scenarios for Glucose-Insulin Response

Load the model of glucose-insulin response. For details about the model, see the Background section
in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo','m1');

The model contains different parameter values and initial conditions that represents different insulin
impairments (such as Type 2 diabetes, low insulin sensitivity, and so on) stored in five variants.

variants = getvariant(m1)

variants =
 SimBiology Variant Array

 Index: Name: Active:
 1 Type 2 diabetic false
 2 Low insulin se... false
 3 High beta cell... false
 4 Low beta cell ... false
 5 High insulin s... false

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Select a dose that represents a single meal of 78 grams of glucose.

singleMeal = sbioselect(m1,'Name','Single Meal');

 verify

2-859

Create a Scenarios object to represent different initial conditions combined with the dose. That is,
create a scenario object where each variant is paired (or combined) with the dose, for a total of five
simulation scenarios.

sObj = SimBiology.Scenarios;
add(sObj,'cartesian','variants',variants);
add(sObj,'cartesian','dose',singleMeal)

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ________ ___________________ ______

 Entry 1 variants SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

sObj contains two entries. Use the generate function to combine the entries and generate five
scenarios. The function returns a scenarios table, where each row represents a scenario and each
column represents an entry of the Scenarios object.

scenariosTbl = generate(sObj)

scenariosTbl=5×2 table
 variants dose
 ______________________ _________________________

 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose
 1x1 SimBiology.Variant 1x1 SimBiology.RepeatDose

Change the entry name of the first entry.

rename(sObj,1,'Insulin Impairements')

ans =
 Scenarios (5 scenarios)

 Name Content Number
 ____________________ ___________________ ______

 Entry 1 Insulin Impairements SimBiology variants 5
 x Entry 2 dose SimBiology dose 1

 See also Expression property.

Create a SimFunction object to simulate the generated scenarios. Use the Scenarios object as the
input and specify the plasma glucose and insulin concentrations as reponses (outputs of the function
to be plotted). Specify [] for the dose input argument since the Scenarios object already has the
dosing information.

f = createSimFunction(m1,sObj,{'[Plasma Glu Conc]','[Plasma Ins Conc]'},[])

2 Methods

2-860

f =
SimFunction

Parameters:

 Name Value Type Units
 _________________________ ______ _____________ ___

 {'Plasma Volume (Glu)' } 1.88 {'parameter'} {'deciliter' }
 {'k1' } 0.065 {'parameter'} {'1/minute' }
 {'k2' } 0.079 {'parameter'} {'1/minute' }
 {'Plasma Volume (Ins)' } 0.05 {'parameter'} {'liter' }
 {'m1' } 0.19 {'parameter'} {'1/minute' }
 {'m2' } 0.484 {'parameter'} {'1/minute' }
 {'m4' } 0.1936 {'parameter'} {'1/minute' }
 {'m5' } 0.0304 {'parameter'} {'minute/picomole' }
 {'m6' } 0.6469 {'parameter'} {'dimensionless' }
 {'Hepatic Extraction' } 0.6 {'parameter'} {'dimensionless' }
 {'kmax' } 0.0558 {'parameter'} {'1/minute' }
 {'kmin' } 0.008 {'parameter'} {'1/minute' }
 {'kabs' } 0.0568 {'parameter'} {'1/minute' }
 {'kgri' } 0 {'parameter'} {'1/minute' }
 {'f' } 0.9 {'parameter'} {'dimensionless' }
 {'a' } 0 {'parameter'} {'1/milligram' }
 {'b' } 0.82 {'parameter'} {'dimensionless' }
 {'c' } 0 {'parameter'} {'1/milligram' }
 {'d' } 0.01 {'parameter'} {'dimensionless' }
 {'kp1' } 2.7 {'parameter'} {'milligram/minute' }
 {'kp2' } 0.0021 {'parameter'} {'1/minute' }
 {'kp3' } 0.009 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'kp4' } 0.0618 {'parameter'} {'(milligram/minute)/picomole' }
 {'ki' } 0.0079 {'parameter'} {'1/minute' }
 {'[Ins Ind Glu Util]' } 1 {'parameter'} {'milligram/minute' }
 {'Vm0' } 2.5129 {'parameter'} {'milligram/minute' }
 {'Vmx' } 0.047 {'parameter'} {'(milligram/minute)/(picomole/liter)' }
 {'Km' } 225.59 {'parameter'} {'milligram' }
 {'p2U' } 0.0331 {'parameter'} {'1/minute' }
 {'K' } 2.28 {'parameter'} {'picomole/(milligram/deciliter)' }
 {'alpha' } 0.05 {'parameter'} {'1/minute' }
 {'beta' } 0.11 {'parameter'} {'(picomole/minute)/(milligram/deciliter)'}
 {'gamma' } 0.5 {'parameter'} {'1/minute' }
 {'ke1' } 0.0005 {'parameter'} {'1/minute' }
 {'ke2' } 339 {'parameter'} {'milligram' }
 {'Basal Plasma Glu Conc'} 91.76 {'parameter'} {'milligram/deciliter' }
 {'Basal Plasma Ins Conc'} 25.49 {'parameter'} {'picomole/liter' }

Observables:

 Name Type Units
 _____________________ ___________ _______________________

 {'[Plasma Glu Conc]'} {'species'} {'milligram/deciliter'}
 {'[Plasma Ins Conc]'} {'species'} {'picomole/liter' }

Dosed:

 TargetName TargetDimension
 __________ _____________________

 verify

2-861

 {'Dose'} {'Mass (e.g., gram)'}

TimeUnits: hour

Simulate the model for 24 hours and plot the simulation data. The data contains five runs, where each
run represents a scenario in the Scenarios object.

sd = f(sObj,24);
sbioplot(sd)

ans =
 Axes (SbioPlot) with properties:

 XLim: [0 30]
 YLim: [0 450]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.0920 0.1100 0.2956 0.8150]
 Units: 'normalized'

 Show all properties

If you have Statistics and Machine Learning Toolbox™, you can also draw sample values for model
quantities from various probability distributions. For instance, suppose that the parameters Vmx and

2 Methods

2-862

kp3, which are known for the low and high insulin sensitivity, follow the lognormal distribution. You
can generate sample values for these parameters from such a distribution, and perform a scan to
explore model behavior.

Define the lognormal probability distribution object for Vmx.

pd_Vmx = makedist('lognormal')

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = 0
 sigma = 1

By definition, the parameter mu is the mean of logarithmic values. To vary the parameter value
around the base (model) value of the parameter, set mu to log(model_value). Set the standard
deviation (sigma) to 0.2. For a small sigma value, the mean of a lognormal distribtion is
approximately equal to log(model_value). For details, see “Lognormal Distribution” (Statistics and
Machine Learning Toolbox).

Vmx = sbioselect(m1,'Name','Vmx');
pd_Vmx.mu = log(Vmx.Value);
pd_Vmx.sigma = 0.2

pd_Vmx =
 LognormalDistribution

 Lognormal distribution
 mu = -3.05761
 sigma = 0.2

Similarly define the probability distribution for kp3.

pd_kp3 = makedist('lognormal');
kp3 = sbioselect(m1,'Name','kp3');
pd_kp3.mu = log(kp3.Value);
pd_kp3.sigma = 0.2

pd_kp3 =
 LognormalDistribution

 Lognormal distribution
 mu = -4.71053
 sigma = 0.2

Now define a joint probability distribution to draw sample values for Vmx and kp3, with a rank
correlation to specify some correlation between these two parameters. Note that this correlation
assumption is for the illustration purposes of this example only and may not be biologically relevant.

First remove the variants entry (entry 1) from sObj.

remove(sObj,1)

ans =
 Scenarios (1 scenarios)

 verify

2-863

 Name Content Number
 ____ _______________ ______

 Entry 1 dose SimBiology dose 1

 See also Expression property.

Add an entry that defines the joint probability distribution with a rank correlation matrix.

add(sObj,'cartesian',["Vmx","kp3"],[pd_Vmx, pd_kp3],'RankCorrelation',[1,0.5;0.5,1])

ans =
 Scenarios (2 scenarios)

 Name Content Number
 ____ ______________________ ___________

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 2 (default)
 + Entry 2.2) kp3 Lognormal distribution 2 (default)

 See also Expression property.

By default, the number of samples to draw from the joint distribution is set to 2. Increase the number
of samples.

updateEntry(sObj,2,'Number',50)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Verify that the Scenarios object can be simulated with the model. The verify function throws an
error if any entry does not resolve uniquely to an object in the model or the entry contents have
inconsistent lengths (sample sizes). The function throws a warning if multiple entries resolve to the
same object in the model.

verify(sObj,m1)

Generate the simulation scenarios. Plot the sample values using plotmatrix. You can see the value
of Vmx is varied around its model value 0.047 and that of kp3 around 0.009.

sTbl = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl.Vmx,sTbl.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";

2 Methods

2-864

ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios using the same SimFunction you created previously. You do not need to create
a new SimFunction object even though the Scenarios object has been updated.

sd2 = f(sObj,24);
sbioplot(sd2);

 verify

2-865

By default, SimBiology uses the random sampling method. You can change it to the Latin hypercube
sampling (or sobol or halton) for a more systematic space-filling approach.

entry2struct = getEntry(sObj,2)

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'random'
 SamplingOptions: [0x0 struct]

entry2struct.SamplingMethod = 'lhs'

entry2struct = struct with fields:
 Name: {'Vmx' 'kp3'}
 Content: [2x1 prob.LognormalDistribution]
 Number: 50
 RankCorrelation: [2x2 double]
 Covariance: []
 SamplingMethod: 'lhs'
 SamplingOptions: [0x0 struct]

You can now use the updated structure to modify entry 2.

2 Methods

2-866

updateEntry(sObj,2,entry2struct)

ans =
 Scenarios (50 scenarios)

 Name Content Number
 ____ ______________________ ______

 Entry 1 dose SimBiology dose 1
 x (Entry 2.1 Vmx Lognormal distribution 50
 + Entry 2.2) kp3 Lognormal distribution 50

 See also Expression property.

Visualize the sample values.

sTbl2 = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl2.Vmx,sTbl2.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

Simulate the scenarios.

sd3 = f(sObj,24);
sbioplot(sd3);

 verify

2-867

Restore warning settings.

warning(warnSettings);

Input Arguments
sObj — Simulation scenarios
SimBiology.Scenarios object

Simulation scenarios, specified as a SimBiology.Scenarios object.

model — SimBiology model
Model object

SimBiology model, specified as a Model object.

Output Arguments
sObj — Simulation scenarios
Scenarios object

Simulation scenarios, returned as a Scenarios object.

2 Methods

2-868

See Also
SimBiology.Scenarios | SimFunction object | createSimFunction (model)

Topics
“SimBiology.Scenarios Terminology” on page 2-744
“Combine Simulation Scenarios in SimBiology”

Introduced in R2019b

 verify

2-869

verify (covmodel)
Check covariate model for errors

Syntax
verify(CovModelObj)

Description
verify(CovModelObj) verifies that the following are true about the Expression on page 3-68
property of CovModelObj, a CovariateModel object:

• The expressions are valid MATLAB code.
• Each expression is linear with a transformation.
• There is exactly one expression for each parameter.
• In each expression, a covariate is used in at most one term.
• In each expression, there is at most one random effect (eta)
• Fixed effect (theta) and random effect (eta) names are unique within and across expressions.

That is, each covariate has its own fixed effect.

If the previous requirements are true, then verify returns nothing.

See Also
construct | CovariateModel on page 2-173 | Expression on page 3-68 | PKModelDesign
object

Topics
“Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”
“Specify a Covariate Model”

Introduced in R2011b

2 Methods

2-870

Properties

3

AbsoluteTolerance
Absolute error tolerance applied to state value during simulation

Description
AbsoluteTolerance is a property of a SolverOptions object, which is a property of a Configset
object. It is available for the ode solvers (ode15s, ode23t, ode45, and sundials).

SimBiology uses AbsoluteTolerance to determine the largest allowable absolute error at any step
in a simulation. How the software uses AbsoluteTolerance to determine this error depends on
whether the AbsoluteToleranceScaling property is enabled.

For details, see “Selecting Absolute Tolerance and Relative Tolerance for Simulation”.

Characteristics
Applies to Object: SolverOptions
Data type double
Data values Positive scalar. Default is 1e-6.
Access Read/write

Examples
This example shows how to change AbsoluteTolerance.

1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

2 Change the AbsoluteTolerance to 1e-8.

set(configsetObj.SolverOptions, 'AbsoluteTolerance', 1.0e-8);
get(configsetObj.SolverOptions, 'AbsoluteTolerance')

ans =

 1.0000e-008

See Also
AbsoluteToleranceScaling, AbsoluteToleranceStepSize, RelativeTolerance, MassUnits, AmountUnits,
Configset object

See Also
Topics
“Model Simulation”

3 Properties

3-2

“Choosing a Simulation Solver”
“Ordinary Differential Equations”

 AbsoluteTolerance

3-3

AbsoluteToleranceScaling
Control scaling of absolute error tolerance during simulation

Description
AbsoluteToleranceScaling is a property of a SolverOptions object, which is a property of a
Configset object. It is available for the ode solvers (ode15s, ode23t, ode45, and sundials).

AbsoluteToleranceScaling controls how the software determines the largest allowable absolute
error at any step in a simulation. For details, see “Selecting Absolute Tolerance and Relative
Tolerance for Simulation”.

Characteristics
Applies to Object: SolverOptions
Data type logical
Data values 1, 0, true, or false. Default is true.
Access Read/write

See Also
AbsoluteTolerance, AbsoluteToleranceStepSize, RelativeTolerance

3 Properties

3-4

AbsoluteToleranceStepSize
Initial guess for time step size for scaling of absolute error tolerance

Description
AbsoluteToleranceStepSize is a property of a SolverOptions object, which is a property of a
Configset object. It is available for the ode solvers (ode15s, ode23t, ode45, and sundials).

When the AbsoluteToleranceScaling property is enabled, you can set the
AbsoluteToleranceStepSize property to specify the initial guess for time step size for scaling.
For details, “Selecting Absolute Tolerance and Relative Tolerance for Simulation”.

Tip Use AbsoluteToleranceStepSize when a simulation is unsuccessful and generates
numerically unstable solutions, and other corrective actions such as checking the model’s kinetics do
not work. You might encounter unstable solutions if you have very stiff systems in which state values
change rapidly at the beginning of a simulation. To solve this, iteratively decrease
AbsoluteToleranceStepSize and simulate to find the optimal setting. As a starting point, try
setting this property to AbsoluteTolerance * StopTime * 0.1.

Characteristics
Applies to Object: SolverOptions
Data type double
Data values Scalar in units specified by TimeUnits property. Default is [].
Access Read/write

See Also
AbsoluteTolerance, AbsoluteToleranceScaling, RelativeTolerance

 AbsoluteToleranceStepSize

3-5

Active
Indicate object in use during simulation

Description
The Active property indicates whether a simulation is using a SimBiology object. A SimBiology
model is organized into a hierarchical group of objects. Use the Active property to include or
exclude objects during a simulation.

• Event, Reaction, or Rule — When an event, a reaction, or rule object Active property is set to
false, the simulation does not include the event, reaction, or rule. This is a convenient way to
test a model with and without a reaction or rule.

• Configuration set — For the configset object, use the method setactiveconfigset to set
the object Active property to true.

Warning This property of the Configset object will be removed in a future release. Explicitly
specify a configset as an input argument when you simulate a model using sbiosimulate.

• Variant — Set the Active property to true if you always want the variant to be applied before
simulating the model. You can also pass the variant object as an argument to sbiosimulate; this
applies the variant only for the current simulation. For more information on using the Active
property for variants, see Variant object.

Warning This property of the Variant object will be removed in a future release. Explicitly
specify a variant or an array of variants as an input argument when you simulate a model using
sbiosimulate.

.
• Schedule dose and Repeat dose — To use a dose object in a simulation, you must add the dose

object to a model object and set the Active property of the dose object to true.

Warning This property of the ScheduleDose object and RepeatDose object will be
removed in a future release. Explicitly specify a dose or an array of doses as an input argument
when you simulate a model using sbiosimulate.

Characteristics

Applies to Objects: configset, event, observable, reaction, RepeatDose, rule,
ScheduleDose, variant

Data type boolean
Data values true or false. The default value for events, reactions, rules, and

observables is true. For the configset object, default is true. For
added configset object, the default is false. For variants, the default
is false.

3 Properties

3-6

Access Read/write

Examples
1 Create a model object.

modelObj = sbiomodel ('my_model');
2 Add a reaction object and verify that the Active property setting is 'true' or 1.

reactionObj = addreaction (modelObj, 'a + b -> c + d');
get (reactionObj, 'Active')

MATLAB returns:

ans =

1
3 Set the Active property to 'false' and verify.

set (reactionObj, 'Active', false);
get (reactionObj, 'Active')

MATLAB returns:

ans =

0

See Also
addconfigset, addreaction, addrule, Event object, Reaction object,RepeatDose
object, Rule object , ScheduleDose object, Variant object,

 Active

3-7

Amount
Amount of dose

Note The property of a ScheduleDose object is a column vector instead of a row vector. For details,
see “Compatibility Considerations”.

Description
Amount is a property of a RepeatDose or ScheduleDose object. It defines an increase in the amount of
a SimBiology species that receives a dose.

A RepeatDose object defines a series of doses. Each dose is the same amount, as defined by the
Amount property, and given at equally spaced times, as defined by the Interval property.

The number of injections in the series, excluding the initial injection, is defined by the RepeatCount
property, and the Rate property defines how fast each dose is given.

For RepeatDose objects, you can parameterize the property by setting it to the name of a model-
scoped parameter that is not being modified by a repeated assignment rule, an algebraic rule, or a
rate rule. However, the parameter can be modified by an event.

A ScheduleDose object defines a series of doses. Each dose can have a different amount, as defined
by an amount array in the Amount property, and given at specified times, as defined by a time array
in the Time property. A rate array in the Rate property defines how fast each dose is given. At each
time point in the time array, a dose is given with the corresponding amount and rate.

Characteristics
Applies to Object: RepeatDose, ScheduleDose.
Data type double or character vector (RepeatDose) or double coulmn

(ScheduleDose).
Data values Nonnegative value or name of a model-scoped parameter object. The

default value is 0 (RepeatDose) or 0x1 empty double column vector
(ScheduleDose).

Access Read/write.

Compatibility Considerations
Amount property of ScheduleDose is a column vector
Behavior changed in R2019b

The Amount property of a ScheduleDose object is a column vector instead of a row vector. The
default value is 0x1 empty double column vector, instead of [].

See Also
RepeatDose object | ScheduleDose object

3 Properties

3-8

Topics
“Parameterized and Adaptive Doses”

 Amount

3-9

AmountUnits
Dose amount units

Description
AmountUnits is a property of a RepeatDose or ScheduleDose object. This property defines units
for the Amount property.

If the TargetName property defines a species, then AmountUnits for a dose must be a chemical
amount (for example, milligram, mole, or molecule), not a concentration. To get a list of the defined
units in the library, use the sbioshowunits function. To add a user-defined unit to the list, see
sbioaddtolibrary.

Characteristics
Applies to Objects: RepeatDose, ScheduleDose
Data type Character vector
Data values Units from library with dimensions of amount. Default = '' (empty)
Access Read/write

Note SimBiology uses units including empty units in association with DimensionalAnalysis and
UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, units are not used.
However, SimBiology still performs a minimum level of dimensional analysis to decide whether a
reaction rate is in dimensions of amount/time or concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not empty) must
have consistent dimensions so that SimBiology can perform dimensional analysis. However, the
units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to be true),
SimBiology performs a dimensional analysis and converts everything to consistent units. Hence,
you must specify consistent units, and no units can be empty. If you have a dimensionless
parameter, you must still set its unit to dimensionless.

See Also
ScheduleDose object and RepeatDose object

3 Properties

3-10

AmountUnits
Amount unit used internally during simulation when UnitConversion is on

Description
This property defines the amount unit that SimBiology uses internally during model simulation when
UnitConversion is on. You can set this to any character vector representing an amount unit such as
molecule, mole, or mole with any valid prefix. It can also be a custom unit if it is consistent with
amount as its dimension. The default is <automatic>, which means SimBiology automatically selects
an amount unit for simulation. SimBiology examines the units on all of the states and selects an
amount unit such that AbsoluteTolerance of the states in amount, or amount per volume is at least as
stringent as the simulation absolute tolerance multiplied by the smallest amount unit. This stringency
is relaxed appropriately for states that become large when AbsoluteToleranceScaling is on.

Note It is recommended that you use the default unit (<automatic>) or choose units for states such
that the simulated values are neither too large (greater than 106) or too small (less than 10-6).

However, for some edge cases, you may need to change AmountUnits. Suppose you have a model
with a state that takes on values around 10-12 moles for the entire simulation, and you need to use
mole as its unit. Then it may be appropriate to set AmountUnits to picomole. In this case, the
internal simulation values would be around 1, instead of around 10-12 as in the default case.
AbsoluteTolerance of the simulation is determined using this internal value. Thus by choosing
picomole as the amount unit, you effectively reduce the size of AbsoluteTolerance. Changing the
AmountUnits property is closely related to changing AbsoluteTolerance when considering the
effects on simulation results.

Even when using the default unit, it may be still necessary to change AbsoluteTolerance. For details,
see “Selecting Absolute Tolerance and Relative Tolerance for Simulation”.

If you need to recover the simulation behavior from releases prior to R2015b:

• Set the AmountUnit to mole. However, if the model has quantity units in molecule, set the unit
to molecule instead.

• Set the MassUnits to kilogram.

Tip If you have a custom function and UnitConversion is on (whether or not you are using the default
unit <automatic>), follow the recommendation below.

• Non-dimensionalize the parameters that are passed to the function if they are not already
dimensionless.

Suppose you have a custom function defined as y = f(t) where t is the time in hour and y is the
concentration of a species in mole/liter. When you use this function in your model to define a
repeated assignment rule for instance, define it as: s1 = f(time/t0)*s0, where time is the
simulation time, t0 is a parameter defined as 1.0 hour, s0 is a parameter defined as 1.0 mole/liter,
and s1 is the concentration of a species in mole/liter. Note that time and s1 do not have to be in
the same units as t0 and s0, but they must be dimensionally consistent. For example, the time
and s1 units can be set to minute and picomole/liter, respectively.

 AmountUnits

3-11

Characteristics
Applies to Object: Configset
Data type Character vector
Data values Character vector specifying any amount unit. The default is <automatic>.
Access Read/write for properties of Configset

See Also
Configset object, MassUnits

3 Properties

3-12

BoundaryCondition
Indicate species boundary condition

Description
The BoundaryCondition property indicates whether a species object has a boundary condition.

When the BoundaryCondition of a species is false (default), the species quantity is modified by
reactions, rules, events, and doses. If the BoundaryCondition is true, the species quantity is
modified by rules, events, and doses, but not by reactions.

Set the BoundaryCondition to true when you want the species to participate in a reaction, but do
not want any reactions to modify its quantity.

All SimBiology species are state variables regardless of the BoundaryCondition or
ConstantAmount on page 3-28 property.

More Information

Consider the following two use cases of boundary conditions:

• Modeling receptor-ligand interactions that affect the rate of change of the receptor but not the
ligand. For example, in response to hormone, steroid receptors such as the glucocorticoid
receptor (GR) translocate from the cytoplasm (cyt) to the nucleus (nuc). The hsp90/ hsp70
chaperone complex directs this nuclear translocation [Pratt 2004 on page 3-16]. The natural
ligand for GR is cortisol; the synthetic hormone dexamethasone (dex) is used in place of cortisol in
experimental systems. In this system dexamethasone participates in the reaction but the quantity
of dexamethasone in the cell is regulated using a rule. To simply model translocation of GR you
could use the following reactions:

Formation of the chaperone-receptor complex,

Hsp90_complex + GR_cyt -> Hsp90_complex:GR_cyt

In response to the synthetic hormone dexamethasone (dex), GR moves from the cytoplasm to the
nucleus.

Hsp90_complex:GR_cyt + dex -> Hsp90_complex + GR_nuc + dex

For dex,

 BoundaryCondition = true; ConstantAmount = false

In this example dex is modeled as a boundary condition with a rule to regulate the rate of change
of dex in the system. Here, the quantity of dex is not determined by the rate of the second
reaction but by a rate rule such as

ddex/dt = 0.001

which is specified in the SimBiology software as

dex = 0.001

 BoundaryCondition

3-13

• Modeling the role of nucleotides (for example, GTP, ATP, cAMP) and cofactors (for example, Ca++,
NAD+, coenzyme A). Consider the role of GTP in the activation of Ras by receptor tyrosine kinases.

Ras-GDP + GTP -> Ras-GTP + GDP

For GTP, BoundaryCondition = true; ConstantAmount = true

Model GTP and GDP with boundary conditions, thus making them boundary species. In addition,
you can set the ConstantAmount on page 3-28 property of these species to true to indicate
that their quantity does not vary during a simulation.

Characteristics
Applies to Object: species
Data type boolean
Data values true or false. The default value is false.
Access Read/write

Examples

Simulate a Model with a Boundary Condition for a Species

This example illustrates how to use the BoundaryCondition property of a species so that the
species amount is not modified by the reaction it participates in, but by a user-defined dose object.

Load a sample project.

sbioloadproject radiodecay.sbproj

A SimBiology model named m1 is loaded to the MATLAB Workspace. The model is a simple
radioactive decay model in which two species (x and z) are modified by the following reaction.

m1.Reactions

 SimBiology Reaction Array

 Index: Reaction:
 1 x -> z

Simulate the model and view results before adding any boundary conditions.

[t,x,names] = sbiosimulate(m1);
plot(t,x);
legend(names)
xlabel('Time');
ylabel('Amount');

3 Properties

3-14

Add a RepeatDose object to the model and specify the species to be dosed, dose amount, dose
schedule, and units.

d1 = adddose(m1,'d1','repeat');
set(d1,'TargetName','z','Amount',100.0,'Interval',1.0,'RepeatCount',8);
set(d1,'TimeUnits','second','AmountUnits','molecule');

Set the BoundaryCondition of species z to be true so that the species will be modified by the dose
object d1, but not by the reaction.

set(m1.species(2),'BoundaryCondition',true);

Simulate the model by applying the dose object.

[t2,x2,names] = sbiosimulate(m1,d1);

Plot the results. Notice that the amount of species z is now modified by the repeated dose object, but
not by the reaction.

[t2,x2,names] = sbiosimulate(m1,d1);
plot(t2,x2);
legend(names);
xlabel('Time');
ylabel('Amount');

 BoundaryCondition

3-15

References
Pratt, W.B., Galigniana, M.D., Morishima, Y., Murphy, P.J. (2004), Role of molecular chaperones in
steroid receptor action, Essays Biochem, 40:41-58.

See Also
addrule, addspecies, ConstantAmount, InitialAmount

3 Properties

3-16

BuiltInLibrary
Library of built-in components

Description
BuiltInLibrary is a SimBiology root object property containing all built-in components namely,
unit, unit-prefixes, and kinetic laws that are shipped with the SimBiology product. You cannot add,
modify, or delete components in the built-in library. The BuiltInLibrary property is an object that
contains the following properties:

• Units — contains all units that are shipped with the SimBiology product. You can specify units for
compartment capacity, species amounts and parameter values, to do dimensional analysis and unit
conversion during simulation. You can display the built-in units either by using the command
sbiowhos -builtin -unit, or by accessing the root object.

• UnitPrefixes — contains all unit-prefixes that are shipped with the SimBiology product. You can
specify unit—prefixes in combination with a valid unit for compartment capacity, species amounts
and parameter values, to do dimensional analysis and unit conversion during simulation. You can
display the built-in unit-prefixes either by using the command sbiowhos -builtin -
unitprefix, or by accessing the root object.

• KineticLaws — contains all kinetic laws that are shipped with the SimBiology product. Use the
command sbiowhos -builtin -kineticlaw to see the list of built-in kinetic laws. You can use
built-in kinetic laws when you use the command addkineticlaw to create a kinetic law object for
a reaction object. Refer to the kinetic law by name when you create the kinetic law object, for
example, kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-
Menten');

See “Kinetic Law Definition” on page 3-70 for a definition and more information.

Characteristics
BuiltInLibrary

Applies to Object: root
Data type object
Data values Unit, unit-prefix, and abstract kinetic law objects
Access Read-only

Characteristics for BuiltInLibrary properties:

• Units

Applies to BuiltInLibrary property
Data type unit objects
Data values units
Access Read-only

• UnitPrefixes

 BuiltInLibrary

3-17

Applies to BuiltInLibrary property
Data type unit prefix objects
Data values unit prefixes
Access Read-only

• KineticLaws

Applies to BuiltInLibrary property
Data type Abstract kinetic law object
Data values kinetic laws
Access Read-only

Examples
Example 1

This example uses the command sbiowhos to show the current list of built-in components.

sbiowhos -builtin -kineticlaw
sbiowhos -builtin -unit
sbiowhos -builtin -unitprefix

Example 2

This example shows the current list of built-in components by accessing the root object.

rootObj = sbioroot;
get(rootObj.BuiltinLibrary, 'KineticLaws')
get(rootObj.BuiltinLibrary, 'Units')
get(rootObj.BuiltinLibrary, 'UnitPrefixes')

See Also
Functions — sbioaddtolibrary, sbioremovefromlibrary, sbioroot, sbiounit,
sbiounitprefix

Properties — UserDefinedLibrary

3 Properties

3-18

Capacity
Compartment capacity

Description
The Capacity property indicates the size of the SimBiology compartment object. If the size of the
compartment does not vary during simulation, set the property ConstantCapacity to true.

You can vary compartment capacity using rules or events.

Note Remember to set the ConstantCapacity property to false for varying capacity.

Events cannot result in the capacity having a negative value. Rules could result in the capacity having
a negative value.

The Capacity property and Value property are identical.

Characteristics

Applies to Object: compartment
Data type double
Data values Positive real number. The default value is 1.
Access Read/write

Examples
Add a compartment to a model and set the compartment capacity.

1 Create a model object named my_model.

modelObj = sbiomodel ('comp_model');

2 Add the compartment object named nucleus with a capacity of 0.5.

compartmentObj = addcompartment(modelObj, 'nucleus', 0.5);

See Also
addcompartment | addspecies | CapacityUnits | ConstantCapacity | Value

Topics
“Model Simulation”
“Conservation of Amounts During Simulation”

 Capacity

3-19

CapacityUnits
Compartment capacity units

Description
The CapacityUnits property indicates the unit definition for the Capacity property of a
compartment object. CapacityUnits can be any unit from the units library. To get a list of the
defined units in the library, use the sbioshowunits function. If CapacityUnits changes from one
unit definition to another, the Capacity does not automatically convert to the new units. The
sbioconvertunits function does this conversion. To add a user-defined unit to the list, see
sbioaddtolibrary.

The CapacityUnits property is identical to the Units property.

Characteristics

Applies to Object: compartment
Data type Character vector
Data values Units from library with dimensions of length, area, or volume. Default

= '' (empty).
Access Read/write

Note SimBiology uses units including empty units in association with DimensionalAnalysis and
UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, units are not used.
However, SimBiology still performs a minimum level of dimensional analysis to decide whether a
reaction rate is in dimensions of amount/time or concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not empty) must
have consistent dimensions so that SimBiology can perform dimensional analysis. However, the
units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to be true),
SimBiology performs a dimensional analysis and converts everything to consistent units. Hence,
you must specify consistent units, and no units can be empty. If you have a dimensionless
parameter, you must still set its unit to dimensionless.

Examples
1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');
2 Add a compartment object named cytoplasm with a capacity of 0.5.

compObj = addcompartment (modelObj, 'cytoplasm', 0.5);

3 Properties

3-20

3 Set the CapacityUnits to femtoliter, and verify.

set (compObj,'CapacityUnits', 'femtoliter');
get (compObj,'CapacityUnits')

MATLAB returns:

ans =

femtoliter

See Also
InitialAmount, sbioaddtolibrary, sbioconvertunits, sbioshowunits, ValueUnits

 CapacityUnits

3-21

Compartments
Array of compartments in model or compartment

Description
Compartments shows you a read-only array of SimBiology compartment objects in the model object
and the compartment object. In the model object, the Compartments property indicates all the
compartments in a Model object as a flat list. In the compartment object, the Compartments
property indicates other compartments that are referenced within the compartment. The two
instances of Compartments are illustrated in “Examples” on page 3-22.

You can add a compartment object using the method addcompartment.

Characteristics
Applies to Objects: compartment, model
Data type Array of compartment objects
Data values Compartment object. Default is [] (empty).
Access Read-only

Examples
1 Create a model object named modelObj.

modelObj = sbiomodel('cell');
2 Add two compartments to the model object.

compartmentObj1 = addcompartment(modelObj, 'nucleus');
compartmentObj2 = addcompartment(modelObj, 'mitochondrion');

3 Add a compartment to one of the compartment objects.

compartmentObj3 = addcompartment(compartmentObj2, 'matrix');
4 Display the Compartments property in the model object.

get(modelObj, 'Compartments')

SimBiology Compartment Array

 Index: Name: Capacity: CapacityUnits:
 1 nucleus 1
 2 mitochondrion 1
 3 matrix 1

5 Display the Compartments property in the compartment object.

get(compartmentObj2, 'Compartments')

SimBiology Compartment - matrix

 Compartment Components:

3 Properties

3-22

 Capacity: 1
 CapacityUnits:
 Compartments: 0
 ConstantCapacity: true
 Owner: mitochondrion
 Species: 0

See Also
addcompartment, addreaction, addspecies, Compartment object

 Compartments

3-23

CompileOptions
Dimensional analysis and unit conversion options

Description
The SimBiology CompileOptions property is an object that defines the compile options available for
simulation; you can specify whether dimensional analysis and unit conversion is necessary for
simulation. Compile options are checked during compile time. The compile options object can be
accessed through the CompileOptions property of the configset object. Retrieve
CompileOptions object properties with the get function and configure the properties with the set
function.

Property Summary

DefaultSpeciesDimension Dimension of species name in expression
DimensionalAnalysis Perform dimensional analysis on model
Type Display SimBiology object type
UnitConversion Perform unit conversion

Characteristics

Applies to Object: configset
Data type Object
Data values Compile-time options
Access Read-only

Examples
1 Retrieve the configset object of modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

2 Retrieve the CompileOptions object (optionsObj) from the configsetObj.

optionsObj = get(configsetObj, 'CompileOptions');

Compile Settings:

 UnitConversion: false
 DimensionalAnalysis: true

See Also
get, set

3 Properties

3-24

Composition
Unit composition

Description
The Composition property holds the composition of a unit object. The Composition property
shows the combination of base and derived units that defines the unit. For example, molarity is the
name of the unit and the composition is mole/liter. Base units are the set of units used to define all
unit quantity equations. Derived units are defined using base units or mixtures of base and derived
units.

Valid physical quantities for reaction rates are amount/time, mass/time, or concentration/time.

Characteristics

Applies to Object: Unit
Data type Character vector
Data values Valid combination of units and prefixes from the library. Default is

'' (empty).
Access Read/write

Examples
This example shows you how to create a user-defined unit, add it to the user-defined library, and
query the Composition property.

1 Create a unit for the rate constants of a second-order reaction.

unitObj = sbiounit('secondconstant', '1/molarity*second', 1);

2 Query the Composition property.

get(unitObj, 'Composition')

ans =

1/molarity*second

3 Change the Composition property.

set(unitObj, 'Composition', 'liter/mole*second'))

ans =

liter/mole*second

4 Add the unit to the user-defined library.

sbioaddtolibrary(unitObj);

 Composition

3-25

See Also
get, Multiplier, sbiounit, set

3 Properties

3-26

Constant
Specify variable or constant species amount, parameter value, or compartment capacity

Description
The Constant property is an alias for the following existing properties.

• ConstantAmount
• ConstantCapacity
• ConstantValue

Characteristics
Applies to Object: species, parameter, compartment
Data type boolean
Data values true or false.
Access Read/write

See Also
addspecies | BoundaryCondition | ConstantAmount | ConstantCapacity | ConstantValue |
StatesToLog

Topics
“Model Simulation”
“Conservation of Amounts During Simulation”

Introduced in R2019b

 Constant

3-27

ConstantAmount
Specify variable or constant species amount

Description
The ConstantAmount property indicates whether the quantity of the species object can vary during
the simulation. ConstantAmount can be either true or false. If ConstantAmount is true, the
quantity of the species cannot vary during the simulation. By default, ConstantAmount is false and
the quantity of the species can vary during the simulation. If ConstantAmount is false, the
quantity of the species can be determined by reactions and rules.

The property ConstantAmount is for species objects; the property ConstantValue on page 3-
31 is for parameter objects.

Note When you want the species to participate in a reaction, but do not want any reactions to modify
its quantity, set its BoundaryCondition to true, and ConstantAmount to false.

More Information

The following is an example of modeling species as constant amounts:

Modeling the role of nucleotides (GTP, ATP, cAMP) and cofactors (Ca++, NAD+, coenzyme A). Consider
the role of GTP in the activation of Ras by receptor tyrosine kinases.

Ras-GDP + GTP -> Ras-GTP + GDP

Model GTP and GDP with constant amount set to true. In addition, you can set the
BoundaryCondition of these species to true, thus making them boundary species.

Characteristics
Applies to Object: species
Data type boolean
Data values true or false. The default value is false.
Access Read/write

Examples
1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');
2 Add a species object and verify that the ConstantAmount property setting is 'false' or 0.

speciesObj = addspecies (modelObj, 'glucose');
get (speciesObj, 'ConstantAmount')

MATLAB returns:

3 Properties

3-28

 ans =

 0
3 Set the constant amount to 'true' and verify.

set (speciesObj, 'ConstantAmount', true);
get (speciesObj, 'ConstantAmount')

MATLAB returns:

ans =

 1

See Also
addspecies, BoundaryCondition

 ConstantAmount

3-29

ConstantCapacity
Specify variable or constant compartment capacity

Description
The ConstantCapacity property indicates whether the capacity of the compartment object can vary
during the simulation. ConstantCapacity can be either true (1) or false (0). If
ConstantCapacity is true, the quantity of the compartment cannot vary during the simulation. By
default, ConstantCapacity is true and the quantity of the compartment cannot vary during the
simulation. If ConstantCapacity is false, the quantity of the compartment can be determined by
rules and events.

Characteristics

Applies to Object: compartment
Data type boolean
Data values true or false. The default value is true.
Access Read/write

Examples
Add a compartment to a model and check the ConstantCapacity property of the compartment.

1 Create a model object named comp_model.

modelObj = sbiomodel ('comp_model');

2 Add the compartment object named nucleus with a capacity of 0.5.

compartmentObj = addcompartment(modelObj, 'nucleus', 0.5);

3 Display the ConstantCapacity property.

get(compartmentObj, 'ConstantCapacity')

ans =

 1

See Also
addcompartment | ConstantAmount | ConstantValue

Topics
“Model Simulation”
“Conservation of Amounts During Simulation”

3 Properties

3-30

ConstantValue
Specify variable or constant parameter value

Description
The ConstantValue property indicates whether the value of a parameter can change during a
simulation. Enter either true (value is constant) or false (value can change).

You can allow the value of the parameter to change during a simulation by specifying a rule that
changes the Value property of the parameter object.

The property ConstantValue is for parameter objects; the property ConstantAmount is for species
objects.

More Information

As an example, consider feedback inhibition of an enzyme such as aspartate kinase by threonine.
Aspartate kinase has three isozymes that are independently inhibited by the products of downstream
reactions (threonine, homoserine, and lysine). Although threonine is made through a series of
reactions in the synthesis pathway, for illustration, the reactions are simplified as follows:

Aspartic acid aspartate kinase β− Aspartylphosphate
β− Aspartylphosphate Threonine

To model inhibition of aspartate kinase by threonine, you could use a rule like the algebraic rule
below to vary the rate of the above reaction and simulate inhibition. In the rule, the rate constant for
the above reaction is denoted by k_aspartate_kinase and the quantity of threonine is threonine.

 k_aspartate_kinase -(1/threonine)

Characteristics
Applies to Object: parameter
Data type boolean
Data values true or false. The default value is 'true'.
Access Read/write

Examples
1 Create a model object.

modelObj = sbiomodel ('my_model');
2 Add a parameter object.

parameterObj = addparameter (modelObj, 'kf');
3 Change the ConstantValue property of the parameter object from default (true) to false and

verify.

 ConstantValue

3-31

MATLAB returns 1 for true and 0 for false.

set (parameterObj, 'ConstantValue', false);
get(parameterObj, 'ConstantValue')

MATLAB returns:

ans =

 0

See Also
addparameter

3 Properties

3-32

Content
Contents of variant object

Description
The Content property contains the data for the variant object. Content is a cell array with the
structure {'Type', 'Name', 'PropertyName', 'PropertyValue'}. You can store values for
species InitialAmount, parameter Value, and compartment Capacity, in a variant object.

For more information about variants, see Variant object.

Characteristics
Applies to Object: variant
Data type cell array
Data values Default value is [] (empty).
Access Read/write

Examples
1 Create a model containing three species in one compartment.

modelObj = sbiomodel('mymodel');
compObj = addcompartment(modelObj, 'comp1');
A = addspecies(compObj, 'A');
B = addspecies(compObj, 'B');
C = addspecies(compObj, 'C');

2 Add a variant object that varies the species' InitialAmount property.
variantObj = addvariant(modelObj, 'v1');
addcontent(variantObj, {{'species','A', 'InitialAmount', 5}, ...
{'species', 'B', 'InitialAmount', 10}});
% Display the variant
variantObj

SimBiology Variant - v1 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 species A InitialAmount 5
 2 species B InitialAmount 10

3 Append data to the Content property.
addcontent(variantObj, {'species', 'C', 'InitialAmount', 15});

SimBiology Variant - v1 (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 species A InitialAmount 5
 2 species B InitialAmount 10
 3 species C InitialAmount 15

4 Remove a species from the Content property.

rmcontent(variantObj, 3);

 Content

3-33

5 Replace the data in the Content property.
set(variantObj, 'Content', {'species', 'C', 'InitialAmount', 15});

See Also
addcontent, rmcontent, sbiovariant

3 Properties

3-34

CovariateLabels
Identify covariate columns in data set

Description
CovariateLabels is a property of the PKData object. It specifies the column in DataSet on page 3-
41 that contains the covariate data.

Characteristics
Applies to Object: PKData
Data type Character vector or cell array of character vectors
Data values Column headers from imported data set
Access Read/write

See Also
PKData object

 CovariateLabels

3-35

CovariateLabels (CovariateModel)
Labels for covariates in CovariateModel object

Description
The CovariateLabels property is a cell array of character vectors specifying the labels for the
covariates in the Expression on page 3-68 property of a CovariateModel object.

Characteristics
Applies to Object: CovariateModel on page 2-173
Data type Cell array of character vectors
Data values Labels for the covariates in the Expression on

page 3-68 property
Access Read only

See Also
CovariateModel on page 2-173 | Expression on page 3-68

3 Properties

3-36

Data
Store simulation data

Description
The Data property contains the simulation data stored in the SimData object.

This property contains all data logged during a simulation, including species amounts, parameter
values, and sensitivities. The property is an m x n array, where m is the number of time steps in the
simulation and n is the number of quantities logged. The rows of the array are labeled by the time
points in the Time property, and the columns are labeled by the metadata in the DataInfo property.

Characteristics
Applies to Object: SimData
Data type double
Data values Default value is [] (empty).
Access Read-only

See Also
DataInfo, ModelName

 Data

3-37

DataCount
Numbers of species, parameters, sensitivities

Description
The DataCount property shows how many species, parameters, and sensitivities are logged in a
SimData object. It is a MATLAB structure with the fields Species, Parameter, and Sensitivity.
The information in this property is redundant with the DataInfo property and is there to give you a
convenient means to access the information.

Characteristics
Applies to Object: SimData
Data type struct
Data values Default value for each field is 0.
Access Read-only

See Also
StopTime

3 Properties

3-38

DataInfo
Metadata labels for simulation data

Description
The DataInfo property contains the metadata that label the columns of the SimData object array. It
is an n x 1 cell array of structures. The ith cell contains metadata labeling the ith column of the
SimData object array.

The possible types of structures are as follows.

Type Fields
Species Type: species

Name:
Compartment:
Units:

Parameter Type: parameter
Name:
Reaction: <name of reaction that a parameter is scoped to,
 or '' if parameter is scoped to model>
Units:

Sensitivity Type: sensitivity
Name: <for example: d[x]/d[y]_0>
OutputType: <The type of the sensitivity output,
 either 'species' or 'parameter'>
OutputName: <The name of the sensitivity output>
OutputQualifier: <The compartment or reaction for
 the sensitivity output, for
 species or parameters, respectively>
InputType: <The type of the sensitivity input,
 either 'species' or 'parameter'>
InputName: <The name of the sensitivity input>
InputQualifier: <The compartment or reaction for
 the sensitivity input, for
 species or parameters, respectively>
Units:

Characteristics

Applies to Object: SimData
Data type n x 1 cell array of structs
Data values Default value is 0x1 cell array.
Access Read-only

See Also
StopTime

 DataInfo

3-39

DataNames
Show names in SimData object

Description
The DataNames property holds the names that label the columns of the data matrix in the Data
property. The property contains an n-by-1 cell array of character vectors. The software provides this
information for your convenience.

Characteristics
Applies to Object: SimData
Data type Cell array of character vectors
Data values Default value is 0x1 cell array.
Access Read-only

See Also
StopTime

3 Properties

3-40

DataSet
Dataset object containing imported data

Description
DataSet is a property of the PKData object. It contains the imported data set. The PKData object
constructor (PKData) assigns the specified data set to its DataSet property during construction.

Characteristics
Applies to Object: PKData
Data type dataset object
Data values Variable containing dataset object
Access Read-only

See Also
PKData object

 DataSet

3-41

DefaultSpeciesDimension
Dimension of species name in expression

Description
The DefaultSpeciesDimension property specifies how SimBiology interprets species names in
expressions (namely reaction rate, rule, or event expressions). The valid property values are
substance or concentration. If you specify InitialAmountUnits, SimBiology interprets species
names appearing in expressions as concentration or substance amount according to the units
specified, regardless of the value in DefaultSpeciesDimension. Thus, if
DefaultSpeciesDimension is concentration and you specify species units as molecule,
SimBiology interprets species names in expressions as substance. This interpretation applies even
when DimensionalAnalysis is off.

You can find DefaultSpeciesDimension in the CompileOptions property.

When you set DefaultSpeciesDimension to substance, if you do not specify units, SimBiology
interprets species names appearing in expressions as substance amounts, and does not scale by
compartment capacity. To include a species concentration in an expression, divide by the appropriate
compartment capacity in the expression. To specify compartment capacity in an expression enter the
compartment name.

When you set DefaultSpeciesDimension to concentration, SimBiology interprets species
names appearing in expressions as concentrations, and scales by compartment capacity in the
expressions. To include a species amount in an expression, multiply by the species name by the
appropriate compartment name in the expression.

For information on dimensional analysis for reaction rates, see “How Reaction Rates Are Evaluated”.

Characteristics
Applies to Object: CompileOptions (in configset object)
Data type Character vector
Data values concentration or substance. Default value is concentration.
Access Read/write

See Also
CompileOptions, DimensionalAnalysis, get, getconfigset, sbiosimulate, set

3 Properties

3-42

DependentVarLabel
Identify dependent variable column in data set

Description
DependentVarLabel is a property of a PKData object. It specifies the column(s) in DataSet on page
3-41 that contain the dependent variable(s), for example, measured response(s). The column must
contain numeric values, and cannot contain Inf or –Inf.

Characteristics
Applies to Object: PKData
Data type Character vector or cell array of character vectors
Data values Column header from an imported data set
Access Read/write

See Also
PKData object

 DependentVarLabel

3-43

DependentVarUnits
Response units in PKData object

Description
DependentVarUnits is a property of a PKData object. It specifies the units for the column(s)
containing the dependent variable(s) (responses) in the imported data set. If unit conversion is on,
plot results in the SimBiology desktop show the units specified in DependentVarUnits.

To get a list of units, use the sbioshowunits on page 1-256 function.

Characteristics
Applies to Object: PKData
Data type Character vector or cell array of character vectors
Data values Units from the units library. Default is an empty cell array.

Tip If there are no units associated with the dependent variable(s) in
your data set, you can set this property to a cell array of empty
character vectors, or simply an empty cell array.

Access Read/write

See Also
DependentVarLabel, PKData object

3 Properties

3-44

DimensionalAnalysis
Perform dimensional analysis on model

Description
The DimensionalAnalysis property specifies whether to perform dimensional analysis on the
model before simulation. It is a property of the CompileOptions object. CompileOptions holds the
model's compile time options and is the object property of the configset object. When
DimensionalAnalysis is set to true, the SimBiology software checks whether the physical
quantities of the units involved in reactions and rules, match and are applicable.

For example, consider a reaction a + b —> c. Using mass action kinetics, the reaction rate is
defined as a*b*k, where k is the rate constant of the reaction. If you specify that initial amounts of a
and b are 0.01M and 0.005M respectively, then units of k are 1/(M*second). If you specify k with
another equivalent unit definition, for example, 1/[(moles/liter)*second],
DimensionalAnalysis checks whether the physical quantities match. If the physical quantities do
not match, you see an error and the model is not simulated.

Unit conversion requires dimensional analysis. If DimensionalAnalysis is off, and you turn
UnitConversion on, then DimensionalAnalysis is turned on automatically. If UnitConversion
is on and you turn off DimensionalAnalysis, then UnitConversion is turned off automatically.

If you have MATLAB function calls in your model, dimensional analysis ignores any expressions
containing function calls and generates a warning.

Valid physical quantities for reaction rates are amount/time, mass/time, or concentration/time.

Characteristics
Applies to Object: CompileOptions (in configset object)
Data type boolean
Data values true or false. Default value is true.
Access Read/write

Note SimBiology allows exponentiation of any dimensionless quantity to any dimensionless power.
For example, you can write the following expression if both x and a are dimensionless: (x + 3)^(a
+ 0.5)

Note SimBiology uses units including empty units in association with DimensionalAnalysis and
UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, units are not used.
However, SimBiology still performs a minimum level of dimensional analysis to decide whether a
reaction rate is in dimensions of amount/time or concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not empty) must
have consistent dimensions so that SimBiology can perform dimensional analysis. However, the
units are not converted.

 DimensionalAnalysis

3-45

• When UnitConversion is set to true (which requires DimensionalAnalysis to be true),
SimBiology performs a dimensional analysis and converts everything to consistent units. Hence,
you must specify consistent units, and no units can be empty. If you have a dimensionless
parameter, you must still set its unit to dimensionless.

Tip If you have a custom function and UnitConversion is on, follow the recommendation below.

• Non-dimensionalize the parameters that are passed to the function if they are not already
dimensionless.

Suppose you have a custom function defined as y = f(t) where t is the time in hour and y is the
concentration of a species in mole/liter. When you use this function in your model to define a
repeated assignment rule for instance, define it as: s1 = f(time/t0)*s0, where time is the
simulation time, t0 is a parameter defined as 1.0 hour, s0 is a parameter defined as 1.0 mole/liter,
and s1 is the concentration of a species in mole/liter. Note that time and s1 do not have to be in
the same units as t0 and s0, but they must be dimensionally consistent. For example, the time
and s1 units can be set to minute and picomole/liter, respectively.

Examples
This example shows how to retrieve and set DimensionalAnalysis from the default true to false
in the default configuration set in a model object.

1 Import a model.

modelObj = sbmlimport('oscillator')

SimBiology Model - Oscillator

 Model Components:
 Models: 0
 Parameters: 0
 Reactions: 42
 Rules: 0
 Species: 23

2 Retrieve the configset object of the model object.

configsetObj = getconfigset(modelObj)

 Configuration Settings - default (active)
 SolverType: ode15s
 StopTime: 10.000000

 SolverOptions:
 AbsoluteTolerance: 1.000000e-006
 RelativeTolerance: 1.000000e-003

 RuntimeOptions:
 StatesToLog: all

 CompileOptions:
 UnitConversion: true
 DimensionalAnalysis: true

3 Properties

3-46

3 Retrieve the CompileOptions object.

optionsObj = get(configsetObj,'CompileOptions')

Compile Settings:

 UnitConversion: true
 DimensionalAnalysis: true

4 Assign a value of false to DimensionalAnalysis.

 set(optionsObj,'DimensionalAnalysis', false)

See Also
get, getconfigset, sbiosimulate, set

 DimensionalAnalysis

3-47

Dosed
Dosed object name

Description
Dosed is a property of the PKModelMap object. It specifies the name(s) of species object(s) that
receive an input, such as a drug in a compartment or a ligand.

When dosing multiple compartments, a one-to-one relationship must exist between the number and
order of elements in the Dosed property and the DosingType property.

Characteristics
Applies to Object: PKModelMap
Data type Character vector or cell array of character vectors
Data values Name of a species object or empty. Default is an empty cell array.
Access Read/write

See Also
DosingType, Estimated, Observed, PKModelMap object

3 Properties

3-48

DoseLabel
Dose column in data set

Description
DoseLabel is a property of the PKData object. DoseLabel specifies the column that contains that
contains the dosing information, in DataSet on page 3-41. The column must contain positive values,
and cannot contain Inf or –Inf.

Characteristics
Applies to Object: PKData
Data type Character vector or array of character vectors
Data values Column headers from imported data set
Access Read/write

See Also
PKData object, sbionmimport, sbionmfiledef

 DoseLabel

3-49

DoseUnits
Dose units in PKData object

Description
The DoseUnits property indicates the units for dose values in the PKData object. Dose units must
have dimensions of amount or mass. The length of DoseUnits must be the same as DoseLabel. For
example, if the DoseLabel property defines two columns containing dosing information, DoseUnits
must also define units for both columns. If unit conversion is on, dose and rate units must be
consistent with each other (that is in terms of amount or mass) and must be consistent with the
species object that is being dosed.

To get a list of units, use the sbioshowunits on page 1-256 function.

Characteristics
Applies to Object: PKData
Data type Character vector or cell array of character vectors
Data values Units from units library. Default is '' (empty).
Access Read/write

See Also
DoseLabel, PKData object

3 Properties

3-50

DosingType
Drug dosing type in compartment

Description
DosingType is a property of the PKCompartment and PKModelMap objects. It specifies the type of
dosing of a drug in a compartment. You can only dose one compartment in the model at any given
time. For a description of the types of dosing supported, the model components created for each type
of dosing, and the parameters to estimate, see “Dosing Types”.

Characteristics
Applies to Objects: PKCompartment, PKModelMap
Data type Character vector or cell array of character vectors
Data values '', 'Bolus', 'Infusion', 'ZeroOrder', 'FirstOrder'
Access Read/write

See Also
EliminationType, PKCompartment object, PKModelMap object

 DosingType

3-51

DurationParameterName
Parameter specifying length of time to administer a dose

Description
DurationParameterName is a property of a RepeatDose or ScheduleDose object.

Specify the name of a parameter object that is scoped to a model. This parameter defines the length
of time it takes to administer a dose.

you can parameterize the property by setting it to the name of a model-scoped parameter that is not
being modified by a repeated assignment rule, an algebraic rule, or a rate rule. However, the
parameter can be modified by an event.

Note If you set the DurationParameterName property of a dose, you must also specify the Amount
property of the dose, and set the Rate property to 0. This is because the rate is calculated from the
amount and duration.

Characteristics
Applies to Objects: RepeatDose, ScheduleDose.
Data type Character vector.
Data values Name of a model-scoped parameter object. The default value is an empty

character vector ''.
Access Read/write.

Examples
Estimate Time Lag and Duration of a Dose

This example shows how to estimate the time lag before a bolus dose was administered and the
duration of the dose using a one-compartment model.

Load a sample data set.

load lagDurationData.mat

Plot the data.

plot(data.Time,data.Conc,'x')
xlabel('Time (hour)')
ylabel('Conc (milligram/liter)')

3 Properties

3-52

Convert to groupedData.

gData = groupedData(data);
gData.Properties.VariableUnits = {'hour','milligram/liter'};

Create a one-compartment model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Add two parameters that represent the time lag and duration of a dose. The lag parameter specifies
the time lag before the dose is administered. The duration parameter specifies the length of time it
takes to administer a dose.

lagP = addparameter(model,'lagP');
lagP.ValueUnits = 'hour';
durP = addparameter(model,'durP');
durP.ValueUnits = 'hour';

Create a dose object. Set the LagParameterName and DurationParameterName properties of the
dose to the names of the lag and duration parameters, respectively. Set the dose amount to 10
milligram which was the amount used to generate the data.

 DurationParameterName

3-53

dose = sbiodose('dose');
dose.TargetName = 'Drug_Central';
dose.StartTime = 0;
dose.Amount = 10;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.LagParameterName = 'lagP';
dose.DurationParameterName = 'durP';

Map the model species to the corresponding data.

responseMap = {'Drug_Central = Conc'};

Specify the lag and duration parameters as parameters to estimate. Log-transform the parameters.
Initialize them to 2 and set the upper bound and lower bound.

paramsToEstimate = {'log(lagP)','log(durP)'};
estimatedParams = estimatedInfo(paramsToEstimate,'InitialValue',2,'Bounds',[1 5]);

Perform parameter estimation.

fitResults = sbiofit(model,gData,responseMap,estimatedParams,dose,'fminsearch')

fitResults =
 OptimResults with properties:

 ExitFlag: 1
 Output: [1x1 struct]
 GroupName: One group
 Beta: [2x4 table]
 ParameterEstimates: [2x4 table]
 J: [11x2 double]
 COVB: [2x2 double]
 CovarianceMatrix: [2x2 double]
 R: [11x1 double]
 MSE: 0.0024
 SSE: 0.0213
 Weights: []
 LogLikelihood: 18.7511
 AIC: -33.5023
 BIC: -32.7065
 DFE: 9
 DependentFiles: {1x2 cell}
 EstimatedParameterNames: {'lagP' 'durP'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'fminsearch'

Display the result.

fitResults.ParameterEstimates

ans=2×4 table
 Name Estimate StandardError Bounds
 ________ ________ _____________ ______

 {'lagP'} 1.986 0.0051568 1 5
 {'durP'} 1.527 0.012956 1 5

3 Properties

3-54

plot(fitResults)

See Also
RepeatDose object | ScheduleDose object

Topics
“Parameterized and Adaptive Doses”

 DurationParameterName

3-55

EliminationType
Drug elimination type from compartment

Description
EliminationType is a property of the PKCompartment object. It specifies the type of elimination of
a drug from a compartment. For a description of the types of elimination supported, the model
components created for each type of elimination, and the parameters to estimate, see “Elimination
Types”.

Characteristics
Applies to Object: PKCompartment
Data type Character vector
Data values 'Linear', 'Linear-Clearance', 'Enzymatic', and ''
Access Read/write

See Also
addCompartment, DosingType, PKCompartment object

3 Properties

3-56

ErrorTolerance
Specify explicit or implicit tau error tolerance

Description
The ErrorTolerance property specifies the error tolerance for the explicit tau and implicit tau
stochastic solvers. It is a property of the SolverOptions object. SolverOptions is a property of
the configset object. The explicit and implicit tau solvers automatically chooses a time interval
(tau) such that the relative change in the propensity function for each reaction is less than the user-
specified error tolerance.

A propensity function describes the probability that the reaction will occur in the next smallest time
interval, given the conditions and constraints.

If the error tolerance is too large, there may not be a solution to the problem and that could lead to
an error. If the error tolerance is small, the solver will take more steps than when the error tolerance
is large leading to longer simulation times. The error tolerance should be adjusted depending upon
the problem, but a good value for the error tolerance is between 1 % to 5 %.

Characteristics
Applies to Object: SolverOptions
Data type double
Data values >0, <1. The default is 3e-2.
Access Read/write

Examples
This example shows how to change ErrorTolerance settings.

1 Retrieve the configset object from the modelObj and change the SolverType to expltau.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);
set(configsetObj, 'SolverType', 'expltau')

2 Change the ErrorTolerance to 1e-8.

set(configsetObj.SolverOptions, 'ErrorTolerance', 5.0e-2);
get(configsetObj.SolverOptions, 'ErrorTolerance')

ans =

 5.000000e-002

See Also
LogDecimation, RandomState

 ErrorTolerance

3-57

Estimated
Names of parameters to estimate

Description
Estimated is a property of the PKModelMap object. It specifies the name(s) of the object(s) to
estimate. Specify the name(s) of species, compartment, or parameter object(s) that are scoped to a
model.

Note If you specify a species object, you are estimating the InitialAmount property of the species
object.

Characteristics
Applies to Object: PKModelMap
Data type Character vector or cell array of character vectors
Data values Name of a species, compartment, or parameter object or empty. Default is an

empty cell array.
Access Read/write

See Also
Dosed, InitialAmount, Observed, PKModelMap object

3 Properties

3-58

EventFcns
Event expression

Description
Property of the event object that defines what occurs when the event is triggered. Specify a cell array
of character vectors.

EventFcns can be any MATLAB assignment or expression that defines what is executed when the
event is triggered. All EventFcn expressions are assignments of the form 'objectname =
expression', where objectname is the name of a valid SimBiology object.

For more information about how SimBiology handles events, see “How Events Are Evaluated”. For
examples of event functions, see “Specifying Event Functions”.

Characteristics

Applies to Object: event
Data type Cell array of character vectors
Data values Expressions for EventFcn (default is an empty character vector '')
Access Read/write

Tip If UnitConversion is on and your model has any event, follow the recommendation below.

Non-dimensionalize any parameters used in the event Trigger if they are not already dimensionless.
For example, suppose you have a trigger x > 1, where x is the species concentration in mole/liter.
Non-dimensionalize x by scaling (dividing) it with a constant such as x/x0 > 1, where x0 is a
parameter defined as 1.0 mole/liter. Note that x does not have to have the same unit as the constant
x0, but must be dimensionally consistent with it. For example, the unit of x can be picomole/liter
instead of mole/liter.

Examples
1 Create a model object, and then add an event object.

modelObj = sbmlimport('oscillator');
eventObj = addevent(modelObj, 'time>= 5', 'OpC = 200');

2 Set the EventFcns property of the event object.

set(eventObj, 'EventFcns', {'pA = OpA','mA = pol'});

3 Get the EventFcns property.

get(eventObj, 'EventFcns')

 EventFcns

3-59

See Also
Event, Trigger

3 Properties

3-60

EventMode
Determine how events that change dose parameters affect in-progress dosing

Description
EventMode is a property of RepeatDose and ScheduleDose objects. This property determines
whether to continue the ongoing dose, that is, a dose with a nondefault infusion rate or dose duration,
to completion when an event changes a parameter that is referenced by a dose property. Dose
properties that you can parameterize are: Amount, Rate, Interval, StartTime, RepeatCount,
LagParameterName, and DurationParameterName.

If EventMode is set to 'continue', the ongoing dose continues to completion when the event
changes dose parameters, and updated parameters affect only subsequent doses. If EventMode is set
to 'stop', the ongoing dose stops immediately when dose parameters change, and subsequent doses
use the updated parameters.

To decide whether a parameter has been changed, SimBiology compares the old value of a parameter
to the new value. For instance, the following event does not change the doseStartTime parameter
value: addevent(model,'time >= 5','doseStartTime = doseStartTime * 1').

Any change in dose parameters affects the schedule of doses generated. If the simulation reaches a
time point for a scheduled dose, the dose is applied. If an event changes dose parameters, SimBiology
updates the dose schedule, ignores any doses scheduled before the current simulation time, and
applies only the subsequent doses. Suppose that you have parameterized the StartTime property of
a dose. Updating the parameter with an event causes to regenerate the dose schedule. If there are
any previously-scheduled doses before the current simulation time, they are ignored.

By default, SimBiology uses the following MATLAB expression to generate a list of dose times (dose
schedule) whenever an event changes any dose parameter, using the updated parameter values:

scheduledDoseTimes = StartTime + (0:RepeatCount) * Interval + Lag,

where StartTime, RepeatCount, and Interval are properties of the dose object. Lag is the time lag
parameter for a dose, referenced by the LagParameterName property.

Characteristics

Applies to Objects: RepeatDose, ScheduleDose
Data type Character vector
Data values 'stop' (default) or 'continue'
Access Read/write

Examples
Change Dose Behavior In Response to Changes in Model Parameters

Create a simple model with linear elimination, an amount parameter, and a rate parameter.

 EventMode

3-61

model = sbiomodel('simple model');
compartment = addcompartment(model,'Central',1);
compartment.CapacityUnits = 'liter';
species = addspecies(model,'drug');
species.InitialAmountUnits = 'milligram';

% Elimination rate
elimParam = addparameter(model,'kel',0.1);
elimParam.ValueUnits = '1/hour';

% Elimination reaction
reaction = addreaction(model,'drug -> null');
reaction.ReactionRate = 'kel*drug';

% Add amount and rate parameters
amountParam = addparameter(model,'A',50);
amountParam.ConstantValue = false;
amountParam.ValueUnits = 'milligram'

amountParam =
 SimBiology Parameter Array

 Index: Name: Value: Units:
 1 A 50 milligram

rateParam = addparameter(model,'R',10);
rateParam.ValueUnits = 'milligram/hour'

rateParam =
 SimBiology Parameter Array

 Index: Name: Value: Units:
 1 R 10 milligram/hour

Create a dose with its Amount and Rate properties set to the amount and rate parameters 'A' and 'R',
respectively.

dose = adddose(model,'adaptive dose','repeat');
dose.Amount = 'A';
dose.Rate = 'R';

Set other dose properties.

dose.TargetName = 'drug';
dose.StartTime = 0;
dose.TimeUnits = 'hour';
dose.Interval = 24;
dose.RepeatCount = 7;

Prepare the configuration set to simulate the model for 7 days.

configset = getconfigset(model);
configset.StopTime = 7*24;
configset.TimeUnits = 'hour';

Add an event to reset the dose amount to 10 at time >= 26.

3 Properties

3-62

event = addevent(model,'time >= 26','A = 10');

Set the EventMode property to 'stop'. This setting causes any ongoing dose event to stop at 26 hours.

dose.EventMode = 'stop';

Simulate the model. The second dose event stops at 26 hours, and the subsequent dose events
continue with the new dose amount of 10.

[time, drugAndAmount] = sbiosimulate(model,dose);
figure
plot(time, drugAndAmount);
legend('drug','A');

Alternatively, you can allow the ongoing dose event to finish before applying the new dose amount by
setting EventMode to 'continue'.

dose.EventMode = 'continue';

Simulate the model. In this case, the second dose event continues to 26 hours.

[time, drugAndAmount] = sbiosimulate(model,dose);
figure
plot(time, drugAndAmount);
legend('drug','A');

 EventMode

3-63

See Also
RepeatDose object | ScheduleDose object

Topics
“Parameterized and Adaptive Doses”

3 Properties

3-64

Events
Contain all event objects

Description
Property to indicate events in a model object. Read-only array of Event objects.

An event defines an action when a defined condition is met. For example, the quantity of a species
may double when the quantity of species B is 100. An event is triggered when the conditions specified
in the event are met by the model. For more information, see “Events” and “Events in SimBiology
Models”.

Add an event to a Model object with the method addevent (model) method and remove an event
with the delete method. See Event for more information.

You can view event object properties with the get command and modify the properties with the set
command.

Characteristics
Applies to Object: model
Data type Array of event objects
Data values Event object. The default is [] (empty).
Access Read-only

Examples
1 Create a model object, and then add an event object.

modelObj = sbmlimport('oscillator')
eventObj = addevent(modelObj, 'time>= 5', 'OpC = 200');

2 Get a list of properties for an event object.

get(modelObj.Events(1));

Or

get(eventObj)

MATLAB displays a list of event properties.

 Active: 1
 Annotation: ''
 EventFcns: {'OpC = 200'}
 Name: ''
 Notes: ''
 Parent: [1x1 SimBiology.Model]
 Tag: ''
 Trigger: 'time >= 5'
 TriggerDelay: 0

 Events

3-65

 TriggerDelayUnits: 'second'
 Type: 'event'
 UserData: []

See Also
EventFcns, Event, Model, Trigger

3 Properties

3-66

Exponent
Exponent value of unit prefix

Description
Exponent shows the value of 10^Exponent that defines the numerical value of the unit prefix Name.
You can use the unit prefix in conjunction with any built-in or user-defined units. For example, for the
unit mole, specify as picomole to use the Exponent, -12.

Characteristics
Applies to Object: Unit prefix
Data type double
Data values Real number. Default is 0.
Access Read/write

Examples
This example shows you how to create a user-defined unit prefix, add it to the user-defined library,
and query the Exponent property.

1 Create a unit prefix.

unitprefixObj1 = sbiounitprefix('peta', 15);
2 Add the unit prefix to the user-defined library.

sbioaddtolibrary(unitprefixObj1);
3 Query the Exponent property.

get(unitprefixObj1, 'Exponent')

ans =

 15

See Also
get, sbioaddtolibrary, sbiounitprefix, set, UnitPrefix object

 Exponent

3-67

Expression (CovariateModel)
Define relationship between parameters and covariates

Description
The Expression property is a character vector or cell array of character vectors, where each
character vector represents the relationship between a parameter and one or more covariates. The
Expression property denotes fixed effects with the prefix theta, and random effects with the prefix
eta.

Each expression must be in the form:
parameterName = relationship

This example of an expression defines the relationship between a parameter (volume) and a
covariate (weight), with fixed effects, but no random effects:
CovModelObj.Expression = {'volume = theta1 + theta2*weight'};

This table illustrates expression formats for some common parameter-covariate relationships.

Parameter-Covariate
Relationship

Expression Format

Linear with random effect Cl = theta1 + theta2*WEIGHT + eta1
Exponential without random
effect

Cl = exp(theta_Cl + theta_Cl_WT*WEIGHT)

Exponential, WEIGHT centered
by mean, has random effect

Cl = exp(theta1 + theta2*(WEIGHT - mean(WEIGHT)) +
eta1)

Exponential, log(WEIGHT), which
is equivalent to power model

Cl = exp(theta1 + theta2*log(WEIGHT) + eta1)

Exponential, dependent on
WEIGHT and AGE, has random
effect

Cl = exp(theta1 + theta2*WEIGHT + theta3*AGE +
eta1)

Inverse of probit, dependent on
WEIGHT and AGE, has random
effect

Cl = probitinv(theta1 + theta2*WEIGHT + theta3*AGE
+ eta1)

Inverse of logit, dependent on
WEIGHT and AGE, has random
effect

Cl = logitinv(theta1 + theta2*WEIGHT + theta3*AGE
+ eta1)

Tip To simultaneously fit data from multiple dose levels, use a CovariateModel object as an input
argument to sbiofitmixed, and omit the random effect (eta) from the Expression property in the
CovariateModel object.

The Expression property must meet the following requirements:

• The expressions are valid MATLAB code.

3 Properties

3-68

• Each expression is linear with a transformation.
• There is exactly one expression for each parameter.
• In each expression, a covariate is used in at most one term.
• In each expression, there is at most one random effect (eta)
• Fixed effect (theta) and random effect (eta) names are unique within and across expressions.

That is, each covariate has its own fixed effect.

Tip Use the getCovariateData on page 2-323 method to view the covariate data when writing
equations for the Expression property of a CovariateModel object.

Tip Use the verify on page 2-870 method to check that the Expression property of a
CovariateModel object meets the conditions described previously.

Characteristics
Applies to Object: CovariateModel on page 2-173
Data type Character vector or cell array of character vectors
Data values parameterName = relationship
Access Read/write

See Also
CovariateModel on page 2-173 | getCovariateData on page 2-323 | verify on page 2-870

Topics
“Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”
“Specify a Covariate Model”

 Expression (CovariateModel)

3-69

Expression
Expression to determine reaction rate equation or expression of observable object

Description
The Expression property can be a property of KineticLaw (or AbstractKineticLaw) object or
an observable object.

For an observable object, the Expression property is a mathematical expression that lets you
perform post-simulation calculations. For details, see Observable.

For a KineticLaw object, the Expression property indicates the mathematical expression that is
used to determine the ReactionRate on page 3-139 property of the reaction object.
Expression is a reaction rate expression assigned by the kinetic law definition used by the reaction.
The kinetic law being used is indicated by the property KineticLawName on page 3-91. You can
configure Expression for user-defined kinetic laws, but not for built-in kinetic laws. Expression is
read only for kinetic law objects.

Note If you set the Expression property to a reaction rate expression that is not continuous and
differentiable, see “Using Events to Address Discontinuities in Rule and Reaction Rate Expressions”
before simulating your model.

Kinetic Law Definition

The kinetic law definition provides a mechanism for applying a specific rate law to multiple reactions.
It acts as a mapping template for the reaction rate. The kinetic law is defined by a mathematical
expression, (defined in the property Expression), and includes the species and parameter variables
used in the expression. The species variables are defined in the SpeciesVariables on page 3-
168 property, and the parameter variables are defined in the ParameterVariables on page 3-
126 property of the kinetic law object.

If a reaction is using a kinetic law definition, the ReactionRate property of the reaction object
shows the result of a mapping from the kinetic law definition. To determine ReactionRate, the
species variables and parameter variables that participate in the reaction rate should be mapped in
the kinetic law for the reaction. In this case, SimBiology software determines the ReactionRate by
using the Expression property of the abstract kinetic law object, and by mapping
SpeciesVariableNames on page 3-166 to SpeciesVariables and
ParameterVariableNames on page 3-124 to ParameterVariables.

For example, the kinetic law definition Henri-Michaelis-Menten has the Expression Vm*S/(Km
+S), where Vm and Km are defined as parameters in the ParameterVariables property of the
abstract kinetic law object, and S is defined as a species in the SpeciesVariable property of the
abstract kinetic law object.

By applying the Henri-Michaelis-Menten kinetic law to a reaction A -> B with Va mapping to
Vm, A mapping to S, and Ka mapping to Km, the rate equation for the reaction becomes Va*A/(Ka+A).

3 Properties

3-70

The exact expression of a reaction using MassAction kinetic law varies depending upon the number
of reactants. Thus, for mass action kinetics the Expression property is set to MassAction because
in general for mass action kinetics the reaction rate is defined as

r = k ∏
i = 1

nr
[Si]mi

where [Si] is the concentration of the ith reactant, mi is the stoichiometric coefficient of [Si], nr is
the number of reactants, and k is the mass action reaction rate constant.

SimBiology software contains some built-in kinetic laws. You can also define your own kinetic laws. To
find the list of available kinetic laws, use the sbiowhos -kineticlaw command (sbiowhos on
page 1-311). You can create a kinetic law definition with the function sbioabstractkineticlaw
and add it to the library using sbioaddtolibrary on page 1-16.

Characteristics
Applies to Objects: abstract kinetic law, kinetic law,

observable
Data type Character vector
Data values Defined by kinetic law definition
Access Read-only in kinetic law object. Read/write in

user-defined kinetic law.

Examples
Example 1

Example with Henri-Michaelis-Menten kinetics

1 Create a model object, and add a reaction object to the model.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Verify that the Expression property for the kinetic law object is Henri-Michaelis-Menten.

get (kineticlawObj, 'Expression')

MATLAB returns:

ans =

Vm*S/(Km + S)
4 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm and Km) and one

species variable (S) that you should set. To set these variables, first create the parameter
variables as parameter objects (parameterObj1, parameterObj2) with names Vm_d, Km_d,
and assign the objects' Parent property value to the kineticlawObj. The species object with
Name a is created when reactionObjis created and need not be redefined.

 Expression

3-71

parameterObj1 = addparameter(kineticlawObj, 'Vm_d');
parameterObj2 = addparameter(kineticlawObj, 'Km_d');

5 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Vm_d' 'Km_d'});
set(kineticlawObj,'SpeciesVariableNames', {'a'});

6 Verify that the reaction rate is expressed correctly in the reaction object ReactionRate
property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Vm_d*a/(Km_d+a)

Example 2

Example with Mass Action kinetics.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');
get(kineticlawObj, 'Expression')

MATLAB returns:

ans =

MassAction

3 Assign the rate constant for the reaction.

set (kineticlawObj, 'ParameterVariablenames', 'k');

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

k*a*b

See Also
KineticLawName, Parameters, ParameterVariableNames, ParameterVariables, ReactionRate,
sbioaddtolibrary, sbiowhos, SpeciesVariables, SpeciesVariableNames

3 Properties

3-72

FixedEffectDescription (CovariateModel)
Descriptions of fixed effects in CovariateModel object

Description
The FixedEffectDescription property is a cell array of character vectors describing the fixed
effects in the Expression on page 3-68 property of a CovariateModel object. Each character
vector describes the role of a fixed effect in the expression equation. For example, in the following
expression equation:

Cl = exp(theta1 + theta2*WEIGHT + theta3*AGE + eta1)

The description for the fixed effect theta1 is 'Cl', which indicates it is the intercept for the
parameter Cl. Also, the description for the fixed effect theta2 is 'Cl/WEIGHT', which indicates it is
the slope of the line that defines the relationship between the parameter Cl and the covariate
WEIGHT.

Characteristics
Applies to Object: CovariateModel on page 2-173
Data type Cell array of character vectors
Data values Description of the roles of the fixed effects in the

Expression on page 3-68 property
Access Read only

See Also
CovariateModel on page 2-173 | Expression on page 3-68 | FixedEffectNames on page 3-74 |
FixedEffectValues on page 3-75

 FixedEffectDescription (CovariateModel)

3-73

FixedEffectNames (CovariateModel)
Names of fixed effects in CovariateModel object

Description
The FixedEffectNames property is a cell array of character vectors specifying the names of the
fixed effects in the Expression on page 3-68 property of a CovariateModel object. Names of fixed
effects are denoted with the prefix theta.

Characteristics
Applies to Object: CovariateModel on page 2-173
Data type Cell array of character vectors
Data values Names of the fixed effects in the Expression on

page 3-68 property. These name are denoted with
the prefix theta.

Access Read only

See Also
CovariateModel on page 2-173 | Expression on page 3-68 | FixedEffectDescription on page
3-73 | FixedEffectValues on page 3-75

3 Properties

3-74

FixedEffectValues (CovariateModel)
Values for initial estimates of fixed effects in CovariateModel object

Description
The FixedEffectValues property is a structure containing one field for each fixed effect in the
Expression on page 3-68 property of a CovariateModel object. Each field contains the value of
the initial estimate for a fixed effect.

Tip You must set this property before using the CovariateModel object as input to sbionlmefit
or sbionlmefitsa. Use the constructDefaultFixedEffectValues on page 2-170 method to
create a structure of fixed-effect initial estimate values, set to a default of zero. Then edit the
structure and use it to modify this property.

Characteristics
Applies to Object: CovariateModel on page 2-173
Data type Structure with one field for each fixed effect
Data values Each field contains a double specifying the value

of the initial estimate for a fixed effect in the
CovariateModel object

Access Read/write

See Also
CovariateModel on page 2-173 | constructDefaultFixedEffectValues on page 2-170 |
Expression on page 3-68 | FixedEffectDescription on page 3-73 | FixedEffectNames on
page 3-74

Topics
“Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”
“Specify a Covariate Model”

 FixedEffectValues (CovariateModel)

3-75

GroupID
Integer identifying each group in data set

Description
GroupID is a property of the PKData object. It is an array of the same length as the DataSet on page
3-41 property containing an integer to identify each group. PKData sets this property during
construction of the PKData object.

Characteristics
Applies to Object: PKData
Data type double
Data values Index value for each group
Access Read-only

See Also
PKData object

3 Properties

3-76

GroupLabel
Identify group column in data set

Description
GroupLabel is a property of the PKData object. It specifies the column in DataSet on page 3-41 that
contains the group identification labels.

Characteristics
Applies to Object: PKData
Data type Character vector
Data values Column header from imported data set
Access Read/write

See Also
PKData object, GroupNames

 GroupLabel

3-77

GroupNames
Unique values from GroupLabel in data set

Description
GroupNames is a property of the PKData object. It contains unique values from the data column
specified by the GroupLabel property. PKData sets this property during construction of the PKData
object.

Characteristics
Applies to Object: PKData
Data type Character vector or cell array of character vectors
Data values Unique values in GroupLabel
Access Read-only

See Also
PKData object, GroupLabel

3 Properties

3-78

HasLag
Lag associated with dose targeting compartment

Description
HasLag is a property of the PKCompartment object. It is a logical indicating if the dose targeting the
compartment has a time lag or not.

Characteristics
Applies to Object: PKCompartment
Data type logical
Data values 1 (true) or 0 (false). Default is 0 (false).
Access Read/write

See Also
addCompartment, DosingType, EliminationType, PKCompartment object

 HasLag

3-79

HasResponseVariable
Compartment drug concentration reported

Description
HasResponseVariable is a property of the PKCompartment object. It is a logical indicating if the
drug concentration in this compartment is reported.

Note The HasResponseVariable property can be true for more than one PKCompartment object
in the model. If you perform a parameter fit on a model, at least one PKCompartment object in the
model must have a HasResponseVariable property set to true.

Characteristics
Applies to Object: PKCompartment
Data type Logical
Data values 1 (true) or 0 (false). Default is 0 (false).
Access Read/write

See Also
addCompartment, DosingType, EliminationType, PKCompartment object

3 Properties

3-80

IndependentVarLabel
Identify independent variable column in data set

Description
IndependentVarLabel is a property of the PKData object. It specifies the column in DataSet on
page 3-41 that contains the independent variable (for example, time).

The column must contain positive values, and cannot contain, NaN, Inf or –Inf.

Characteristics
Applies to Object: PKData
Data type Character vector
Data values Column header from imported data set
Access Read/write

See Also
PKData object

 IndependentVarLabel

3-81

IndependentVarUnits
Time units in PKData object

Description
The IndependentVarUnits property indicates the units for the column containing the independent
variable (time) in the PKData object. If unit conversion is on, plot results in the SimBiology desktop
show the units specified in IndependentVarUnits.

To get a list of units, use the sbioshowunits on page 1-256 function.

Characteristics
Applies to Object: PKData
Data type Character vector
Data values Time units. Default is '' (empty).
Access Read/write

See Also
DependentVarLabel, PKData object

3 Properties

3-82

InitialAmount
Species initial amount

Description
The InitialAmount property indicates the initial quantity of the SimBiology species object.
InitialAmount is the quantity of the species before the simulation starts.

The InitialAmount property and Value property are identical.

Characteristics
Applies to Object: species
Data type double
Data values Positive real number. Default value is 0.
Access Read/write

Examples
Add a species to a model and set the initial amount of the species.

1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');
2 Add the species object named glucose.

speciesObj = addspecies (modelObj, 'glucose');
3 Set the initial amount to 100 and verify.

set (speciesObj, 'InitialAmount',100);
get (speciesObj, 'InitialAmount')

MATLAB returns:

ans =

 100

See Also
Valueaddspecies, InitialAmountUnits

 InitialAmount

3-83

InitialAmountUnits
Species initial amount units

Description
The InitialAmountUnits property indicates the unit definition for the InitialAmount property
of a species object. InitialAmountUnits can be one of the built-in units. To get a list of the defined
units, use the sbioshowunits on page 1-256 function. If InitialAmountUnits changes from one
unit definition to another, InitialAmount does not automatically convert to the new units. The
sbioconvertunits function does this conversion. To add a user-defined unit to the list, use
sbiounit followed by sbioaddtolibrary.

See DefaultSpeciesDimension for more information on specifying dimensions for species quantities.
InitialAmountUnits must have corresponding dimensions to CapacityUnits. For example, if the
CapacityUnits are meter2, then species must be amount/meter2 or amount.

The InitialAmountUnits property is identical to the Units property.

Characteristics
Applies to Object: species
Data type Character vector
Data values Units from library with dimensions of amount, amount/length, amount/

area, or amount/volume. Default is '' (empty).
Access Read/write

Note SimBiology uses units including empty units in association with DimensionalAnalysis and
UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, units are not used.
However, SimBiology still performs a minimum level of dimensional analysis to decide whether a
reaction rate is in dimensions of amount/time or concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not empty) must
have consistent dimensions so that SimBiology can perform dimensional analysis. However, the
units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to be true),
SimBiology performs a dimensional analysis and converts everything to consistent units. Hence,
you must specify consistent units, and no units can be empty. If you have a dimensionless
parameter, you must still set its unit to dimensionless.

Examples
1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');
compObj = addcompartment(modelObj, 'cell');

3 Properties

3-84

2 Add a species object named glucose.

speciesObj = addspecies (compObj, 'glucose');
3 Set the initial amount to 100, InitialAmountUnits to molecule, and verify.

set (speciesObj,'InitialAmountUnits','molecule');
get (speciesObj,'InitialAmountUnits')

MATLAB returns:

ans =

molecule

See Also
DefaultSpeciesDimension, InitialAmount, sbioaddtolibrary, sbioconvertunits,
sbioshowunits, sbiounit, ValueUnits

 InitialAmountUnits

3-85

Inputs
Specify species and parameter input factors for sensitivity analysis

Description
Inputs is a property of the SensitivityAnalysisOptions object.
SensitivityAnalysisOptions is a property of the configuration set object.

Use Inputs to specify the species, parameters, or compartments with respect to which you want to
compute the sensitivities of the species or parameter states in your model.

The SimBiology software calculates sensitivities with respect to the values of the parameters,
capacities of compartments, and the initial amounts of the species specified in the Inputs property.
When you simulate a model with SensitivityAnalysis enabled in the active configuration set
object, sensitivity analysis returns the computed sensitivities of the species and parameters specified
in the Outputs property. For a description of the output, see the SensitivityAnalysisOptions property
description.

Characteristics
Applies to Object: SensitivityAnalysisOptions
Data type Species, parameter, or compartment object or an array of objects

Note

• If this object is determined by a repeated assignment rule,
then you cannot use it as an Inputs property.

• To be an input factor, a compartment object must have a
constant capacity, that is, its ConstantCapacity property
must be set to true.

• If a parameter is referenced by the LagParameterName and
DurationParameterName property of a RepeatDose
object, the parameter must be constant to be an input for
sensitivity analysis.

• If a parameter is referenced by any other RepeatDose
object properties, namely, Amount, Rate, Interval,
StartTime, and RepeatCount, you cannot use the parameter
as an input for sensitivity analysis.

Data values Species, compartment, or parameter object, or an array of
objects. Default is [] (empty array).

Access Read/write

Examples
This example shows how to set Inputs for sensitivity analysis.

3 Properties

3-86

1 Import the radio decay model from the SimBiology demos.

modelObj = sbmlimport('radiodecay');
2 Retrieve the configuration set object from modelObj.

configsetObj = getconfigset(modelObj);
3 Add a parameter to the Inputs property and display it. Use the sbioselect function to retrieve

the parameter object from the model.

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
 1 c 0.5 1/second

See Also
Outputs, sbioselect, SensitivityAnalysis, SensitivityAnalysisOptions

 Inputs

3-87

Interval
Time between doses

Description
Interval is a property of a RepeatDose object. This property defines the equally spaced times
between repeated doses.

For RepeatDose objects, you can parameterize the property by setting it to the name of a model-
scoped parameter that is not being modified by a repeated assignment rule, an algebraic rule, or a
rate rule. However, the parameter can be modified by an event.

Note When the Interval property is 0, RepeatDose ignores the RepeatCount property, that is, it
treats it as though it is set to 0.

Characteristics
Applies to Object: RepeatDose.
Data type double or character vector.
Data values Nonnegative real number or name of a model-scoped parameter

object. The default value is 0.
Access Read/Write.

See Also
RepeatDose object | ScheduleDose object

Topics
“Parameterized and Adaptive Doses”

3 Properties

3-88

KineticLaw
Show kinetic law used for ReactionRate

Description
The KineticLaw property shows the kinetic law that determines the reaction rate specified in the
ReactionRate property of the reaction object. This property shows the kinetic law used to define
ReactionRate.

KineticLaw can be configured with the addkineticlaw on page 2-42 method. The
addkineticlaw function configures the ReactionRate based on the KineticLaw and the species
and parameters specified in the kinetic law object properties SpeciesVariableNames on page 3-
166 and ParameterVariableNames on page 3-124. SpeciesVariableNames are determined
automatically for mass action kinetics.

If you update the reaction, the ReactionRate property automatically updates only for mass action
kinetics. For all other kinetics, you must set the SpeciesVariableNames property of the kinetic law
object.

For information on dimensional analysis for reaction rates, see “How Reaction Rates Are Evaluated”.

Characteristics
Applies to Object: reaction
Data type Kinetic law object
Data values Kinetic law object. Default is [] (empty).
Access Read-only

Examples
Example with Henri-Michaelis-Menten kinetics

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Verify that the KineticLaw property for the reaction object is Henri-Michaelis-Menten.

get (reactionObj, 'KineticLaw')

MATLAB returns:

SimBiology Kinetic Law Array

 Index: KineticLawName:
 1 Henri-Michaelis-Menten

 KineticLaw

3-89

See Also
KineticLawName, Parameters, ParameterVariableNames, ReactionRate, SpeciesVariableNames,
Expression (AbstractKineticLaw, KineticLaw)

3 Properties

3-90

KineticLawName
Name of kinetic law applied to reaction

Description
The KineticLawName property of the kinetic law object indicates the name of the kinetic law
definition applied to the reaction. KineticLawName can be any valid name from the built-in or user-
defined kinetic law library. See “Kinetic Law Definition” on page 3-70 for more information.

You can find the KineticLawName list in the kinetic law library by using the command sbiowhos -
kineticlaw (sbiowhos on page 1-311). You can create a kinetic law definition with the function
sbioabstractkineticlaw and add it to the library using sbioaddtolibrary on page 1-16.

Characteristics

Applies to Object: kineticlaw
Data type Character vector
Data values Character vector specified by kinetic law

definition
Access Read-only

Examples
1 Create a model object, add a reaction object, and define a kinetic law for the reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

2 Verify the KineticLawName of kineticlawObj.

get (kineticlawObj, 'KineticLawName')

MATLAB returns:

ans =

Henri-Michaelis-Menten

See Also

Expression(AbstractKineticLaw, KineticLaw), Parameters, ParameterVariableNames,
ParameterVariables, ReactionRate, sbioaddtolibrary, sbiowhos, SpeciesVariables,
SpeciesVariableNames

 KineticLawName

3-91

LagParameter
Parameter specifying time lag for doses

Description
LagParameter is a property of the PKModelMap object. It specifies the name(s) of parameter
object(s) that represent the time lag(s) of doses associated with the PKModelMap object.

Specify the name(s) of parameter object(s) that are:

• Scoped to a model
• Constant, that is, their ConstantValue property is true

When dosing multiple compartments, a one-to-one relationship must exist between the number and
order of elements in the LagParameter property and the DosingType property. For a dose that has
no lag, use '' (an empty character vector).

Characteristics
Applies to Object: PKModelMap
Data type Character vector or cell array of character vectors

Tip If you are not using any doses with time lags, you can set this
property to a cell array of empty character vectors, or simply an
empty cell array.

Data values Name(s) of parameter object(s) or empty. Default is an empty cell
array.

The parameter objects must be:

• Scoped to a model
• Constant, that is, have a ConstantValue property set to true.

Access Read/write

See Also
DosingType, PKModelMap object

3 Properties

3-92

LagParameterName
Parameter specifying time lag for dose

Description
LagParameterName is a property of a RepeatDose or ScheduleDose object.

Specify the name of a parameter object that is scoped to a model. The parameter defines the length
of time it takes for the dose to reach its target after being introduced.

You can parameterize the property by setting it to the name of a model-scoped parameter that is not
being modified by a repeated assignment rule, an algebraic rule, or a rate rule. However, the
parameter can be modified by an event.

Characteristics
Applies to Objects: RepeatDose, ScheduleDose.
Data type Character vector.
Data values Name of a model-scoped parameter object. The default value is an empty

character vector ''.
Access Read/write.

Examples
Estimate Time Lag and Duration of a Dose

This example shows how to estimate the time lag before a bolus dose was administered and the
duration of the dose using a one-compartment model.

Load a sample data set.

load lagDurationData.mat

Plot the data.

plot(data.Time,data.Conc,'x')
xlabel('Time (hour)')
ylabel('Conc (milligram/liter)')

 LagParameterName

3-93

Convert to groupedData.

gData = groupedData(data);
gData.Properties.VariableUnits = {'hour','milligram/liter'};

Create a one-compartment model.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Add two parameters that represent the time lag and duration of a dose. The lag parameter specifies
the time lag before the dose is administered. The duration parameter specifies the length of time it
takes to administer a dose.

lagP = addparameter(model,'lagP');
lagP.ValueUnits = 'hour';
durP = addparameter(model,'durP');
durP.ValueUnits = 'hour';

Create a dose object. Set the LagParameterName and DurationParameterName properties of the
dose to the names of the lag and duration parameters, respectively. Set the dose amount to 10
milligram which was the amount used to generate the data.

3 Properties

3-94

dose = sbiodose('dose');
dose.TargetName = 'Drug_Central';
dose.StartTime = 0;
dose.Amount = 10;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.LagParameterName = 'lagP';
dose.DurationParameterName = 'durP';

Map the model species to the corresponding data.

responseMap = {'Drug_Central = Conc'};

Specify the lag and duration parameters as parameters to estimate. Log-transform the parameters.
Initialize them to 2 and set the upper bound and lower bound.

paramsToEstimate = {'log(lagP)','log(durP)'};
estimatedParams = estimatedInfo(paramsToEstimate,'InitialValue',2,'Bounds',[1 5]);

Perform parameter estimation.

fitResults = sbiofit(model,gData,responseMap,estimatedParams,dose,'fminsearch')

fitResults =
 OptimResults with properties:

 ExitFlag: 1
 Output: [1x1 struct]
 GroupName: One group
 Beta: [2x4 table]
 ParameterEstimates: [2x4 table]
 J: [11x2 double]
 COVB: [2x2 double]
 CovarianceMatrix: [2x2 double]
 R: [11x1 double]
 MSE: 0.0024
 SSE: 0.0213
 Weights: []
 LogLikelihood: 18.7511
 AIC: -33.5023
 BIC: -32.7065
 DFE: 9
 DependentFiles: {1x2 cell}
 EstimatedParameterNames: {'lagP' 'durP'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'fminsearch'

Display the result.

fitResults.ParameterEstimates

ans=2×4 table
 Name Estimate StandardError Bounds
 ________ ________ _____________ ______

 {'lagP'} 1.986 0.0051568 1 5
 {'durP'} 1.527 0.012956 1 5

 LagParameterName

3-95

plot(fitResults)

See Also
RepeatDose object | ScheduleDose object

Topics
“Parameterized and Adaptive Doses”

3 Properties

3-96

LogDecimation
Specify frequency to log stochastic simulation output

Description
LogDecimation is a property of the SolverOptions property, which is a property of a configset
object. This property defines how often stochastic simulation data is recorded. LogDecimation is
available only for stochastic solvers (ssa, expltau, and impltau).

Use LogDecimation to specify how frequently you want to record the output of the simulation. For
example, if you set LogDecimation to 1, for the command [t,x] = sbiosimulate(modelObj),
at each simulation step the time will be logged in t and the quantity of each logged species will be
logged as a row in x. If LogDecimation is 10, then every 10th simulation step will be logged in t
and x.

Characteristics
Applies to Object: SolverOptions
Data type int
Data values >0. Default is 1.
Access Read/write

Examples
This example shows how to change LogDecimation settings.

1 Retrieve the configset object from the modelObj, and change the SolverType to expltau.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);
set(configsetObj, 'SolverType', 'expltau')

2 Change the LogDecimation to 10.

set(configsetObj.SolverOptions, 'LogDecimation', 10);
get(configsetObj.SolverOptions, 'LogDecimation')

ans =

 10

See Also
ErrorTolerance, RandomState

 LogDecimation

3-97

MassUnits
Mass unit used internally during simulation when UnitConversion is on

Description
This property defines the mass unit that SimBiology uses internally during model simulation when
UnitConversion is on. You can set this to any string representing a mass unit such as gram, or gram
with any valid prefix. It can also be a custom unit if it is consistent with mass as its dimension. The
default is <automatic>, which means SimBiology automatically selects a mass unit for simulation.
SimBiology examines the units on all of the states and selects a mass unit such that
AbsoluteTolerance of the states in mass or mass per volume is at least as stringent as the simulation
absolute tolerance multiplied by the smallest mass unit. This stringency is relaxed appropriately for
states that become large when AbsoluteToleranceScaling is on.

Note It is recommended that you use the default unit (<automatic>) or choose units for states such
that the simulated values are neither too large (greater than 106) or too small (less than 10-6).

However, for some edge cases, you may need to change MassUnits. Suppose you have a model with
a state that takes on values around 10-12 gram for the entire simulation, and you need to use gram as
its unit. Then it may be appropriate to set MassUnits to picogram. In this case, the internal
simulation values would be around 1, instead of around 10-12 as in the default case. AbsoluteTolerance
of the simulation is determined using this internal value. Thus by choosing picogram as the mass
unit, you effectively reduce the size of AbsoluteTolerance. Changing the MassUnits property is
closely related to changing AbsoluteTolerance when considering the effects on simulation results.

Even when using the default unit, it may be still necessary to change AbsoluteTolerance. For details,
see “Selecting Absolute Tolerance and Relative Tolerance for Simulation”.

If you need to recover the simulation behavior from releases prior to R2015b:

• Set the MassUnits to kilogram.
• Set the AmountUnits to mole. However, if the model has quantity units in molecule, set the unit

to molecule instead.

Tip If you have a custom function and UnitConversion is on (whether or not you are using the default
unit <automatic>), follow the recommendation below.

• Non-dimensionalize the parameters that are passed to the function if they are not already
dimensionless.

Suppose you have a custom function defined as y = f(t) where t is the time in hour and y is the
concentration of a species in mole/liter. When you use this function in your model to define a
repeated assignment rule for instance, define it as: s1 = f(time/t0)*s0, where time is the
simulation time, t0 is a parameter defined as 1.0 hour, s0 is a parameter defined as 1.0 mole/liter,
and s1 is the concentration of a species in mole/liter. Note that time and s1 do not have to be in
the same units as t0 and s0, but they must be dimensionally consistent. For example, the time
and s1 units can be set to minute and picomole/liter, respectively.

3 Properties

3-98

Characteristics
Applies to Object: Configset
Data type Character vector
Data values Character vector specifying any mass unit. The default is <automatic>.
Access Read/write for properties of Configset

See Also
Configset object, AmountUnits

 MassUnits

3-99

MaximumNumberOfLogs
Maximum number of logs criteria to stop simulation

Description
MaximumNumberOfLogs is a property of a Configset object. This property sets the maximum
number of logs criteria to stop a simulation.

A simulation stops when it meets any of the criteria specified by StopTime, MaximumNumberOfLogs,
or MaximumWallClock. However, if you specify the OutputTimes property of the SolverOptions
property of the Configset object, then StopTime and MaximumNumberOfLogs are ignored.
Instead, the last value in OutputTimes is used as the StopTime criteria, and the length of
OutputTimes is used as the MaximumNumberOfLogs criteria.

Characteristics
Applies to Object: Configset
Data type double
Data values Positive value. Default is Inf.
Access Read/write

Examples
Set Maximum Number of Logs Criteria to Stop Simulation

Set the maximum number of logs that triggers a simulation to stop.

Create a model object named cell and save it in a variable named modelObj.

modelObj = sbiomodel('cell');

Retrieve the configuration set from modelObj and save it in a variable named configsetObj.

configsetObj = getconfigset(modelObj);

Configure the simulation stop criteria by setting the MaximumNumberOfLogs property to 50. Leave
the StopTime and MaximumWallClock properties at their default values of 10 seconds and Inf,
respectively.

set(configsetObj, 'MaximumNumberOfLogs', 50)

View the properties of configsetObj.

get(configsetObj)

 Active: 1
 CompileOptions: [1x1 SimBiology.CompileOptions]
 Name: 'default'
 Notes: ''
 RuntimeOptions: [1x1 SimBiology.RuntimeOptions]

3 Properties

3-100

 SensitivityAnalysisOptions: [1x1 SimBiology.SensitivityAnalysisOptions]
 SolverOptions: [1x1 SimBiology.ODESolverOptions]
 SolverType: 'ode15s'
 StopTime: 10
 MaximumNumberOfLogs: 50
 MaximumWallClock: Inf
 TimeUnits: 'second'
 AmountUnits: '<automatic>'
 MassUnits: '<automatic>'
 Type: 'configset'

When you simulate modelObj, the simulation stops when 50 logs are created or when the simulation
time reaches 10 seconds, whichever comes first.

See Also
Configset object, MaximumWallClock, OutputTimes, StopTime

 MaximumNumberOfLogs

3-101

MaximumWallClock
Maximum elapsed wall clock time to stop simulation

Description
MaximumWallClock is a property of a Configset object. This property sets the maximum elapsed
wall clock time (seconds) criteria to stop a simulation.

A simulation stops when it meets any of the criteria specified by StopTime, MaximumNumberOfLogs,
or MaximumWallClock. However, if you specify the OutputTimes property of the SolverOptions
property of the Configset object, then StopTime and MaximumNumberOfLogs are ignored.
Instead, the last value in OutputTimes is used as the StopTime criteria, and the length of
OutputTimes is used as the MaximumNumberOfLogs criteria.

Characteristics
Applies to Object: Configset
Data type double
Data values Positive scalar. Default is Inf.
Access Read/write

Examples
Set Maximum Wall Clock Criteria to Stop Simulation

Set the maximum wall clock time (in seconds) that triggers a simulation to stop.

Create a model object named cell and save it in a variable named modelObj.

modelObj = sbiomodel('cell');

Retrieve the configuration set from modelObj and save it in a variable named configsetObj.

configsetObj = getconfigset(modelObj);

Configure the simulation stop criteria by setting the MaximumWallClock property to 20 seconds.
Leave the StopTime and MaximumNumberOfLogs properties at their default values of 10 seconds
and Inf, respectively.

set(configsetObj, 'MaximumWallClock', 20)

View the properties of configsetObj.

get(configsetObj)

 Active: 1
 CompileOptions: [1x1 SimBiology.CompileOptions]
 Name: 'default'
 Notes: ''
 RuntimeOptions: [1x1 SimBiology.RuntimeOptions]

3 Properties

3-102

 SensitivityAnalysisOptions: [1x1 SimBiology.SensitivityAnalysisOptions]
 SolverOptions: [1x1 SimBiology.ODESolverOptions]
 SolverType: 'ode15s'
 StopTime: 10
 MaximumNumberOfLogs: Inf
 MaximumWallClock: 20
 TimeUnits: 'second'
 AmountUnits: '<automatic>'
 MassUnits: '<automatic>'
 Type: 'configset'

When you simulate modelObj, the simulation stops when the simulation time reaches 10 seconds or
the wall clock time reaches 20 seconds, whichever comes first.

See Also
Configset object, MaximumNumberOfLogs, OutputTimes, StopTime

 MaximumWallClock

3-103

MaxIterations
Specify nonlinear solver maximum iterations in implicit tau

Description
The MaxIterations property specifies the maximum number of iterations for the nonlinear solver in
impltau. It is a property of the SolverOptions object. SolverOptions is a property of the
configset object.

The implicit tau solver in SimBiology software internally uses a nonlinear solver to solve a set of
algebraic nonlinear equations at every simulation step. Starting with an initial guess at the solution,
the nonlinear solver iteratively tries to find the solution to the algebraic equations. The closer the
initial guess is to the solution, the fewer the iterations the nonlinear solver will take before it finds a
solution. MaxIterations specifies the maximum number of iterations the nonlinear solver should
take before it issues a “failed to converge” error. If you get this error during simulation, try
increasing MaxIterations. The default value of MaxIterations is 15.

Characteristics

Applies to Object: SolverOptions
Data type int
Data values >0. Default is 15.
Access Read/write

Examples
This example shows how to change MaxIterations settings.

1 Retrieve the configset object from the modelObj, and change the SolverType to impltau.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);
set(configsetObj, 'SolverType', 'impltau');

2 Change the MaxIterations to 25.

set(configsetObj.SolverOptions, 'MaxIterations', 25);
get(configsetObj.SolverOptions, 'MaxIterations')

ans =

 25

See Also
ErrorTolerance, LogDecimation, RandomState

3 Properties

3-104

MaxStep
Specify upper bound on ODE solver step size

Description
MaxStep is a property of the SolverOptions property, which is a property of a configset object.
This property specifies the bounds on the size of the time steps. MaxStep is available only for ODE
solvers (ode15s, ode23t, ode45, and sundials).

If the differential equation has periodic coefficients or solutions, it might be a good idea to set
MaxStep to some fraction (such as 1/4) of the period. This guarantees that the solver does not
enlarge the time step too much and step over a period of interest. For more information on MaxStep,
see odeset.

Characteristics
Applies to Object: SolverOptions
Data type Positive scalar or empty
Data values Default value is [] (empty), which is equivalent to setting MaxStep to

infinity.
Access Read/write

See Also
SimBiology property RelativeTolerance

MATLAB function odeset

 MaxStep

3-105

ModelName
Name of model simulated

Description

The ModelName property shows the name of the model for which the SimData object contains the
simulation data.

Characteristics
Applies to Object: SimData
Data type Character vector
Data values Default value is '' (empty).
Access Read-only

See Also
Data, DataInfo

3 Properties

3-106

Models
Contain all model objects

Description
The Models property shows the models in the SimBiology root. It is a read-only array of model
objects.

SimBiology has a hierarchical organization. A model object has the SimBiology root as its Parent.
Parameter objects can have a model object or kinetic law object as Parent. You can display all the
component objects with modelObj.Models or get (modelObj, 'Models').

Characteristics
Applies to Objects: root
Data type Array of model objects
Data values Model object. Default is [] (empty).
Access Read-only

See Also
sbiomodel

 Models

3-107

Multiplier
Relationship between defined unit and base unit

Description
The Multiplier is the numerical value that defines the relationship between the unit Name and the
base unit as a product of the Multiplier and the base unit. For example, in 1 mole =
6.0221e23*molecule, the Multiplier is 6.0221e23.

Characteristics
Applies to Object: Unit
Data type double
Data values Nonzero real number. Default value is 1.
Access Read/write

Examples
This example shows how to create a user-defined unit, add it to the user-defined library, and query
the library.

1 Create a user-defined unit called usermole, whose composition is molecule and Multiplier
property is 6.0221e23.

unitObj = sbiounit('usermole', 'molecule', 6.0221e23);
2 Add the unit to the user-defined library.

sbioaddtolibrary(unitObj);
3 Query the Multiplier property.

get(unitObj, 'Multiplier')

ans =

1/molarity*second

See Also
Composition, get, sbiounit, set

3 Properties

3-108

Name
Specify name of object

Description
The Name property identifies a SimBiology object. Compartments, species, parameters, observables,
and model objects can be referenced by other objects using the Name property, therefore Name must
be unique for these objects. However, species names need only be unique within each compartment.
Parameter names must be unique within a model (if at the model level), or within each kinetic law (if
at the kinetic law level). This means that you can have nonunique species names if the species are in
different compartments, and nonunique parameter names if the parameters are in different kinetic
laws or at different levels. Note that having nonunique parameter names can cause the model to have
shadowed parameters and that may not be best modeling practice.

Use the function sbioselect to find an object with the same Name property value.

In addition, note the following constraints and reserved characters for the Name property in objects:

• Model and parameter names cannot be empty, the word time, all whitespace, or contain the
characters [or].

• Compartment and species names cannot be empty, the word null, the word time or contain the
characters ->, <->, [or].

• However, compartment and species names can contain the words null and time within the
name, such as nulldrug or nullreceptor.

• Reaction, event, and rule names cannot be the word time or contain the characters [or].
• If you have a parameter, a species, or compartment name that is not a valid MATLAB variable

name, when you write an event function, an event trigger, a reaction, reaction rate equation, or a
rule you must enclose that name in brackets. For example, enclose [DNA polymerase+] in
brackets. In addition, if you have the same species in multiple compartments you must qualify the
species with the compartment name, for example, nucleus.[DNA polymerase+], [nuclear
complex].[DNA polymerase+].

For more information on valid MATLAB variable names, see matlab.lang.makeValidName,
matlab.lang.makeUniqueStrings, and isvarname.

Characteristics

Applies to Objects: abstract kinetic law, configuration set, compartment, event,
kinetic law, model, observable, parameter, reaction, RepeatDose, rule,
ScheduleDose, species, unit, or variant

Data type Character vector
Data values Any character vector except reserved words and characters
Access Read/write

 Name

3-109

Examples
1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');
2 Add a reaction object to the model object. Note the use of brackets because the names are not

valid MATLAB variable names.
reactionObj = addreaction(modelObj, '[Aspartic acid] -> [beta-Aspartyl-PO4]')

MATLAB returns:

SimBiology Reaction Array

Index: Reaction:
 1 [Aspartic acid] -> [beta-Aspartyl-PO4]

3 Set the reaction Name and verify.

set (reactionObj, 'Name', 'Aspartate kinase reaction');
get (reactionObj, 'Name')

MATLAB returns:

ans =

 Aspartate kinase reaction

Version History
Component naming restriction
Behavior change in future release

In a future release, there will be a naming restriction on the following model component types:
model, compartment, species, parameter, reaction, rule, event, observable, dose, and variant. The
restriction is that within a single model, these components will be required to have unique names
even when they are of different types with the following two exceptions:

• Species in different parent compartments can have the same name.
• Parameters with different parents can have the same name. Specifically, you can use the same

name for a model-scoped parameter and reaction-scoped parameters, where each reaction-scoped
parameter belongs to a different reaction.

See Also
addcompartment | addkineticlaw | addparameter | addreaction | addrule | addspecies |
RepeatDose object | sbiomodel | sbiounit | sbiounitprefix | ScheduleDose object

3 Properties

3-110

Normalization
Specify normalization type for sensitivity analysis

Description
Normalization is a property of the SensitivityAnalysisOptions object.
SensitivityAnalysisOptions is a property of the configuration set object. Use Normalization
to specify the normalization for the computed sensitivities.

The following values let you specify the type of normalization. The examples show you how
sensitivities of a species x with respect to a parameter k are calculated for each normalization type:

• 'None' specifies no normalization.

∂x(t)
∂k

• 'Half' specifies normalization relative to the numerator (species quantity) only.

1
x(t)

∂x(t)
∂k

• 'Full' specifies that the data should be made dimensionless.

k
x(t)

∂x(t)
∂k

Characteristics
Applies to Object: SensitivityAnalysisOptions
Data type enum
Data values 'None', 'Half', 'Full'. Default is 'None'.
Access Read/write

See Also
Inputs, Outputs, SensitivityAnalysis, SensitivityAnalysisOptions

 Normalization

3-111

Notes
HTML text describing SimBiology object

Description
Use the Notes property of an object to store comments about the object.

Characteristics
Applies to Objects: compartment, kinetic law, model, observable, parameter,

reaction, RepeatDose, rule, ScheduleDose, species, unit, or unit prefix
Data type Character vector
Data values Any character vector
Access Read/write

Examples
1 Create a model object.

modelObj = sbiomodel ('my_model');
2 Write notes for the model object.

set (modelObj, 'notes', '09/01/05 experimental data')
3 Verify the assignment.

get (modelObj, 'notes')

MATLAB returns:

ans =

09/01/05 experimental data

See Also
addkineticlaw, addparameter, addreaction, addrule, addspecies, RepeatDose object,
sbiomodel, sbiounit, sbiounitprefix, ScheduleDose object

3 Properties

3-112

Observables
Array of observable objects

Description
The Observables property indicates the observable objects in a model object. The property is a
read-only array of observable objects.

You can add an observable object to a model object using addobservable.

You can view and configure observable object properties by using dot notation or the get and set
functions.

Characteristics
Applies to Model object
Data type Array of observable objects
Data values Observable objects; default value is [] (empty)
Access Read-only

See Also
Observable, addobservable, delete, get, set, findUsages

Introduced in R2020a

 Observables

3-113

Observed
Measured response object name

Description
Observed is a property of the PKModelMap object. It specifies the name(s) of one or more objects
that represent the measured response (the response variable). Specify the name(s) of species or
parameter object(s) that are scoped to a model.

Characteristics
Applies to Object: PKModelMap
Data type Character vector or cell array of character vectors
Data values Name of a species or parameter object or empty. Default is an empty

cell array.
Access Read/write

See Also
Dosed, Estimated, PKModelMap object

3 Properties

3-114

Outputs
Specify species and parameter outputs for sensitivity analysis

Description
Outputs is a property of the SensitivityAnalysisOptions object.
SensitivityAnalysisOptions is a property of the configuration set object.

Use Outputs to specify the species and parameters for which you want to compute sensitivities.

The SimBiology software calculates sensitivities with respect to the values of the parameters and the
initial amounts of the species specified in the Inputs property. When you simulate a model with
SensitivityAnalysis enabled in the active configuration set object, sensitivity analysis returns
the computed sensitivities of the species and parameters specified in Outputs. For a description of
the output, see the SensitivityAnalysisOptions property description.

Characteristics

Applies to Object: SensitivityAnalysisOptions
Data type Species or parameter object or array of objects

Note If a species or parameter object is determined by a
repeated assignment rule, then you cannot use it as an Outputs
property.

Data values Species or parameter object, or an array of objects. Default is []
(empty array).

Access Read/write

Examples
This example shows how to set Outputs for sensitivity analysis.

1 Import the radio decay model from the SimBiology demos.

modelObj = sbmlimport('radiodecay');
2 Retrieve the configuration set object from modelObj.

configsetObj = getconfigset(modelObj);
3 Add a species to the Outputs property and display it. Use the sbioselect function to retrieve

the species object from the model.

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:
 1 unnamed z 0 molecule

 Outputs

3-115

See Also
Inputs, sbioselect, SensitivityAnalysis, SensitivityAnalysisOptions

3 Properties

3-116

OutputTimes
Specify times to log deterministic simulation output

Description
OutputTimes is a property of the SolverOptions property, which is a property of a Configset
object. This property specifies the times during a deterministic (ODE) simulation that data is
recorded. Time units are specified by the TimeUnits property of the Configset object.
OutputTimes is available only for ODE solvers (ode15s, ode23t, ode45, and sundials).

If the criteria set in the MaximumWallClock property causes a simulation to stop before all time
values in OutputTimes are reached, then no data is recorded for the latter time values.

The OutputTimes property can also control when a simulation stops:

• The last value in OutputTimes overrides the StopTime property as criteria for stopping a
simulation.

• The length of OutputTimes overrides the MaximumNumberOfLogs property as criteria for
stopping a simulation.

Characteristics
Applies to Object: SolverOptions
Data type double
Data values Vector of nonnegative, monotonically increasing values, or [], an empty

vector. Default is [], which results in data being logged every time the
simulation solver takes a step.

Access Read/write

Examples
Specify Times to Log Deterministic Simulation Output

Specify the times during a deterministic (ODE) simulation that data is recorded.

Create a model object named cell and save it in a variable named modelObj.

modelObj = sbiomodel('cell');

Retrieve the configuration set from modelObj and save it in a variable named configsetObj.

configsetObj = getconfigset(modelObj);

Specify to log output every second for the first 10 seconds of the simulation. Do this by setting the
OutputTimes property of the SolverOptions property of ConfigsetObj.

set(configsetObj.SolverOptions, 'OutputTimes', [1:10])
get(configsetObj.SolverOptions, 'OutputTimes')

 OutputTimes

3-117

ans = 10×1

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

When you simulate modelObj, output is logged every second for the first 10 seconds of the
simulation. Also, the simulation stops after the 10th log.

See Also
MaximumNumberOfLogs, MaximumWallClock, SolverOptions, StopTime, TimeUnits, MassUnits,
AmountUnits

3 Properties

3-118

Owner
Owning compartment

Description
Owner shows you the SimBiology compartment object that owns the compartment object. In the
compartment object, the Owner property shows you whether the compartment resides within another
compartment. The Compartments property indicates whether other compartments reside within the
compartment. You can add a compartment object using the method addcompartment.

Characteristics

Applies to Object: compartment
Data type Character vector
Data values Name of compartment object. Default is [].
Access Read-only

Examples
1 Create a model object named modelObj.

modelObj = sbiomodel('cell');
2 Add two compartments to the model object.

compartmentObj1 = addcompartment(modelObj, 'nucleus');
compartmentObj2 = addcompartment(modelObj, 'mitochondrion');

3 Add a compartment to one of the compartment objects.

compartmentObj3 = addcompartment(compartmentObj2, 'matrix');
4 Display the Owner property in the compartment objects.

get(compartmentObj3, 'Owner')

The result shows you the owning compartment and its components:

SimBiology Compartment - mitochondrion

 Compartment Components:
 Capacity: 1
 CapacityUnits:
 Compartments: 1
 ConstantCapacity: true
 Owner:
 Species: 0

5 Change the owning compartment.

set(compartmentObj3, 'Owner', compartmentObj1)

 Owner

3-119

See Also
Compartments, Parent

3 Properties

3-120

ParameterNames (CovariateModel)
Names of parameters in CovariateModel object

Description
The ParameterNames property is a cell array of character vectors specifying the names of the
parameters in the Expression on page 3-68 property of a CovariateModel object.

Characteristics
Applies to Object: CovariateModel on page 2-173
Data type Cell array of character vectors
Data values Names of the parameters in the Expression on

page 3-68 property
Access Read only

See Also
CovariateModel on page 2-173 | Expression on page 3-68

 ParameterNames (CovariateModel)

3-121

Parameters
Array of parameter objects

Description
The Parameters property indicates the parameters in a Model or KineticLaw object. Read-only
array of Parameter objects.

The scope of a parameter object is hierarchical and is defined by the parameter’s parent. If a
parameter is defined with a kinetic law object as its parent, then only the kinetic law object can use
the parameter. If a parameter object is defined with a model object as its parent, then components
such as rules, events, and kinetic laws (reaction rate equations) can use the parameter.

You can add a parameter to a model object, or kinetic law object with the method addparameter on
page 2-74 and delete it with the method delete on page 2-171.

You can view parameter object properties with the get command and configure properties with the
set command.

Characteristics
Applies to Objects: model, kineticlaw
Data type Array of parameter objects
Data values Parameter objects. Default value is [] (empty).
Access Read-only

Examples
1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');
3 Add a parameter and assign it to the kinetic law object (kineticlawObj);.

parameterObj1 = addparameter (kineticlawObj, 'K1');
get (kineticlawObj, 'Parameters')

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
 1 K1 1

4 Add a parameter and assign it to the model object (modelObj).

parameterObj1 = addparameter(modelObj, 'K2');
get(modelObj, 'Parameters')
SimBiology Parameter Array

3 Properties

3-122

 Index: Name: Value: ValueUnits:
 1 K2 1

See Also
addparameter, delete, get, set

 Parameters

3-123

ParameterVariableNames
Cell array of reaction rate parameters

Description
The ParameterVariableNames property shows the parameters used by the kinetic law object to
determine the ReactionRate on page 3-139 equation in the reaction object. Use setparameter
on page 2-767 to assign ParameterVariableNames. When you assign species to
ParameterVariableNames, SimBiology software maps these parameter names to
ParameterVariables on page 3-126 in the kinetic law object.

If the reaction is using a kinetic law, the ReactionRate property of a reaction object shows the
result of a mapping from a “Kinetic Law Definition” on page 3-70. The ReactionRate is determined
by the kinetic law object Expression property by mapping ParameterVariableNames to
ParameterVariables and SpeciesVariableNames to SpeciesVariables.

Characteristics

Applies to Object: kineticlaw
Data type Cell array of character vectors
Data values Cell array of parameters
Access Read/write

Examples
Create a model, add a reaction, and assign the SpeciesVariableNames for the reaction rate
equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of type 'Henri-Michaelis-Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm and Km) that

should to be set. To set these variables:

setparameter(kineticlawObj,'Vm', 'Va');
setparameter(kineticlawObj,'Km', 'Ka');

4 Verify that the parameter variables are correct.

get (kineticlawObj, 'ParameterVariableNames')

MATLAB returns:

3 Properties

3-124

ans =

 'Va' 'Ka'

See Also
Expression(AbstractKineticLaw, KineticLaw), ParameterVariables, ReactionRate, setparameter,
SpeciesVariables, SpeciesVariableNames

 ParameterVariableNames

3-125

ParameterVariables
Parameters in kinetic law definition

Description
The ParameterVariables property shows the parameter variables that are used in the
Expression on page 3-70 property of the abstract kinetic law object. Use this property to specify the
parameters in the ReactionRate on page 3-139 equation. Use the method set to assign
ParameterVariables to a kinetic law definition. For more information, see “Kinetic Law Definition”
on page 3-70.

Characteristics

Applies to Objects: abstract kinetic law, kineticlaw
Data type Cell array of character vectors
Data values Specified by kinetic law definition
Access Read/write in kinetic law definition. Read-only in kinetic law.

Examples
Create a model, add a reaction, and assign the SpeciesVariableNames for the reaction rate
equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object of the type 'Henri-Michaelis-Menten' .
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables. To set these

variables:

get (kineticlawObj, 'ParameterVariables')

MATLAB returns:

ans =

 'Vm' 'Km'

See Also
Expression(AbstractKineticLaw, KineticLaw), ParameterVariableNames, ReactionRate, set,
setparameter, SpeciesVariables, SpeciesVariableNames

3 Properties

3-126

Parent
Indicate parent object

Description
The Parent property indicates the parent object for a SimBiology object (read-only). The Parent
property indicates accessibility of the object. The object is accessible to the Parent object and other
objects within the Parent object. The value of Parent depends on the type of object and how it was
created. All models always have the SimBiology root as the Parent.

More Information

The following table shows you the different objects and the possible Parent value.

Object Parent
abstract kinetic law • [] (empty) until added to library

• root object upon addition to library
compartment model object
event model object or [] (empty)
kinetic law reaction object
model root object
observable model object
parameter model object, kinetic law object, or [] (empty)
reaction model object or [] (empty)
RepeatDose model object or [] (empty)
rule model object or [] (empty)
ScheduleDose model object or [] (empty)
species compartment
variant model object or [] (empty)
unit and unit prefixes • [] (empty) until added to library

• root object upon addition to library

Characteristics

Applies to Objects: abstract kinetic law, compartment, event, kinetic law, model,
observable, parameter, reaction, RepeatDose, rule, ScheduleDose,
species, variant, unit, or unit prefix

Data type Object
Data values SimBiology component object or [] (empty)
Access Read-only

 Parent

3-127

See Also
addkineticlaw, addparameter, addreaction, RepeatDose object, sbiomodel,
ScheduleDose object

3 Properties

3-128

PKCompartments
Hold compartments in PK model

Description
PKCompartments is a property of the PKModelDesign object. It is used to specify the compartments
in the PKModelDesign object. Each compartment is a PKCompartment object added using the
addCompartment method.

Characteristics
Applies to Objects: PKModelDesign
Data type object
Data values PKCompartment object
Access Read-only

See Also
“Create Pharmacokinetic Models” in the SimBiology User's Guide, addCompartment,
PKCompartment object, PKModelDesign object

 PKCompartments

3-129

Products
Array of reaction products

Description
The Products property contains an array of SimBiology.Species objects.

Products is a 1-by-n species object array that indicates the species that are changed by the
reaction. If the Reaction property is modified to use a different species, the Products property is
updated accordingly.

You can add product species to the reaction with addproduct on page 2-78 function. You can
remove product species from the reaction with rmproduct on page 2-712. You can also update
reaction products by setting the Reaction property with the function set.

Characteristics

Applies to Object: reaction
Data type Array of objects
Data values Species objects. Default is [] (empty).
Access Read-only

Examples
1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add reaction objects.

reactionObj = addreaction (modelObj, 'a + b -> c + d');

3 Verify the assignment.

productsObj = get(reactionObj, 'Products')

MATLAB returns:

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:
 1 unnamed c 0
 2 unnamed d 0

See Also
addkineticlaw, addproduct, addspecies, rmproduct

3 Properties

3-130

RandomEffectNames (CovariateModel)
Names of random effects in CovariateModel object

Description
The RandomEffectNames property is a cell array of character vectors specifying the names of the
random effects in the Expression on page 3-68 property of a CovariateModel object. Names of
random effects are denoted with the prefix eta.

Characteristics
Applies to Object: CovariateModel on page 2-173
Data type Cell array of character vectors
Data values Names of the random effects in the Expression

on page 3-68 property. These name are denoted
with the prefix eta.

Access Read only

See Also
CovariateModel on page 2-173 | Expression on page 3-68

 RandomEffectNames (CovariateModel)

3-131

RandomState
Set random number generator

Description
The RandomState property sets the random number generator for the stochastic solvers. It is a
property of the SolverOptions object. SolverOptions is a property of the configset object.

SimBiology software uses a pseudorandom number generator. The sequence of numbers generated is
determined by the state of the generator, which can be specified by the integer RandomState. If
RandomState is set to integer J, the random number generator is initialized to its Jth state. The
random number generator can generate all the floating-point numbers in the closed interval
[2^(-53), 1-2^(-53)]. Theoretically, it can generate over 2^1492 values before repeating itself.
But for a given state, the sequence of numbers generated will be the same. To change the sequence,
change RandomState. SimBiology software resets the state at startup. The default value of
RandomState is [].

Characteristics

Applies to Objects: SolverOptions for SSA, expltau, impltau
Data type int
Data values Default is [] (empty).
Access Read/write

Examples
This example shows how to change RandomState settings.

1 Retrieve the configset object from the modelObj and change the SolverType to expltau.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);
set(configsetObj, 'SolverType', 'expltau')

2 Change the Randomstate to 5.

set(configsetObj.SolverOptions, 'RandomState', 5);
get(configsetObj.SolverOptions, 'RandomState'))

ans =

 5

See Also
ErrorTolerance, LogDecimation, MaxIterations

3 Properties

3-132

Rate
Rate of dose

Note The property of a ScheduleDose object is a column vector instead of a row vector. For details,
see “Compatibility Considerations”.

Description
Rate is a property of a RepeatDose or ScheduleDose object.

This property defines how fast a dose is given. If the rate is set to 0 or an empty array [], then it is
interpreted as a bolus (instantaneous) dose.

For RepeatDose objects, you can parameterize the property by setting it to the name of a model-
scoped parameter that is not being modified by a repeated assignment rule, an algebraic rule, or a
rate rule. However, the parameter can be modified by an event.

Note If you set the Rate property of a dose, you must also specify the Amount property of the dose,
and set the DurationParameterName property to ''. This is because the duration is calculated
from the amount and rate.

Tip You can create a combination of bolus and infusion doses by setting the rate property of a
ScheduleDose object to a vector containing zeros and non-zeros.

Characteristics

Applies to Objects: RepeatDose, ScheduleDose.
Data type double or character vector (RepeatDose) or double column

(ScheduleDose).
Data values Nonnegative real number or name of a model-scoped parameter

object. The default value is 0 (RepeatDose) or 0x1 empty double
column vector (ScheduleDose), that is, the dose is interpreted as a
bolus (instantaneous) dose.

Access Read/write.

Compatibility Considerations
Rate property of ScheduleDose is a column vector
Behavior changed in R2019b

The Rate property of a ScheduleDose object is a column vector instead of a row vector. The default
value is 0x1 empty double column vector, instead of [].

 Rate

3-133

See Also
RepeatDose object | ScheduleDose object

Topics
“Parameterized and Adaptive Doses”

3 Properties

3-134

RateUnits
Units for dose rate

Description
RateUnits is a property of a PKData, RepeatDose or ScheduleDose object.

• In RepeatDose or ScheduleDose objects, this property defines units for the Rate property.
• In PKData object, this property defines units for the RateLabel property.

Characteristics
Applies to Object: RepeatDose, ScheduleDose, PKData
Data type Character vector
Data values Units from library with dimensions of amount divided by time. You

cannot use units of concentration divided by time. Default = ''
(empty).

Access Read/write

Note SimBiology uses units including empty units in association with DimensionalAnalysis and
UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, units are not used.
However, SimBiology still performs a minimum level of dimensional analysis to decide whether a
reaction rate is in dimensions of amount/time or concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not empty) must
have consistent dimensions so that SimBiology can perform dimensional analysis. However, the
units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to be true),
SimBiology performs a dimensional analysis and converts everything to consistent units. Hence,
you must specify consistent units, and no units can be empty. If you have a dimensionless
parameter, you must still set its units to dimensionless.

See Also
PKData object, ScheduleDose object, RepeatDose object, Rate, RateLabel

 RateUnits

3-135

RateLabel
Rate of infusion column in data set

Description
RateLabel is a property of the PKData object. It specifies the column in DataSet on page 3-41 that
contains the rate of infusion. This applies only when dosing type is infusion. The data set must
contain the rate and not an infusion time. The values must be positive and the column cannot contain
Inf or –Inf. 0 specifies an infinite rate (equivalent to a bolus dose), and NaN specifies no rate.

Characteristics
Applies to Objects: PKData
Data type Character vector
Data values Column header
Access Read/write

See Also
PKData object, DosingType

3 Properties

3-136

Reactants
Array of reaction reactants

Description
The Reactants property is a 1-by-n species object array of reactants in the reaction. If the
Reaction property is modified to use a different reactant, the Reactants property will be updated
accordingly.

You can add reactant species to the reaction with the addreactant on page 2-80 method.

You can remove reactant species from the reaction with the rmreactant on page 2-714 method.
You can also update reactants by setting the Reaction property with the function set.

Characteristics

Applies to Object: reaction
Data type Species object or array of species objects
Data values Species objects. Default is [] (empty).
Access Read-only

Examples
1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add reaction objects.

reactionObj = addreaction (modelObj, 'a + b -> c + d');

3 View the reactants for reactionObj.

get(reactionObj, 'Reactants')

MATLAB returns:

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:
 1 unnamed a 0
 2 unnamed b 0

See Also
addreactant, addreaction, addspecies, rmreactant

 Reactants

3-137

Reaction
Reaction object reaction

Description
Property to indicate the reaction represented in the reaction object. Indicates the chemical reaction
that can change the amount of one or more species, for example, 'A + B –> C'. This property is
different from the model object property called Reactions.

See addreaction for more information on how the Reaction property is set.

Characteristics
Applies to Object: reaction
Data type Character vector
Data values Character vector containing a valid reaction. Default is '' (empty

character vector).
Access Read/write

Examples
1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Verify that the reaction property records the input.

get (reactionObj, 'Reaction')

MATLAB returns:

ans =

a + b -> c + d

See Also
addreaction

3 Properties

3-138

ReactionRate
Reaction rate equation in reaction object

Description
The ReactionRate property defines the reaction rate equation. You can define a ReactionRate
with or without the KineticLaw property. KineticLaw defines the type of reaction rate. The
addkineticlaw function configures the ReactionRate based on the KineticLaw and the species
and parameters specified in the kinetic law object properties SpeciesVariableNames and
ParameterVariableNames.

The reaction takes place in the reverse direction if the Reversible property is true. This is reflected
in ReactionRate. The ReactionRate includes the forward and reverse rate if reversible.

You can specify ReactionRate without KineticLaw. Use the set function to specify the reaction
rate equation. SimBiology software adds species variables while creating reactionObj using the
addreaction method. You must add the parameter variables (to the modelObj in this case). See the
example below.

After you specify the ReactionRate without KineticLaw and you later configure the reactionObj
to use KineticLaw, the ReactionRate is unset until you specify SpeciesVariableNames and
ParameterVariableNames.

For information on dimensional analysis for reaction rates, see “How Reaction Rates Are Evaluated” .

Note If you set the ReactionRate property to an expression that is not continuous and
differentiable, see “Using Events to Address Discontinuities in Rule and Reaction Rate Expressions”
before simulating your model.

Characteristics
Applies to Object: reaction
Data type Character vector
Data values Character vector defining the reaction rate. Default is '' (empty

character vector).
Access Read/write

Examples
Add a Reaction Defined by Michaelis-Menten Kinetic Law

Create a model, add a reaction, and assign the expression for the reaction rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

 ReactionRate

3-139

2 Create a kinetic law object for the reaction object of the type 'Henri-Michaelis-Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has two parameter variables (Vm and Km) and one

species variable (S) that you should set. To set these variables, first create the parameter
variables as parameter objects (parameterObj1, parameterObj2) with names Vm_d and Km_d
and assign them to kineticlawObj.

parameterObj1 = addparameter(kineticlawObj, 'Vm_d');
parameterObj2 = addparameter(kineticlawObj, 'Km_d');

4 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Vm_d' 'Km_d'});
set(kineticlawObj,'SpeciesVariableNames', {'a'});

5 Verify that the reaction rate is expressed correctly in the reaction object ReactionRate
property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Vm_d*a/(Km_d + a)

Add a Reaction without a Kinetic Law

Create a model, add a reaction, and specify ReactionRate without a kinetic law.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a + b -> c + d');

2 Specify ReactionRate and verify the assignment.

set (reactionObj, 'ReactionRate', 'k*a');
get(reactionObj, 'ReactionRate')

MATLAB returns:

ans =

k*a
3 You cannot simulate the model until you add the parameter k to the modelObj.

parameterObj = addparameter(modelObj, 'k');

SimBiology adds the parameter to the modelObj with default Value = 1.0 for the parameter.

Define a Custom Hill Kinetic Law that Works with Dimensional Analysis

This example shows how to define a custom reaction rate for the Hill kinetics that is compatible with
DimensionalAnalysis feature of SimBiology.

This example is useful especially if you are using the built-in Hill kinetic law, but have the kinetic
reaction with a non-integer exponent and cannot verify the model because dimensional analysis

3 Properties

3-140

failed. The built-in Hill kinetic law has the following expression:
Vm * Sn

Kp + Sn . Suppose Kp = Khn, then you

can rewrite the equation as follows:
Vm

Kh
S

n
+ 1

. The redefined Hill kinetic equation is compatible with

Dimensional Analysis and allows you to have a non-integer exponent.

Create a SimBiology model.

m1 = sbiomodel('m1');

Add a compartment, two species, and a reaction.

c1 = addcompartment(m1, 'cell');
s1 = addspecies(m1,'a');
s2 = addspecies(m1,'b');
r1 = addreaction(m1, 'a -> b');

Add a predefined a Hill kinetic law for the reaction.

k1 = addkineticlaw(r1, 'Hill-Kinetics');

Display the rate expression of the built-in kinetic law.

k1.Expression

ans =

Vm*S^n/(Kp + S^n)

Define parameters, values, and units.

p1 = addparameter(k1, 'Vm', 1.0);
p2 = addparameter(k1, 'n', 1.5);
p3 = addparameter(k1, 'Kp', 2.828);

set(k1, 'ParameterVariableNames', {'Vm','n','Kp'});
set(k1, 'SpeciesVariableNames', {'a'});
set(s1, 'InitialAmount', 2.0);

set(s1, 'InitialAmountUnits', 'mole/liter');
set(s2, 'InitialAmountUnits', 'mole/liter');
set(c1, 'CapacityUnits', 'liter');
set(p1, 'ValueUnits', 'mole/liter/second');
set(p2, 'ValueUnits', 'dimensionless');
set(p3, 'ValueUnits', 'mole/liter');

Verify the model.

verify(m1)

Error using SimBiology.Model/verify
--> Error reported from Dimensional Analysis:
Dimensional analysis failed for reaction 'a -> b'.
When using the power function, both the base and exponent must be dimensionless or the exponent must be an explicit
integer constant (for example 2 in 'x^2').

 ReactionRate

3-141

You are seeing the error message because SimBiology only allows exponentiation of any
dimensionless quantity to any dimensionless power.

Redefine the reaction rate so that it is compatible with dimensional analysis and allows a non-integer
exponent.

r1.ReactionRate = 'Vm / ((Kh/a)^n + 1)';
k1.KineticLaw = 'Unknown';

Define the value and units for Kh parameter.

p4 = addparameter(k1, 'Kh', 2.0);
set(p4, 'ValueUnits', 'mole/liter');

Verify the model.

verify(m1)

You no longer see the error message.

Simulate the model.

[t,x,names] = sbiosimulate(m1);

Plot the results.

plot(t,x);
xlabel('Time');
ylabel('Amount');
legend(names);

3 Properties

3-142

See Also
addparameter, addreaction, Reversible

 ReactionRate

3-143

Reactions
Array of reaction objects

Description
Property to indicate the reactions in a Model object. Read-only array of reaction objects.

A reaction object defines a chemical reaction that occurs between species. The species for the
reaction are defined in the Model object property Species.

You can add a reaction to a model object with the method addreaction on page 2-82, and you
can remove a reaction from the model object with the method delete on page 2-171.

Characteristics
Applies to Object: model
Data type Array of reaction objects
Data values Reaction object
Access Read-only

Examples
1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Verify that the reactions property records the input.

get (modelObj, 'Reactions')

MATLAB returns:

SimBiology Reaction Array

 Index: Reaction:
 1 a + b -> c + d

See Also
addreaction, delete

3 Properties

3-144

RelativeTolerance
Allowable error tolerance relative to state value during a simulation

Description
RelativeTolerance is a property of the SolverOptions object, which is a property of a
Configset object. It is available for the ode solvers (ode15s, ode23t, ode45, and sundials).

The RelativeTolerance property specifies the allowable error tolerance relative to the state vector
at each simulation step. The state vector contains values for all the state variables, for example,
amounts for all the species.

If you set the RelativeTolerance at 1e-2, you are specifying that an error of 1% relative to each
state value is acceptable at each simulation step.

For details, see “Selecting Absolute Tolerance and Relative Tolerance for Simulation”.

Characteristics

Applies to Object: SolverOptions
Data type double
Data values Positive scalar that is <1. Default is 1e-3.
Access Read/write

Examples
This example shows how to change AbsoluteTolerance.

1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

2 Change the AbsoluteTolerance to 1e-8.

set(configsetObj.SolverOptions, 'RelativeTolerance', 1.0e-6);
get(configsetObj.SolverOptions, 'RelativeTolerance')

ans =

 1.0000e-006

See Also
AbsoluteTolerance, MassUnits, AmountUnits, Configset object

 RelativeTolerance

3-145

See Also
Topics
“Model Simulation”
“Choosing a Simulation Solver”
“Ordinary Differential Equations”

3 Properties

3-146

RepeatCount
Dose repetitions

Description
RepeatCount is a property of a RepeatDose object. This property defines the number of doses after
the initial dose in a repeat dose series.

For RepeatDose objects, you can parameterize the property by setting it to the name of a model-
scoped parameter that is not being modified by a repeated assignment rule, an algebraic rule, or a
rate rule. However, the parameter can be modified by an event.

Note When the Interval property is 0, RepeatDose ignores the RepeatCount property, that is, it
treats it as though it is set to 0.

Characteristics
Applies to Object: RepeatDose.
Data type double or character vector.
Data values Nonnegative integer or name of a model-scoped parameter object.

The default value is 0.
Access Read/Write.

See Also
RepeatDose object | ScheduleDose object

Topics
“Parameterized and Adaptive Doses”

 RepeatCount

3-147

Reversible
Specify whether reaction is reversible or irreversible

Description
The Reversible property defines whether a reaction is reversible or irreversible. The rate of the
reaction is defined by the ReactionRate property. For a reversible reaction, the reaction rate
equation is the sum of the rate of the forward and reverse reactions. The type of reaction rate is
defined by the KineticLaw property. If a reaction is changed from reversible to irreversible or vice
versa after KineticLaw is assigned, the new ReactionRate is determined only if Type is
MassAction. All other Types result in unchanged ReactionRate. For MassAction, the first
parameter specified is assumed to be the rate of the forward reaction.

Characteristics

Applies to Object: reaction
Data type boolean
Data values true, false. Default value is false.
Access Read/write

Examples
Create a model, add a reaction, and assign the expression for the reaction rate equation.

1 Create model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Set the Reversible property for the reactionObj to true and verify this setting.

set (reactionObj, 'Reversible', true)
get (reactionObj, 'Reversible')

MATLAB returns:

ans =

 1

MATLAB returns 1 for true and 0 for false.

In the next steps the example illustrates how the reaction rate equation is assigned for reversible
reactions.

3 Create a kinetic law object for the reaction object of the type 'MassAction'.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');

reactionObj KineticLaw property is configured to kineticlawObj.

3 Properties

3-148

4 The 'MassAction' kinetic law for reversible reactions has two parameter variables ('Forward
Rate Parameter' and 'Reverse Rate Parameter') that you should set. The species
variables for MassAction are automatically determined. To set the parameter variables, first
create the parameter variables as parameter objects (parameterObj1, parameterObj2)
named Kf and Kr and assign the object to kineticlawObj.

parameterObj1 = addparameter(kineticlawObj, 'Kf');
parameterObj2 = addparameter(kineticlawObj, 'Kr');

5 Set the variable names for the kinetic law object.

set(kineticlawObj,'ParameterVariableNames', {'Kf' 'Kr'});
6 Verify that the reaction rate is expressed correctly in the reaction object ReactionRate

property.

get (reactionObj, 'ReactionRate')

MATLAB returns:

ans =

Kf*a*b - Kr*c*d

See Also
addparameter, addreactant, addreaction, ParameterVariableNames, ReactionRate

 Reversible

3-149

Rule
Specify species and parameter interactions

Description
The Rule property contains a rule that defines how certain species and parameters should interact
with one another. For example, a rule could state that the total number of species A and species B
must be some value. Rule is a MATLAB expression that defines the change in the species object
quantity or a parameter object Value on page 3-192 when the rule is evaluated.

You can add a rule to a model object with the addrule on page 2-87 method and remove the rule
with the delete on page 2-171 method. For more information on rules, see addrule on page
2-87 and RuleType on page 3-151.

Note If you set the Rule property for an algebraic rule, rate rule, or repeated assignment rule, and
the rule expression is not continuous and differentiable, see “Using Events to Address Discontinuities
in Rule and Reaction Rate Expressions” before simulating your model.

Characteristics

Applies to Object: rule
Data type Character vector
Data values Character vector defined as species or parameter objects. Default is

an empty character vector ''.
Access Read/write

Examples
1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Add a rule.

ruleObj = addrule(modelObj, '10-a+b')

MATLAB returns:

SimBiology Rule Array

Index: RuleType: Rule:
1 algebraic 10-a+b

See Also
addrule, delete, “Definitions and Evaluations of Rules in SimBiology Models”

3 Properties

3-150

RuleType
Specify type of rule for rule object

Description
The RuleType property indicates the type of rule defined by the rule object. A Rule object defines
how certain species, parameters, and compartments should interact with one another. For example, a
rule could state that the total number of species A and species B must be some value. Rule is a
MATLAB expression that defines the change in the species object quantity or a parameter object
Value on page 3-192 when the rule is evaluated.

You can add a rule to a model object with the addrule on page 2-87 method and remove the rule
with the delete on page 2-171 method. For more information on rules, see addrule on page
2-87.

The types of rules in SimBiology are as follows:

• initialAssignment — Lets you specify the initial value of a parameter, species, or compartment
capacity, as a function of other model component values in the model.

• repeatedAssignment — Lets you specify a value that holds at all times during simulation, and is
a function of other model component values in the model.

• algebraic — Lets you specify mathematical constraints on one or more parameters, species, or
compartments that must hold during a simulation.

• rate — Lets you specify the time derivative of a parameter value, species amount, or
compartment capacity.

Constraints on Varying Species Using a Rate Rule

If the model has a species defined in concentration, being varied by a rate rule, and it is in a
compartment with varying volume, you can only use rate or initialAssignment rules to vary the
compartment volume.

Conversely, if you are varying a compartment's volume using a repeatedAssignment or algebraic
rules, then you cannot vary a species (defined in concentration) within that compartment, with a
rate rule.

The reason for these constraints is that, if a species is defined in concentration and it is in a
compartment with varying volume, the time derivative of that species is a function of the
compartment's rate of change. For compartments varied by rate rules, the solver has that
information.

Note that if you specify the species in amounts there are no constraints.

Characteristics

Applies to Object: rule
Data type Character vector

 RuleType

3-151

Data values 'initialAssignment', 'repeatedAssignment''algebraic',
'rate'. Default value is 'initialAssignment'.

Access Read/write

Examples
1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a -> b');

2 Add a rule that specifies the quantity of a species c. In the rule expression, k is the rate constant
for a -> b.

ruleObj = addrule(modelObj, 'c = k*(a+b)')
3 Change the RuleType from the default ('initialAssignment') to 'rate' and verify it using

the get command.

set(ruleObj, 'RuleType', 'rate');
get(ruleObj)

MATLAB returns all the properties for the rule object.

 Active: 1
Annotation: ''
 Name: ''
 Notes: ''
 Parent: [1x1 SimBiology.Model]
 Rule: 'c = k*(a+b)'
 RuleType: 'rate'
 Tag: ''
 Type: 'rule'
 UserData: []

See Also
“Definitions and Evaluations of Rules in SimBiology Models”, addrule, delete

3 Properties

3-152

Rules
Array of rules in model object

Description
The Rules property shows the rules in a Model object. Read-only array of SimBiology.Rule
objects.

A rule is a mathematical expression that modifies a species amount or a parameter value. A rule
defines how certain species and parameters should interact with one another. For example, a rule
could state that the total number of species A and species B must be some value.

You can add a rule to a model object with the addrule on page 2-87 method and remove the rule
with the delete on page 2-171 method. For more information on rules, see addrule and
RuleType on page 3-151.

Characteristics

Applies to Object: model
Data type Array of rule objects
Data values Rule object
Access Read-only

Examples
1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Add a rule.

ruleobj = addrule(modelObj, '10-a+b')

MATLAB returns:

SimBiology Rule Array

Index: RuleType: Rule:
 1 algebraic 10-a+b

See Also
addrule, delete, “Definitions and Evaluations of Rules in SimBiology Models”

 Rules

3-153

RunInfo
Information about simulation

Description
The RunInfo property contains information describing the simulation run that yielded the data in the
SimData object.

The following information is stored:

• Configset — A struct form of the configuration set used during simulation. This would
typically be the model’s active configset.

• Variant — A struct form of the variant(s) used during simulation.
• SimulationDate — The date/time of simulation.
• SimulationType — Either 'single run' or 'ensemble run', depending on whether the data

object was created using the function sbiosimulate or the function sbioensemblerun.

Characteristics
Applies to Object: SimData
Data type struct
Data values Default values are as follows:

ConfigSet: []
SimulationDate: ''
SimulationType: ''
Variant: []

In practice, the ConfigSet, SimulationDate, and
SimulationType fields are rarely empty, since they are
populated after simulation.

Access Read-only

See Also
StopTime

3 Properties

3-154

RuntimeOptions
Options for logged species

Description
The RuntimeOptions property holds options for species that will be logged during the simulation
run. The run-time options object can be accessed through this property.

The LogDecimation property of the configuration set object defines how often data is logged.

Property Summary
StatesToLog Specify species, compartment, or parameter data recorded
Type Display SimBiology object type

Characteristics
Applies to Object: configset
Data type Object
Data values Run-time options
Access Read-only

Examples
1 Create a model object, and retrieve its configuration set.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

2 Retrieve the RuntimeOptions object from the configset object.

runtimeObj = get(configsetObj, 'RunTimeOptions')
Runtime Settings:

 StatesToLog: all

See Also
get, set

 RuntimeOptions

3-155

SensitivityAnalysis
Enable or disable sensitivity analysis

Description
SensitivityAnalysis is a property of the SolverOptions property, which is a property of a
configset object. This property lets you compute the time-dependent sensitivities of all the species
states defined by the StatesToLog property with respect to the Inputs that you specify in the
SensitivityAnalysisOptions property of the configuration set object.

SimBiology always uses the SUNDIALS solver to perform sensitivity analysis on a model, regardless
of what you have selected as the SolverType in the configuration set.

Note Models containing the following active components do not support sensitivity analysis:

• Nonconstant compartments
• Algebraic rules
• Events

For more information on setting up sensitivity analysis, see SensitivityAnalysisOptions . For a
description of sensitivity analysis calculations, see “Sensitivity Analysis in SimBiology”.

Characteristics
Applies to Object: SolverOptions
Data type logical
Data values 1, 0, true, false. Default is false.
Access Read/write

Examples
This example shows how to enable SensitivityAnalysis.

1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

2 Enable SensitivityAnalysis.

set(configsetObj.SolverOptions, 'SensitivityAnalysis', true);
get(configsetObj.SolverOptions, 'SensitivityAnalysis')

ans =

 on

3 Properties

3-156

See Also
SensitivityAnalysisOptions, SolverOptions, SolverType, StatesToLog

 SensitivityAnalysis

3-157

SensitivityAnalysisOptions
Specify sensitivity analysis options

Description
The SensitivityAnalysisOptions property is an object that holds the sensitivity analysis options
in the configuration set object. Sensitivity analysis is supported only for deterministic (ODE)
simulations.

Note The SensitivityAnalysisOptions property controls the settings related to sensitivity
analysis. To enable or disable sensitivity analysis, use the SensitivityAnalysis property.

Properties of SensitivityAnalysisOptions are summarized in “Property Summary” on page 3-
158.

When sensitivity analysis is enabled, the following command

[t,x,names] = sbiosimulate(modelObj)

returns [t,x,names], where

• t is an n-by-1 vector, where n is the number of steps taken by the ode solver and t defines the
time steps of the solver.

• x is an n-by-m matrix, where n is the number of steps taken by the ode solver and m is:
Number of species and parameters specified in StatesToLog +
(Number of sensitivity outputs * Number of sensitivity input factors)

A SimBiology state includes species and nonconstant parameters.
• names is the list of states logged and the list of sensitivities of the species specified in

StatesToLog with respect to the input factors.

For an example of the output, see “Examples” on page 3-159.

You can add a number of configuration set objects with different SensitivityAnalysisOptions to
the model object with the addconfigset method. Only one configuration set object in the model
object can have the Active on page 3-6 property set to true at any given time.

Property Summary

Inputs Specify species and parameter input factors for sensitivity analysis
Normalization Specify normalization type for sensitivity analysis
Outputs Specify species and parameter outputs for sensitivity analysis

Characteristics
Applies to Object: configuration set

3 Properties

3-158

Data type Object
Data values SensitivityAnalysisOptions properties as summarized in

“Property Summary” on page 3-158.
Access Read-only

Examples
This example shows how to set SensitivityAnalysisOptions.

1 Import the radio decay model from SimBiology demos.

modelObj = sbmlimport('radiodecay');
2 Retrieve the configuration settings and the sensitivity analysis options from modelObj.

configsetObj = getconfigset(modelObj);
sensitivityObj = get(configsetObj, 'SensitivityAnalysisOptions');

3 Add a species and a parameter to the Inputs property. Use the sbioselect function to retrieve
the species and parameter objects from the model.

4 Add a species to the Outputs property and display.

SimBiology Species Array

 Index: Compartment: Name: InitialAmount: InitialAmountUnits:
 1 unnamed z 0 molecule

5 Enable SensitivityAnalysis.

set(configsetObj.SolverOptions, 'SensitivityAnalysis', true);
get(configsetObj.SolverOptions, 'SensitivityAnalysis')

ans =

 1
6 Simulate and return the results to three output variables. See “Description” on page 3-158 for

more information.

[t,x,names] = sbiosimulate(modelObj);
7 Display the names.

names

names =

 'x'
 'z'
 'd[z]/d[z]_0'
 'd[z]/d[Reaction1.c]'

Display state values x.

x

The display follows the column order shown in names for the values in x. The rows correspond to
t.

 SensitivityAnalysisOptions

3-159

See Also
addconfigset, getconfigset, SensitivityAnalysis

3 Properties

3-160

SolverOptions
Specify model solver options

Description
The SolverOptions property is an object that holds the model solver options in the configset
object. Changing the property SolverType changes the options specified in the SolverOptions
object.

Properties of SolverOptions are summarized in “Property Summary” on page 3-161.

Property Summary

AbsoluteTolerance Absolute error tolerance applied to state value during simulation
AbsoluteToleranceScaling Control scaling of absolute error tolerance during simulation
AbsoluteToleranceStepSize Initial guess for time step size for scaling of absolute error tolerance
ErrorTolerance Specify explicit or implicit tau error tolerance
LogDecimation Specify frequency to log stochastic simulation output
MaxIterations Specify nonlinear solver maximum iterations in implicit tau
MaxStep Specify upper bound on ODE solver step size
OutputTimes Specify times to log deterministic simulation output
RandomState Set random number generator
RelativeTolerance Allowable error tolerance relative to state value during a simulation
SensitivityAnalysis Enable or disable sensitivity analysis
Type Display SimBiology object type

Characteristics

Applies to Object: configset
Data type Object
Data values Solver options depending on SolverType. Default is SolverOptions for

default SolverType (ode15s).
Access Read-only

Examples
This example shows the changes in SolverOptions for various SolverType settings.

1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

 SolverOptions

3-161

2 Configure the SolverType to ode45.

set(configsetObj, 'SolverType', 'ode45');
get(configsetObj, 'SolverOptions')

Solver Settings: (ode)

 AbsoluteTolerance: 1.000000e-006
 RelativeTolerance: 1.000000e-003

3 Configure the SolverType to ssa.

set(configsetObj, 'SolverType', 'ssa');
get(configsetObj, 'SolverOptions')

Solver Settings: (ssa)

 LogDecimation: 1
 RandomState: []

4 Configure the SolverType to impltau.

set(configsetObj, 'SolverType', 'impltau');
get(configsetObj, 'SolverOptions')

Solver Settings: (impltau)

 ErrorTolerance: 3.000000e-002
 LogDecimation: 1
 AbsoluteTolerance: 1.000000e-002
 RelativeTolerance: 1.000000e-002
 MaxIterations: 15
 RandomState: []

5 Configure the SolverType to expltau.

set(configsetObj, 'SolverType', 'expltau');
get(configsetObj, 'SolverOptions')

Solver Settings: (expltau)

 ErrorTolerance: 3.000000e-002
 LogDecimation: 1
 RandomState: []

See Also
addconfigset, getconfigset

3 Properties

3-162

SolverType
Select solver type for simulation

Description
The SolverType property lets you specify the solver to use for a simulation. For a discussion about
solver types, see “Choosing a Simulation Solver”.

Changing the solver type changes the options (properties) specified in the SolverOptions property
of the configset object. If you change any SolverOptions, these changes are persistent when you
switch SolverType. For example, if you set the ErrorTolerance for the expltau solver and then
change to impltau when you switch back to expltau, the ErrorTolerance will have the value you
assigned.

Characteristics
Applies to Object: Configset
Data type enum
Data values 'ode15s', 'ode23t', 'ode45', 'sundials', 'ssa', 'expltau',

'impltau'. Default is 'ode15s'.

Note

• If your model contains events, you cannot specify 'expltau' or
'impltau' for the SolverType property.

• If your model contains doses, you cannot specify 'ssa', 'expltau', or
'impltau' for the SolverType property.

• If your model contains algebraic rules, you cannot use 'ode45'.
• SimBiology always uses the SUNDIALS solver to perform sensitivity

analysis on a model, regardless of what you have selected as the
SolverType in the configuration set.

Access Read/write

Examples
1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

Configuration Settings - default (active)
 SolverType: ode15s
 StopTime: 10.000000

 SolverOptions:

 SolverType

3-163

 AbsoluteTolerance: 1.000000e-006
 RelativeTolerance: 1.000000e-003
 SensitivityAnalysis: false

 RuntimeOptions:
 StatesToLog: all

 CompileOptions:
 UnitConversion: false
 DimensionalAnalysis: true

 SensitivityAnalysisOptions:
 Inputs: 0
 Outputs: 0

2 Configure the SolverType to ode45.

set(configsetObj, 'SolverType', 'ode45')
configsetObj

 Configuration Settings - default (active)
 SolverType: ode45
 StopTime: 10.000000

 SolverOptions:
 AbsoluteTolerance: 1.000000e-006
 RelativeTolerance: 1.000000e-003
 SensitivityAnalysis: false

 RuntimeOptions:
 StatesToLog: all

 CompileOptions:
 UnitConversion: false
 DimensionalAnalysis: true

 SensitivityAnalysisOptions:
 Inputs: 0
 Outputs: 0

See Also
getconfigset, set

3 Properties

3-164

Species
Array of species in compartment object

Description
The Species property is a property of the compartment object and indicates all the species in a
compartment object. Species is a read-only array of SimBiology species objects.

In the model object, Species contains a flat list of all the species that exist within all the
compartments in the model. You should always access a species through its compartment rather than
the model object. Use the format compartmentName.speciesName, for example, nucleus.DNA.
Another example of the syntax is modelObj.Compartments(2).Species(1). The Species
property in the model object might not be available in a future version of the software.

Species are entities that take part in reactions. A species object is added to the Species property
when a reaction is added to the model object with the method addreaction on page 2-82. A
species object can also be added to the Species property with the method addspecies on page
2-106.

If you remove a reaction with the method delete on page 2-210, and a species is no longer being
used by any of the remaining reactions, the species object is not removed from the Species property.
You have to use the delete method to remove species.

There are reserved characters that cannot be used in species object names. See Name for more
information.

Characteristics
Applies to Object: compartment
Data type Array of species objects
Data values Species object. Default is [] (empty).
Access Read-only

See Also
addcompartment, addreaction, addspecies, delete

 Species

3-165

SpeciesVariableNames
Cell array of species in reaction rate equation

Description
The SpeciesVariableNames property shows the species used by the kinetic law object to
determine the ReactionRate on page 3-139 equation in the reaction object. Use setspecies to
assign SpeciesVariableNames. When you assign species to SpeciesVariableNames, SimBiology
software maps these species names to SpeciesVariables on page 3-168 in the kinetic law
object.

The ReactionRate property of a reaction object shows the result of a mapping from kinetic law
definition on page 3-70. The ReactionRate is determined by the kinetic law object Expression
property by mapping ParameterVariableNames to ParameterVariables and
SpeciesVariableNames to SpeciesVariables.

Characteristics

Applies to Object: kinetic law
Data type Cell array of character vectors
Data values Cell array of species names
Access Read/write

Examples
Create a model, add a reaction, and assign the SpeciesVariableNames for the reaction rate
equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type 'Henri-Michaelis-Menten'
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

The reactionObj KineticLaw property is configured to kineticlawObj.
3 The 'Henri-Michaelis-Menten' kinetic law has one species variable (S) that you should set.

To set this variable:

setspecies(kineticlawObj,'S', 'a');
4 Verify that the species variable is correct.

get (kineticlawObj, 'SpeciesVariableNames')

MATLAB returns:

3 Properties

3-166

ans =

'a'

See Also
Expression(AbstractKineticLaw, KineticLaw), ParameterVariables, ParameterVariableNames,
ReactionRate, setparameter, SpeciesVariables

 SpeciesVariableNames

3-167

SpeciesVariables
Species in abstract kinetic law

Description
This property shows species variables that are used in the Expression on page 3-70 property of
the kinetic law object to determine the ReactionRate on page 3-139 equation in the reaction
object. Use the function set to assign SpeciesVariables to an abstract kinetic law. For more
information, see abstract kinetic law on page 3-70.

Characteristics

Applies to Objects: abstract kinetic law, kineticlaw
Data type Cell array of character vectors
Data values Defined by abstract kinetic law
Access Read/write in abstract kinetic law. Read-only in

kinetic law.

Examples
Create a model, add a reaction, and assign the SpeciesVariableNames for the reaction rate
equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> c + d');

2 Create a kinetic law object for the reaction object, of the type 'Henri-Michaelis-Menten'.
kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.
3 View the species variable for'Henri-Michaelis-Menten' kinetic law.

get (kineticlawObj, 'SpeciesVariables')

MATLAB returns:

ans =

 'S'

See Also
Expression(AbstractKineticLaw, KineticLaw), ParameterVariables, ParameterVariableNames,
ReactionRate, set, setparameter, SpeciesVariableNames

3 Properties

3-168

StartTime
Start time for initial dose time

Description
StartTime is a property of a RepeatDose object. For a series of repeated doses, the StartTime
property defines the amount of time that elapses before the first (initial) dose is given.

For RepeatDose objects, you can parameterize the property by setting it to the name of a model-
scoped parameter that is not being modified by a repeated assignment rule, an algebraic rule, or a
rate rule. However, the parameter can be modified by an event.

Characteristics
Applies to Objects: RepeatDose.
Data type double or character vector.
Data values Nonnegative real number or name of a model-scoped parameter object. The

default value is 0.
Access Read-write.

See Also
RepeatDose object | ScheduleDose object

Topics
“Parameterized and Adaptive Doses”

 StartTime

3-169

StatesToLog
Specify species, compartment, or parameter data recorded

Description
The StatesToLog property specifies the species, compartment, or parameter data to log during a
simulation. This is the data returned in x during execution of [t,x] = sbiosimulate(modelObj).
By default, all species, nonconstant compartments, and nonconstant parameters are logged.

If you specify a particular list of species, compartments, or parameters to be logged, the order of the
states in the result SimData after simulation is the same as the order specified.

Characteristics
Applies to Object: RuntimeOptions
Data type Character vector, cell array of character vectors, object or vector of

objects
Data values Species objects, compartment objects, or parameter objects. Default is

'all', which means all species objects, all nonconstant compartment
objects and all nonconstant parameter objects are logged. A nonconstant
compartment or parameter means that its Constant property is set to
false.

Access Read/write

Examples

Specify a List of Species to be Logged During Simulation

Load the Lotka-Volterra model.

sbioloadproject lotka;

Get the configset object of the lotka model m1.

configset = getconfigset(m1);

Display the list of species whose data are logged by default during the simulation.

configset.RuntimeOptions.StatesToLog

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed x 1
 2 unnamed y1 900
 3 unnamed y2 900
 4 unnamed z 0

3 Properties

3-170

Suppose you want to log just species y1 and y2 data. You can specify their names as a cell array of
strings and set it to StatesToLog property.

configset.RuntimeOptions.StatesToLog = {'y1','y2'};

Confirm the setting.

configset.RuntimeOptions.StatesToLog

ans =
 SimBiology Species Array

 Index: Compartment: Name: Value: Units:
 1 unnamed y1 900
 2 unnamed y2 900

Alternatively, you can specify an array of species objects (instead of strings) to StatesToLog
property.

y1 = m1.Species(2);
y2 = m1.Species(3);
configset.RuntimeOptions.StatesToLog = [y1, y2];

Simulate and plot the results. Notice that simulation results of only y1 and y2 are plotted.

sbioplot(sbiosimulate(m1));

 StatesToLog

3-171

To reset to the default list, set StatesToLog to a string 'all', which means all species objects, all
nonconstant compartment objects and all nonconstant parameter objects are logged by default. A
nonconstant compartment or parameter means that its Constant property is set to false.

configset.RuntimeOptions.StatesToLog = 'all';

Simulate again. Notice all the species data are plotted.

sbioplot(sbiosimulate(m1));

Do not specify 'all' as a cell string such as {'all'}. If so, SimBiology interprets it as a species
named all.

See Also
Constant, Configset on page 2-166, RuntimeOptions on page 3-155

3 Properties

3-172

Stoichiometry
Species coefficients in reaction

Description
The Stoichiometry property specifies the species coefficients in a reaction. Enter an array of
doubles indicating the stoichiometry of reactants (negative value) and products (positive value).
Example: [-1 -1 2].

The double specified cannot be 0. The reactants of the reaction are defined with a negative number.
The products of the reaction are defined with a positive number. For example, the reaction 3 H + A->
2 C + F has the Stoichiometry value of [-3 -1 2 1].

When this property is configured, the Reaction property updates accordingly. In the above example,
if the Stoichiometry value was set to [-2 -1 2 3], the reaction is updated to 2H + A -> 2C + 3F.

The length of the Stoichiometry array is the sum of the Reactants array and the Products array.
To remove a product or reactant from a reaction, use the rmproduct on page 2-712 or
rmreactant on page 2-714 function. Add a product or reactant and set stoichiometry with
methods addproduct on page 2-78 and addreactant on page 2-80.

ODE solvers support double stoichiometry values such as 0.5. Stochastic solvers and dimensional
analysis currently support only integers in Stoichiometry, therefore you must balance the reaction
equation and specify integer values for these two cases.

A -> null has a stoichiometry value of [-1]. null -> B has a stoichiometry value of [1].

Characteristics

Applies to Object: reaction
Data type Double array
Data values 1-by-n double, where n is length (products) + length (reactants).

Default is [] (empty).
Access Read/write

Examples
1 Create a reaction object.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, '2 a + 3 b -> d + 2 c');

2 Verify the Reaction and Stoichiometry properties for reactionObj.

get(reactionObj,'Stoichiometry')

MATLAB returns:

 Stoichiometry

3-173

ans =

-2 -3 1 2
3 Set stoichiometry to [-1 -2 2 2].

set (reactionObj, 'Stoichiometry', [-1 -2 2 2]);
get (reactionObj, 'Stoichiometry')

MATLAB returns:

ans =

 -1 -2 2 2
4 Note with get that the Reaction property updates automatically.

get (reactionObj, 'Reaction')

MATLAB returns:

ans =

a + 2 b -> 2 d + 2 c

See Also
addproduct, addreactant, addreaction, Reaction, rmproduct, rmreactant

3 Properties

3-174

StopTime
Simulation time criteria to stop simulation

Description
StopTime is a property of a Configset object. This property sets the maximum simulation time
criteria to stop a simulation. Time units are specified by the TimeUnits property of the Configset
object.

A simulation stops when it meets any of the criteria specified by StopTime, MaximumNumberOfLogs,
or MaximumWallClock. However, if you specify the OutputTimes property of the SolverOptions
property of the Configset object, then StopTime and MaximumNumberOfLogs are ignored.
Instead, the last value in OutputTimes is used as the StopTime criteria, and the length of
OutputTimes is used as the MaximumNumberOfLogs criteria.

Characteristics
Applies to Object: Configset
Data type double
Data values Nonnegative scalar. Default is 10.
Access Read/write

Examples
Set Simulation Time Criteria to Stop Simulation
1 Create a model object named cell and save it in a variable named modelObj. Retrieve the

configuration set from modelObj and save it in a variable named configsetObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

2 Configure the simulation stop criteria by setting the StopTime property to 20 seconds. Leave the
MaximumNumberOfLogsand MaximumWallClock properties at their default values of Inf.

set(configsetObj, 'StopTime', 20)
get(configsetObj)

 Active: 1
 CompileOptions: [1x1 SimBiology.CompileOptions]
 Name: 'default'
 Notes: ''
 RuntimeOptions: [1x1 SimBiology.RuntimeOptions]
 SensitivityAnalysisOptions: [1x1 SimBiology.SensitivityAnalysisOptions]
 SolverOptions: [1x1 SimBiology.ODESolverOptions]
 SolverType: 'ode15s'
 StopTime: 20
 MaximumNumberOfLogs: Inf
 MaximumWallClock: Inf
 TimeUnits: 'second'
 Type: 'configset'

 StopTime

3-175

When you simulate modelObj, the simulation stops when the simulation time reaches 20
seconds.

See Also
Configset object, MaximumNumberOfLogs, MaximumWallClock, OutputTimes, TimeUnits,
MassUnits, AmountUnits

3 Properties

3-176

Tag
Specify label for SimBiology object

Description
The Tag property specifies a label associated with a SimBiology object. Use this property to group
objects and then use sbioselect to retrieve. For example, use the Tag property in reaction objects
to group synthesis or degradation reactions. You can then retrieve all synthesis reactions using
sbioselect. Similarly, for species objects you can enter and store classification information, for
example, membrane protein, transcription factor, enzyme classifications, or whether a species is an
independent variable. You can also enter the full form of the name of the species.

Characteristics

Applies to Objects: abstract kinetic law, kinetic law, model, observable,
parameter, reaction, RepeatDose, rule, ScheduleDose, species

Data type Character vector
Data values Any character vector
Access Read/write

Examples
1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add a reaction object and set the Tag property to 'Synthesis Reaction'.

reactionObj = addreaction (modelObj, 'a + b -> c + d');
set (reactionObj, 'Tag', 'Synthesis Reaction')

3 Verify the Tag assignment.

get (reactionObj, 'Tag');

MATLAB returns:

ans =

 'Synthesis Reaction'

See Also
addkineticlaw, addparameter, addreaction, addrule, addspecies, RepeatDose object,
sbioabstractkineticlaw, sbiomodel, sbioroot, ScheduleDose object

 Tag

3-177

TargetName
Species receiving dose

Description
TargetName is a property of a RepeatDose or ScheduleDose object. This property defines the
SimBiology species receiving the dose. The dose amount increases the species amount at each time
interval defined by a repeat dose or at each time point defined by a schedule dose.

The value of TargetName is the name of a species. If the model has more than one species with the
same name, TargetName is defined as compartmentName.speciesName, where compartmentName
is the name of the compartment containing the species.

Characteristics
Applies to Objects: RepeatDose, ScheduleDose
Data type Character vector
Data values Species name. Default value is '' (empty).
Access Read/Write

See Also
ScheduleDose object and RepeatDose object

3 Properties

3-178

Trigger
Event trigger

Description
Trigger is a property of an Event object

A Trigger is a condition that must become true for an event to execute. You can use a combination
of relational and logical operators to build a trigger expression. Trigger can be a character vector,
an expression, or a function handle that when evaluated returns a value of true or false. A
Trigger can access species, parameters, and compartments.

A trigger can contain the keyword time and relational operators to trigger an event that occurs at a
specific time during the simulation. For example, time >= x. In this example trigger, note that:

• The units associated with the keyword time are the units for the TimeUnits property for the
Configset object associated with the simulation.

• If x is an expression containing compartments, species, or parameters, then any units associated
with the expression must have the same dimensions as the keyword time.

• If x is a raw number, then its dimensions (and units, if unit conversion is on) are assumed to be the
same as the keyword time.

For more information about how the SimBiology software handles events, see “How Events Are
Evaluated”. For examples of event functions, see “Specifying Event Triggers”.

Tip If UnitConversion is on and your model has any event, follow the recommendation below.

Non-dimensionalize any parameters used in the event Trigger if they are not already dimensionless.
For example, suppose you have a trigger x > 1, where x is the species concentration in mole/liter.
Non-dimensionalize x by scaling (dividing) it with a constant such as x/x0 > 1, where x0 is a
parameter defined as 1.0 mole/liter. Note that x does not have to have the same unit as the constant
x0, but must be dimensionally consistent with it. For example, the unit of x can be picomole/liter
instead of mole/liter.

Characteristics
Applies to Object: event
SimBiology type Character vector, function handle
SimBiology values Specify a MATLAB expression as a character vector. Default is ''

(empty character vector).
Access Read/write

Examples
1 Create a model object, and then add an event object.

 Trigger

3-179

modelObj = sbmlimport('oscillator');
eventObj = addevent(modelObj, 'time>= 5', 'OpC = 200');

2 Set the Trigger property of the event object.

set(eventObj, 'Trigger', '(time >=5) && (speciesA<1000)');
3 Get the Trigger property.

get(eventObj, 'Trigger')

See Also
Event, EventFcns

3 Properties

3-180

Time
Simulation time steps or schedule dose times

Note The property of a ScheduleDose object is a column vector instead of a row vector. For details,
see “Compatibility Considerations”.

Description
Time is a property of a SimData or ScheduleDose object.

SimData Object

For a simulation, the Time property records the time steps.

ScheduleDose Object

For a series of scheduled doses, the Time property defines the times to give a dose.

A ScheduleDose object defines a series of doses. Each dose can have a different amount, as defined
by an amount array in the Amount property, and given at specified times, as defined by a time array
in the Time property. A rate array in the Rate property defines how fast each dose is given. At each
time point in the time array, a dose is given with the corresponding amount and rate.

Characteristics

Applies to Objects: SimData, ScheduleDose.
Data type double (SimData), double column (ScheduleDose)

.
Data values Vector of doubles (SimData) or column of nonnegative real numbers. Default

property value for ScheduleDose is 0x1 empty double column vector.
Access Read-only.

See Also
ScheduleDose object, SimData object, StopTime

Compatibility Considerations
Time property of ScheduleDose is a column vector
Behavior changed in R2019b

The Time property of a ScheduleDose object is a column vector instead of a row vector. The default
value is 0x1 empty double column vector, instead of [].

 Time

3-181

TimeUnits
Show time units for dosing and simulation

Description
The TimeUnits property specifies time units for these properties:

• StopTime property of a Configset object
• OutputTimes and AbsoluteToleranceStepSize properties of the SolverOptions property

of a Configset object
• StartTime and Interval properties of a RepeatDose object
• Time property of a ScheduleDose object
• Time property of a SimData object

Note If you change the value of the TimeUnits property, make sure:

• You update the values of the Time, StartTime, Interval, StopTime, and OutputTimes
properties accordingly.

• You update raw numbers used in any event triggers that use the keyword time accordingly. For
more information, see Trigger.

• The units, if any, associated with expressions used in any event triggers that use the keyword
time, are consistent with the updated TimeUnits property. For more information, see Trigger.

Tip If UnitConversion is on and your model has any event, follow the recommendation below.

Non-dimensionalize any parameters used in the event Trigger if they are not already dimensionless.
For example, suppose you have a trigger x > 1, where x is the species concentration in mole/liter.
Non-dimensionalize x by scaling (dividing) it with a constant such as x/x0 > 1, where x0 is a
parameter defined as 1.0 mole/liter. Note that x does not have to have the same unit as the constant
x0, but must be dimensionally consistent with it. For example, the unit of x can be picomole/liter
instead of mole/liter.

Characteristics
Applies to Objects: Configset, RepeatDose, ScheduleDose, SimData
Data type Character vector

3 Properties

3-182

Data values Empty character vector or a character vector specifying any unit defined in the
Units Library.

Default value is:

• second — properties of a Configset object or SimData object for a model
object created using sbiomodel

• hour — properties of a Configset object or SimData object for a model
object created from a PKModelDesign object

• '' (empty character vector) — properties of RepeatDose and
ScheduleDose objects

Access Read/write for properties of Configset, RepeatDose, and ScheduleDose
objects

Read only for properties of SimData objects

See Also
Configset object, RepeatDose object, ScheduleDose object, SimData object, Interval,
OutputTimes, StartTime, StopTime, Time, MassUnits, AmountUnits

 TimeUnits

3-183

Type
Display SimBiology object type

Description
The Type property indicates a SimBiology object type. When you create a SimBiology object, the
value of Type is automatically defined.

For example, when a Species object is created, the value of the Type property is automatically
defined as 'species'.

Characteristics
Applies to Objects: abstract kinetic law, compartment, configuration set,

CompileOptions, event, kinetic law, model, observable, parameter,
reaction, RepeatDose, root, rule, ScheduleDose, species,
RuntimeOptions, SolverOptions, unit, unitprefix, and variant

Data type Character vector
Data values abstract_kinetic_law, compartment, configset,

compileoptions, event, kineticlaw, observable parameter,
reaction, repeatdose, root, rule, runtimeoptions,
sbiomodel, scheduledose, species, solveroptions, unit,
unitprefix, and variant

Access Read-only

See Also
RepeatDose object, sbiomodel, sbioroot, ScheduleDose object, setactiveconfigset

3 Properties

3-184

UnitConversion
Perform unit conversion

Description
The UnitConversion property specifies whether to perform unit conversion for the model before
simulation. It is a property of the CompileOptions object. CompileOptions holds the model's
compile time options and is the object property of the configset object.

When UnitConversion is set to true, the SimBiology software converts the matching physical
quantities to one consistent unit system in order to resolve them. This conversion is in preparation for
correct simulation, but species amounts are returned in the user-specified units.

For example, consider a reaction a + b —> c. Using mass action kinetics the reaction rate is defined
as a*b*k where k is the rate constant of the reaction. If you specify that initial amounts of a and b
are 0.01M and 0.005M respectively, then units of k are 1/(M*second). If you specify k with another
equivalent unit definition, for example, 1/((molecules/liter)*second), UnitConversion
occurs after DimensionalAnalysis.

Unit conversion requires dimensional analysis. If DimensionalAnalysis is off, and you turn
UnitConversion on, then DimensionalAnalysis is turned on automatically. If UnitConversion
is on and you turn off DimensionalAnalysis, then UnitConversion is turned off automatically.

If UnitConversion fails, then you see an error when you simulate (sbiosimulate).

If UnitConversion is set to false, the simulation uses the given object values.

Characteristics
Applies to Object: CompileOptions (in configset object)
Data type boolean
Data values true or false. Default value is false.
Access Read/write

Note SimBiology uses units including empty units in association with DimensionalAnalysis and
UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, units are not used.
However, SimBiology still performs a minimum level of dimensional analysis to decide whether a
reaction rate is in dimensions of amount/time or concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not empty) must
have consistent dimensions so that SimBiology can perform dimensional analysis. However, the
units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to be true),
SimBiology performs a dimensional analysis and converts everything to consistent units. Hence,
you must specify consistent units, and no units can be empty. If you have a dimensionless
parameter, you must still set its unit to dimensionless.

 UnitConversion

3-185

Tip If you have a custom function and UnitConversion is on, follow the recommendation below.

• Non-dimensionalize the parameters that are passed to the function if they are not already
dimensionless.

Suppose you have a custom function defined as y = f(t) where t is the time in hour and y is the
concentration of a species in mole/liter. When you use this function in your model to define a
repeated assignment rule for instance, define it as: s1 = f(time/t0)*s0, where time is the
simulation time, t0 is a parameter defined as 1.0 hour, s0 is a parameter defined as 1.0 mole/liter,
and s1 is the concentration of a species in mole/liter. Note that time and s1 do not have to be in
the same units as t0 and s0, but they must be dimensionally consistent. For example, the time
and s1 units can be set to minute and picomole/liter, respectively.

Examples
This example shows how to retrieve and set unitconversion from the default true to false in the
default configuration set in a model object.

1 Import a model.

modelObj = sbmlimport('oscillator')

SimBiology Model - Oscillator

 Model Components:
 Models: 0
 Parameters: 0
 Reactions: 42
 Rules: 0
 Species: 23

2 Retrieve the configset object of the model object.

configsetObj = getconfigset(modelObj)

 Configuration Settings - default (active)
 SolverType: ode15s
 StopTime: 10.000000

 SolverOptions:
 AbsoluteTolerance: 1.000000e-006
 RelativeTolerance: 1.000000e-003

 RuntimeOptions:
 StatesToLog: all

 CompileOptions:
 UnitConversion: false
 DimensionalAnalysis: true

3 Retrieve the CompileOptions object.

optionsObj = get(configsetObj,'CompileOptions')

Compile Settings:

3 Properties

3-186

 UnitConversion: false
 DimensionalAnalysis: true

4 Assign a value of false to UnitConversion.

 set(optionsObj,'UnitConversion', true)

See Also
get, getconfigset, sbiosimulate, set

 UnitConversion

3-187

Units
Units for species amount, parameter value, compartment capacity, observable expression

Description
The Units property is an alias for the following existing properties.

• InitialAmountUnits
• CapacityUnits
• ValueUnits

Characteristics
Applies to Object: species, parameter, compartment, observable
Data type boolean
Data values true or false.
Access Read/write

See Also
InitialAmountUnits, CapacityUnits, ValueUnits

Introduced in R2019b

3 Properties

3-188

UserData
Specify data to associate with object

Description
Property to specify data that you want to associate with a SimBiology object. The object does not use
this data directly, but you can access it using the function get or dot notation.

Characteristics
Applies to Objects: abstract kinetic law, configuration set, compartment, data,

event, kinetic law, model, observable, parameter, reaction,
RepeatDose, rule, ScheduleDose, species, or unit

Data type Any
Data values Any. Default is empty.
Access Read/write

See Also
RepeatDose object, sbioabstractkineticlaw, sbiomodel, sbioroot, sbiounit,
sbiounitprefix, ScheduleDose object

 UserData

3-189

UserDefinedLibrary
Library of user-defined components

Description
UserDefinedLibrary is a SimBiology root object property containing all user-defined components
of unit, unit prefixes, and kinetic laws that you define. You can add, modify, or delete components in
the user-defined library. The UserDefinedLibrary property is an object that contains the following
properties:

• Units — Contains any user-defined units. You can specify units for compartment capacity, species
amounts and parameter values, to do dimensional analysis and unit conversion during simulation.
You can display the user-defined units either by using the command sbiowhos -userdefined -
unit, or by accessing the root object.

• UnitPrefixes — Contains any user-defined unit prefixes. You can specify unit prefixes in
combination with a valid unit for compartment capacity, species amounts and parameter values, to
do dimensional analysis and unit conversion during simulation. You can display the user-defined
unit prefixes either by using the command sbiowhos -userdefined -unitprefix, or by
accessing the root object.

• KineticLaws — Contains any user-defined kinetic laws. Use the command sbiowhos -
userdefined -kineticlaw to see the list of user-defined kinetic laws. You can use user-defined
kinetic laws when you use the command addkineticlaw to create a kinetic law object for a
reaction object. Refer to the kinetic law by name when you create the kinetic law object, for
example, kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-
Menten');.

See “Kinetic Law Definition” on page 3-70 for a definition and more information.

Characteristics

Applies to Object: root
Data type object
Data values Unit, unit prefix, and abstract kinetic law objects
Access Read-only

Characteristics for UserDefinedLibrary properties:

• Units

Applies to UserDefinedLibrary property
Data type Unit objects
Data values Units
Access Read/write

• UnitPrefixes

3 Properties

3-190

Applies to UserDefinedLibrary property
Data type Unit prefix objects
Data values Unit prefixes
Access Read/write

• KineticLaws

Applies to UserDefinedLibrary property
Data type Abstract kinetic law object
Data values Kinetic laws
Access Read/write

Examples
Example 1

This example uses the command sbiowhos to show the current list of user-defined components.

sbiowhos -userdefined -kineticlaw
sbiowhos -userdefined -unit
sbiowhos -userdefined -unitprefix

Example 2

This example shows the current list of user-defined components by accessing the root object.

rootObj = sbioroot;
get(rootObj.UserDefinedLibrary, 'KineticLaws')
get(rootObj.UserDefinedLibrary, 'Units')
get(rootObj.UserDefinedLibrary, 'UnitPrefixes')

See Also
BuiltInLibrary, sbioaddtolibrary, sbioremovefromlibrary, sbioroot, sbiounit,
sbiounitprefix

 UserDefinedLibrary

3-191

Value
Value of species, compartment, or parameter object

Description
The Value property is the value of a parameter, species, or compartment object.

A parameter object defines an assignment that can be used by the model object and/or the kinetic law
object. Create parameters and assign Value using the method addparameter on page 2-74.

For a species object, this property is identical to the InitialAmount property. For a compartment
object, this property is identical to the Capacity property.

Characteristics
Applies to Object: species, compartment, parameter
Data type double
Data values Any double. Default value is 1.0 for parameter and compartment

objects, and 0.0 for the species object.
Access Read/write

Examples
Assign a parameter with a value to the model object.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('my_model');
2 Add a parameter to the model object (modelObj) with Value 0.5.

parameterObj1 = addparameter (modelObj, 'K1', 0.5)

MATLAB returns:

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
 1 K1 0.5

See Also
addparameter

3 Properties

3-192

ValueUnits
Parameter value units

Description
The ValueUnits property indicates the unit definition of the Value property of a parameter object.

ValueUnits can be one of the built-in units. To get a list of the built-in units, use the
sbioshowunits on page 1-256 function. If ValueUnits changes from one unit definition to another,
the Value does not automatically convert to the new units. The sbioconvertunits on page 1-21
function does this conversion.

The ValueUnits property is identical to the Units property.

Characteristics
Applies to Object: species, compartment, parameter
Data type Character vector
Data values Unit from units library. Default is '' (empty character vector). Note

that the default value of an empty character vector means
unspecified. Unspecified units are permitted during dimensional
analysis, but not during unit conversion. (Use 'dimensionless' to
specify dimensionless units.)

Access Read/write

Note SimBiology uses units including empty units in association with DimensionalAnalysis and
UnitConversion features.

• When DimensionalAnalysis and UnitConversion are both false, units are not used.
However, SimBiology still performs a minimum level of dimensional analysis to decide whether a
reaction rate is in dimensions of amount/time or concentration/time.

• When DimensionalAnalysis is true and UnitConversion is false, units (if not empty) must
have consistent dimensions so that SimBiology can perform dimensional analysis. However, the
units are not converted.

• When UnitConversion is set to true (which requires DimensionalAnalysis to be true),
SimBiology performs a dimensional analysis and converts everything to consistent units. Hence,
you must specify consistent units, and no units can be empty. If you have a dimensionless
parameter, you must still set its unit to dimensionless.

Examples
Assign a parameter with a value to the model object.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');

 ValueUnits

3-193

2 Add a parameter with Value 0.5, and assign it to the model object (modelObj).

parameterObj1 = addparameter(modelObj, 'K1', 0.5, 'ValueUnits', '1/second')

MATLAB returns:

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
 1 K1 0.5 1/second

See Also
addparameter, sbioconvertunits, sbioshowunits

3 Properties

3-194

ZeroOrderDurationParameter
Zero-order dose absorption duration

Description
ZeroOrderDurationParameter is a property of the PKModelMap object. It specifies the name(s) of
parameter object(s) that represent the duration of absorption when the DosingType property is
ZeroOrder.

Specify the name(s) of parameter object(s) that are:

• Scoped to a model
• Constant, that is, their ConstantValue property is true

When dosing multiple compartments, a one-to-one relationship must exist between the number and
order of elements in the ZeroOrderDurationParameter property and the DosingType property.
For a dose that is not dosed with zero-order kinetics, use '' (an empty character vector).

Characteristics
Applies to Object: PKModelMap
Data type Character vector or cell array of character vectors

Tip If you are not using any zero-order doses, you can set this
property to a cell array of empty character vectors, or simply an
empty cell array.

Data values Name of a parameter object or empty. Default is an empty cell array.

The parameter object(s) must be:

• Scoped to a model
• Constant, that is, have a ConstantValue property set to true

Access Read/write

See Also
DosingType, PKModelMap object

 ZeroOrderDurationParameter

3-195

	Functions
	sbioabstractkineticlaw
	sbioaccelerate
	sbioaddtolibrary
	sbioconsmoiety
	sbioconvertunits
	sbiocopylibrary
	sbiodesktop
	sbiodose
	sbiodiff
	sbioelementaryeffects
	sbioensembleplot
	sbioensemblerun
	sbioensemblestats
	sbiofit
	sbiofitmixed
	sbiofitstatusplot
	sbiofittool
	sbiogetmodel
	sbiolasterror
	sbiolastwarning
	sbioloadproject
	sbiomodel
	sbiompgsa
	sbionca
	sbioncaoptions
	sbionlinfit
	sbionlmefit
	sbionlmefitsa
	sbionmfiledef
	sbionmimport
	sbioparameterci
	sbioparamestim
	sbiopredictionci
	sbioplot
	sbioremovefromlibrary
	sbioreset
	sbioroot
	sbiosampleparameters
	sbiosampleerror
	sbiosaveproject
	sbioselect
	sbioshowunitprefixes
	sbioshowunits
	sbiosimulate
	sbiosobol
	sbiosteadystate
	sbiosubplot
	sbiotrellis
	sbiounit
	sbiounitcalculator
	sbiounitprefix
	sbiovariant
	sbiowhos
	sbmlexport
	sbmlimport
	simbiology
	SimBiology.export.Dose
	SimBiology.export.ExplicitTauSimulationOptions
	SimBiology.export.ImplicitTauSimulationOptions
	SimBiology.export.Model
	SimBiology.export.ODESimulationOptions
	SimBiology.export.RepeatDose
	SimBiology.export.ScheduleDose
	SimBiology.export.SimulationOptions
	SimBiology.export.StochasticSimulationOptions
	updateInitialAssignments
	SimBiology.export.ValueInfo
	simbio.diagram.getBlock
	simbio.diagram.getLine
	simbio.diagram.joinBlock
	simbio.diagram.setBlock
	simbio.diagram.setLine
	simbio.diagram.splitBlock
	SimBiology Model Analyzer
	SimBiology Model Builder

	Methods
	accelerate(SimFunction)
	accelerate (SimBiology.export.Model)
	AbstractKineticLaw object
	add
	addcompartment (model, compartment)
	addCompartment (PKModelDesign)
	addconfigset (model)
	addcontent (variant)
	adddose (model)
	addevent (model)
	addkineticlaw (reaction)
	addobservable
	addobservable
	addobservable
	addparameter (model, kineticlaw)
	addproduct (reaction)
	addreactant (reaction)
	addreaction (model)
	addrule (model)
	addsamples
	addspecies (model, compartment)
	addvariant (model)
	bar
	bar
	bar
	boxplot
	boxplot(NLMEResults)
	ci2table
	commit (variant)
	Compartment object
	ConfidenceInterval
	Configset object
	construct (PKModelDesign)
	constructDefaultFixedEffectValues (covmodel)
	copyobj
	CovariateModel object
	covariateModel(NLMEResults)
	createDoses
	createSimFunction (model)
	createVariants
	delete
	SimBiology.DiffResults
	display
	SimBiology.gsa.ElementaryEffects
	EstimatedInfo object
	Event object
	export (model)
	findUnusedComponents (model)
	findUsages
	findUsages
	findUsages
	findUsages
	fit
	fitproblem
	fitted
	fitted(NLMEResults)
	generate
	get
	getadjacencymatrix (model)
	getComponents
	getconfigset (model)
	getCovariateData (pkdata)
	getdata
	getdose (SimBiology.export.Model)
	getdose (model)
	getEntry
	getequations
	getIndex (SimBiology.export.Model)
	getNumberScenarios
	getparameters (kineticlaw)
	getsensmatrix
	getSimulationResults
	getspecies (kineticlaw)
	getstoichmatrix (model)
	getTable(ScheduleDose,RepeatDose)
	getvariant (model)
	groupedData
	groupedData2table
	histogram
	isAccelerated(SimFunction)
	isAccelerated (SimBiology.export.Model)
	KineticLaw object
	LeastSquaresResults object
	Model object
	move
	move
	SimBiology.gsa.MPGSA
	NLINResults object
	NLMEResults object
	Observable
	OptimResults object
	Parameter object
	PKCompartment object
	PKData object
	PKModelDesign object
	PKModelMap object
	plot
	plot(NLMEResults)
	plot
	plot
	plot
	plot
	plot
	plotActualVersusPredicted
	plotActualVersusPredicted(NLMEResults)
	plotData
	plotGrid
	plotResiduals
	plotResiduals(NLMEResults)
	plotResidualDistribution
	plotResidualDistribution(NLMEResults)
	predict
	predict(NLMEResults)
	random
	random(NLMEResults)
	ParameterConfidenceInterval
	PredictionConfidenceInterval
	Reaction object
	remove
	remove
	removebyname
	removeconfigset (model)
	removedose (model)
	removeobservable
	removevariant (model)
	rename
	resetoptions
	rename
	renameobservable
	reorder (model, compartment, kinetic law)
	RepeatDose object
	resample
	resample
	reset (root)
	rmcontent (variant)
	rmproduct (reaction)
	rmreactant (reaction)
	Root object
	Rule object
	summary
	SimBiology.Scenarios
	ScheduleDose object
	select
	selectbyname
	set
	setactiveconfigset (model)
	setparameter (kineticlaw)
	setspecies (kineticlaw)
	setTable(ScheduleDose,RepeatDose)
	SimData
	SimFunction object
	SimFunctionSensitivity object
	simulate (SimBiology.export.Model)
	SimBiology.gsa.Sobol
	Species object
	Unit object
	UnitPrefix object
	updateEntry
	updateobservable
	Variant object
	verify (model, variant)
	verify
	verify (covmodel)

	Properties
	AbsoluteTolerance
	AbsoluteToleranceScaling
	AbsoluteToleranceStepSize
	Active
	Amount
	AmountUnits
	AmountUnits
	BoundaryCondition
	BuiltInLibrary
	Capacity
	CapacityUnits
	Compartments
	CompileOptions
	Composition
	Constant
	ConstantAmount
	ConstantCapacity
	ConstantValue
	Content
	CovariateLabels
	CovariateLabels (CovariateModel)
	Data
	DataCount
	DataInfo
	DataNames
	DataSet
	DefaultSpeciesDimension
	DependentVarLabel
	DependentVarUnits
	DimensionalAnalysis
	Dosed
	DoseLabel
	DoseUnits
	DosingType
	DurationParameterName
	EliminationType
	ErrorTolerance
	Estimated
	EventFcns
	EventMode
	Events
	Exponent
	Expression (CovariateModel)
	Expression
	FixedEffectDescription (CovariateModel)
	FixedEffectNames (CovariateModel)
	FixedEffectValues (CovariateModel)
	GroupID
	GroupLabel
	GroupNames
	HasLag
	HasResponseVariable
	IndependentVarLabel
	IndependentVarUnits
	InitialAmount
	InitialAmountUnits
	Inputs
	Interval
	KineticLaw
	KineticLawName
	LagParameter
	LagParameterName
	LogDecimation
	MassUnits
	MaximumNumberOfLogs
	MaximumWallClock
	MaxIterations
	MaxStep
	ModelName
	Models
	Multiplier
	Name
	Normalization
	Notes
	Observables
	Observed
	Outputs
	OutputTimes
	Owner
	ParameterNames (CovariateModel)
	Parameters
	ParameterVariableNames
	ParameterVariables
	Parent
	PKCompartments
	Products
	RandomEffectNames (CovariateModel)
	RandomState
	Rate
	RateUnits
	RateLabel
	Reactants
	Reaction
	ReactionRate
	Reactions
	RelativeTolerance
	RepeatCount
	Reversible
	Rule
	RuleType
	Rules
	RunInfo
	RuntimeOptions
	SensitivityAnalysis
	SensitivityAnalysisOptions
	SolverOptions
	SolverType
	Species
	SpeciesVariableNames
	SpeciesVariables
	StartTime
	StatesToLog
	Stoichiometry
	StopTime
	Tag
	TargetName
	Trigger
	Time
	TimeUnits
	Type
	UnitConversion
	Units
	UserData
	UserDefinedLibrary
	Value
	ValueUnits
	ZeroOrderDurationParameter

